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Time-frequency dynamics of superluminal pulse transition to the subluminal regime
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Spectral reshaping and nonuniform phase delay associated with an electromagnetic pulse propagating in
a temporally dispersive medium may lead to interesting observations in which the group velocity becomes
superluminal or even negative. In such cases, the finite bandwidth of the superluminal region implies the
inevitable existence of a cutoff distance beyond which a superluminal pulse becomes subluminal. In this paper,
we derive a closed-form analytic expression to estimate this cutoff distance in abnormal dispersive media with
gain. Moreover, the method of steepest descent is used to track the time-frequency dynamics associated with the
evolution of the center of mass of a superluminal pulse to the subluminal regime. This evolution takes place at
longer propagation depths as a result of the subluminal components affecting the behavior of the pulse. Finally,
the analysis presents the fundamental limitations of superluminal propagation in light of factors such as the
medium depth, pulse width, and the medium dispersion strength.
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I. INTRODUCTION

The spectral components comprising an electromagnetic
pulse in a temporally dispersive medium are nonuniformly
scaled and time shifted during propagation. In general, this
leads to pulse envelope reshaping (or distortion). Nevertheless,
given the dispersion characteristics of a medium, one can de-
sign the wavelength and spectral width of the input pulse so the
interference among the spectral components leads to interest-
ing observations, in which the peak of the output pulse evolves
at earlier time instants compared to its counterpart in vacuum
(with minimum distortion); implying superluminal propaga-
tion. In other extreme cases, the pulse peak can even evolve at
the output before the peak of the input pulse interacts with the
medium, implying a negative group delay. Superluminal group
delay and negative group delay refer to the same phenomenon,
but from different frames of reference, and are collectively
referred-to as abnormal group delay (AGD). The fundamental
rules governing AGD are now well established and can be
attributed to spectral reshaping [1–12] and energy exchange
between the medium and the propagating pulse [13,14].

Many experiments at optical frequencies have demonstrated
the possibility of achieving AGD using inverted media with
gain doublets [15–19]. In all such cases, it has been confirmed
that the earliest response of the medium occurs after a strictly
luminal duration equal to (L/c) in compliance with the
fundamental requirements of Einstein causality; where L is
the medium length and c is the speed of light in vacuum. In
such experiments, the fact that the bandwidth of the AGD
region is finite over a portion of the input spectrum implies
that there always exists a cutoff distance (zcutoff) beyond which
a superluminal pulse becomes subluminal. To the best of our
knowledge, there is no closed-form expression in the literature
by which zcutoff can be directly calculated. In previous efforts
the cutoff distance was only calculated numerically [20] and,
hence, the exact order dependency of zcutoff on parameters
such as the input pulse width and dispersion characteristics
remained unexplored.

The goal of this paper is, first, to derive a simple closed-form
expression to predict the cutoff distance beyond which a
superluminal pulse—in a double-resonance gain medium—
becomes subluminal. The accuracy of the obtained expression

is tested versus the exact calculations in the frequency domain.
Furthermore, the expression quantifies the dependence of the
cutoff distance on the characteristics of the input pulse and
the medium parameters. This is useful for understanding the
capabilities and the design constraints of a broad class of
systems that utilize superluminal propagation.

Second, using the saddle-point analysis (method of steepest
descent), a superluminal pulse is decomposed into its superlu-
minal and subluminal components. By tracking the evolution
of these components under different medium lengths, the
physical mechanisms for the transition of a superluminal pulse
to a subluminal are explained in light of the derived closed-
form expression. Hence, the accuracy of zcutoff expression is
tested in the time domain as well.

This paper is organized as follows: in Sec. II, we in-
troduce the dispersive medium considered in our analysis
and we present the closed-form expression that predicts the
superluminal-to-subluminal cutoff distance. The accuracy of
the derived expression is then tested versus the exact calcula-
tions. The fundamental limitations of superluminal propaga-
tion in light of factors such as the medium depth, pulse width,
and the medium dispersion strength are thus discussed. After-
wards, in Sec. III, we present a brief overview on the steepest-
descent method used to calculate the evolution of an electro-
magnetic pulse traveling in a temporally dispersive gain dou-
blet. In Sec. IV, we discuss the time-frequency evolution of an
electromagnetic pulse as a result of varying the medium length
and highlight the effects of the medium length on superluminal
propagation. Finally, Sec. V contains our concluding remarks.

II. DOUBLE-RESONANCE LORENTZIAN
MEDIA WITH GAIN

We consider a dispersive medium with AGD in the flat
region between a gain doublet. Such a medium can be realized
using the gain line of ammonia vapor at the wavelength of a
Rb laser (780 nm). The index of refraction for such an inverted
medium is described by a double-resonance Lorentzian gain
function as follows [21]:

n(ω) =
√√√√1 + ω2

p,1

ω2 − ω2
0,1 + 2iδω

+ ω2
p,2

ω2 − ω2
0,2 + 2iδω

, (1)
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TABLE I. Numerical values for the parameters of the double-
resonance Lorenztian medium with gain (ammonia vapor cells).

ω0,1 2.4165825 × 1015 rad/s
ω0,2 2.4166175 × 1015 rad/s
ωp,1 10 × 109 rad/s
ωp,2 10 × 109 rad/s
δ 2.5 × 109 rad/s

where ωp,j and ω0,j (j = 1 or 2) are the plasma and resonance
frequencies associated with the first and second resonances
and δ denotes the phenomenological linewidth. For each
resonance, the typical condition δ < ωp,j < ω0,j is satisfied.
Such a medium has a causal response and, consequently,
the Kramers-Kronig relations are satisfied. The numerical
values for the Lorentzian medium parameters are listed in
Table I. A similar configuration has been considered in a
previous study in order to investigate the speed of information
transfer in superluminal channels with different detection
noise levels [12]. Here we are rather interested in setting
the fundamental limits on the medium length and dispersion
characteristics so superluminal propagation can take place.

The real and imaginary parts of the index of refraction
n(ω) are plotted in Fig. 1, where the separation between the
medium resonances is in the order of 5 (GHz). For the input
excitation we consider a causal Gaussian pulse at λ = 780 nm
(ωc = 2.4166 × 1015 rad/s). The input pulse is then given by

f (t) = e−( t−t0
T

)2
sin(ωct). (2)

The pulse is excited at the z = 0 plane and is centered at
t0 ∼ 3T . The initial spectrum for f (t) is written as

F (ω) = √
πT e

−T 2(ω−ωc )2

4 ei(ω−ωc)t0 . (3)

For such an input pulse—with an initial spectrum that is well
fitted within the gain doublet—a superluminal effect (group
velocity) can be observed over finite propagation distances.
However, a superluminal-to-subluminal transition can still
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FIG. 1. (Color online) Index of refraction as a function of detun-
ing, the left axis represents the real part and the right axis represents
the imaginary part of n(ω).
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FIG. 2. (Color online) Spectral width and medium gain. (a) The
medium gain g(ω) for L = 25 (cm), 44.5 (cm), 54 (cm), and 63 (cm)
and a Gaussian pulse width 2T = 0.9 (ns). (b) Medium gain g(ω)
for L = 25 (cm) and pulse widths 2T = 0.9 (ns), 0.7 (ns), 0.5 (ns),
and 0.3 (ns), respectively. (c) The medium gain g(ω) at a fixed length
L = 25 (cm) and pulse width 2T = 0.9 (ns) for oscillator strengths
ωp equal to 4δ, 4.8δ, 5.6δ, and 6.4δ.

take place if the pulse propagates far enough in the medium
or if the medium dispersion parameters are tuned [20]. This
transition can be attributed to the subluminal components that
dominate over the pulse at loner propagation distance. For
instance, Fig. 2(a) depicts the input pulse spectrum over the
medium gain at four different propagation distances. As the
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propagation distance increases, the overlap region between
the (subluminal) gain doublet and the initial pulse spectrum
expands (as marked by the arrows). Accordingly, the pulse
spectrum is no longer confined within the superluminal (flat)
region of the medium and is dominated by the amplified
subluminal components.

Likewise, for a fixed propagation distance, there exists a
Gaussian pulse (centered at the superluminal region) with
a cutoff spectral width beyond which the pulse becomes
subluminal, as depicted in Fig. 2(b). In that case, the gain
doublet is fixed and the pulse spectrum leaks outside the
superluminal region. Consequently, the overlap region with
the subluminal part is expanded and the center of mass of the
pulse is delayed.

Additionally, it should be noted that the medium dispersion
strength, denoted by the plasma frequency (ωp), plays an
important role that is analogous to the medium depth. For
instance, increasing the oscillator strength, ωp, for both
resonances (at a fixed medium depth) yields a behavior that is
illustrated in Fig. 2(c). In analogy with the cases discussed in
Figs. 2(a) and 2(b), there exists a value for ωp beyond which
a superluminal pulse becomes dominated by its subluminal
components as a consequence of the interaction with the gain
doublet.

Therefore, the interplay between factors such as the pulse
width, propagation depth, and oscillator strength impose
fundamental constraints on the propagation distance over
which a superluminal effect can be observed. In this paper, we
show that for the broad class of dispersive media with gain (that
follow a double-resonance Lorentzian function), the interplay
between the aforementioned factors can be governed (to a
certain degree of accuracy) through the following approximate
closed-form expression [22]:

zcutoff ≈ cδ(ω0,2 − ω0,1)2T 2

4ω2
p

. (4)

The detailed derivation of this expression is provided in the
Appendix. Equation (4) governs the relation between the pulse
width and the characteristics of the medium (in terms of the
dispersion strength, linewidth, and length) and their effect on
superluminal propagation.

In order to validate the accuracy of Eq. (4), the obtained
cutoff distances are compared with the exact calculations over
a wide range of parameters for the input pulse and the medium.
The exact calculations of the cutoff distance are performed by
evaluating the arrival time of the pulse at different values
for the medium length, dispersion strength, and input pulse
widths. The arrival time is calculated by a procedure that
follows directly from Ref. [11]. This involves an averaging
of the group delay weighted by the output pulse spectrum as
described by

〈tf 〉 =
∫ ω2

ω1
τgg(ω)F(ω)dω∫ ω2

ω1
g(ω)F(ω)dω

, (5)

where τg is the group delay, g(ω) is the medium gain, and
F (ω) is the input pulse spectrum obtained from Eq. (3). The
subscript f in 〈tf 〉 denotes that the arrival time is calculated
using a frequency domain analysis. By comparing the arrival
time obtained from Eq. (5) with the strictly luminal delay
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FIG. 3. (Color online) Comparison between the exact calcula-
tions of the cutoff distance versus the approximate closed form
expression when: (a) The input spectral width is increased (or as the
temporal pulse width is reduced). (b) The medium resonances (ω0,2 −
ω0,1) are tuned. (c) The plasma frequency (dispersion strength) is
increased.

(L/c) over a wide range of propagation distances, one can then
deduce the exact cutoff distance at which the superluminal-to-
subluminal pulse transition occurs. The comparisons between
the approximate expression and the exact calculations are
depicted in Fig. 3.

The cutoff distances predicted from Eq. (4) demonstrate
a very good agreement with the exact calculations—with a
maximum deviation of 5%. In fact, it can be shown that the
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expression in Eq. (4) provides an asymptotic upper bound for
the cutoff distance. Such expression is quite accurate as long
as δ <

ω0,2−ω0,1

10 and (ω0,2 − ω0,1) <
ω0,1

10 , which are typically
the case in practice.

Equation (4) captures the physical dynamics involved in the
problem in a very compact form; it can be inferred that—for
superluminal pulses with larger temporal width (T ) (narrow
band pulses)—the transition to the subluminal region occurs
at a longer cutoff distance (zcutoff) as depicted in Fig. 3(a).
This also applies to a double-resonance medium with a wide
frequency band between resonances (larger ω0,2 − ω0,1) or a
larger linewidth (δ), in which cases the transition occurs at
longer propagation distances—as shown in Fig. 3(b). On the
other hand, a superluminal pulse propagating in a medium with
strong dispersion (larger value for ωp) would evolve to the sub-
luminal regime at a shorter cutoff distance (zcutoff), as depicted
in Fig. 3(c). Finally, it can be inferred from the higher-order
dependencies in Eq. (4) that the transition from superluminal
to subluminal is more sensitive to the variations in the pulse
width (T ), frequency detuning (ω0,2 − ω0,1), and dispersion
strength (ωp)—all of which have a quadratic dependency—as
compared to the variations in the linewidth (δ).

In this section, we presented a closed-form analytic ex-
pression for the cutoff distance at which superluminal-to-
subluminal pulse transition occurs. Using this expression,
the cutoff distance can be calculated without the need to
know the exact spectral distribution of the input pulse. The
knowledge of the initial pulse width (T ) is sufficient in such
calculation. The expression has been verified by comparison
with the exact frequency domain calculations. In the following
sections, we calculate the temporal evolution of the field
at different propagation distances to verify the approximate
expression for the cutoff in the time domain. This also gives
insight about the time-frequency dynamics that governs the
superluminal-to-subluminal transition. In order to do so, the
method of steepest descent is incorporated, as discussed next.

III. STEEPEST-DESCENT ANALYSIS FOR PULSE
PROPAGATION IN A LORENTZIAN MEDIUM WITH GAIN

The general description of the field E(z,t) is obtained by
solving the integral

E(z,t) = 1

2π
Re

[
i

∫
F̃ ezφ(ω,θ

′
)/cdω

]
. (6)

The term F̃ describes the spectral amplitude and is expressed
as

F̃ = √
πT e−iωct0 , (7)

and the phase term in Eq. (6), [φ(ω,θ
′
)] is given by

φ(ω,θ
′
) = iω[n(ω) − θ

′
] − cT 2

4z
(ω − ωc)2, (8)

where θ
′
is the dimensionless space-time parameter expressed

as θ
′ = c(t − t0)/z and maps to different time instants (given

a fixed length z) [23,24].
By following the approach outlined in Ref. [12], the

integration contour is carried over the real frequency axis or
any other contour that is homotopic to this axis. As such,
the output response of the medium is evaluated by adding

the contributions of the saddle-point frequencies (ωSP) that

satisfy dφ(ω=ωSP,θ
′
)

dω
= 0. This is equivalent to deforming the

integration contour along the path of the steepest descent of
φ(ω,θ

′
). At each value of θ ′, the contribution of each saddle-

point frequency—denoted as AωSP —towards the construction
of the total field can be expressed in a closed form as [23]

AωSP (θ
′
) =

√
c

2πz
Re

⎡
⎣ iF̃ e

z
c
φ(ωSP ,θ

′
)√

−d2

dω2 φ(ωSP,θ
′)

⎤
⎦ . (9)

In order to calculate the total field response, the contribution
of each of the saddle points are added. Accordingly, the
asymptotic description of the total field is

ATotal(θ
′
) =

n∑
i=1

AωSPi
(θ

′
). (10)

The method of steepest descent thus can be used to evaluate
(and assess the significance of) the different spectral com-
ponents of the pulse (part of which may be superluminal or
subluminal). In the next section, we apply the method of steep-
est descent to a pulse propagating in the medium expressed in
Eq. (1) to study the evolution of its subluminal and superlumi-
nal components at longer propagation distances in light of the
expression of Eq. (4). Accordingly, the physical mechanism
of the superluminal-to-subluminal transition is demonstrated.

IV. PHYSICAL DYNAMICS OF A SUPERLUMINAL PULSE
AT LONGER PROPAGATION LENGTHS

In this section, we consider a Gaussian pulse given by
Eq. (2), propagating in a double Lorentzian medium [Eq. (1)].
The behavior of the pulse is compared at four different
propagation lengths. As discussed in Sec. III, the total field
is calculated by adding the contributions of the saddle-point

frequencies that satisfy dφ(ω=ωSP,θ
′
)

dω
= 0. The exact locations of

the saddle points are numerically calculated at each instant of
time (θ ′) and are plotted in Fig. 4. The four subplots [Figs. 4(a)–
4(d)] correspond to propagation distances (L) equal to 25 (cm),
44.5 (cm), 54 (cm), and 63 (cm), respectively. The first and
second resonances of n(ω) are denoted by (ω0,1) and (ω0,2),
respectively. The terms (ω+(0),ω+(1)) and (ω+(2),ω+(3)) signify
the branch cuts for n(ω). The frequency ranges that correspond
to the superluminal and the subluminal regions are shown in the
same figure. The arrows depict the path of the dominant saddle
points, which are labeled ωSP,M , ωSP,L, and ωSP,R . Clearly,
the saddle-point paths exhibit a symmetry about the carrier
frequency ωc. Moreover, it is found that at each instant of θ ′,
the contribution of the saddle-point frequencies, ωSP,M , ωSP,L,
and ωSP,R , are much more pronounced than the other two
saddle points below the branch cuts. As such, the integration
contour is deformed along the steepest-descent path in the
upper half complex plane of φ(ω,θ

′
).

For a pulse with an initial spectrum well fitted within the
superluminal region such as the one considered in Fig. 4(a),
it will be shown that the output field is dominated by the
contributions of the middle saddle points, ωSP,M , which follow
a vertical path downwards at the carrier frequency in the
middle of the superluminal region. The other saddle points,
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FIG. 4. (Color online) Subplots (a)–(d) correspond to propagation lengths of 25, 44.5, 54, and 63 (cm) inside the ammonia vapor cells,
respectively. The arrows show the path of the saddle points in the complex frequency domain. The colored (green) contours show the real part
of the phase function [Re{φ(ω,θ

′
)}] for t = L/c.

ωSP,L and ωSP,R , both of which lie in the subluminal frequency
region, have minimal contributions to the construction of the
total field. As the pulse further penetrates inside the medium,
the interaction of the pulse side bands with the gain doublet
becomes more pronounced. This is evident in cases (b) through
(d) [Figs. 4(b)–4(d)] in which the circular path of the saddle
points, ωSP,L and ωSP,R , becomes more spread out around the
branch cuts at longer propagation depths. As the radius of this
circular path increases, approaching the carrier frequency ωc,
the contributions of the corresponding (subluminal) saddle
points become more significant. It is worth noting that a
larger saddle-point path (at longer propagation distance)
corresponds to wider range of (subluminal) frequencies in
the spectral content of the signal. It is the amplification of
these (subluminal) frequencies that leads to the superluminal-
to-subluminal pulse transition.

In all cases (a)–(d) [Figs. 4(a)–4(d)], the path direction of
the saddle points located in the subluminal region, ωSP,L and
ωSP,R , implies that not only is the contribution of the saddle

points significantly delayed with respect to the superluminal
component of the pulse (associated with ωSP,M ), but it suffers
from chirping as well. For the path of ωSP,L, the instantaneous
frequency is decreasing in the direction of the branch cut
(ω+(0),ω+(1)), whereas for the path of ωSP,R , the instantaneous
frequency is increasing in the direction of the other branch
cut (ω+(2),ω+(3)).

By direct substitution in Eq. (9), the contributions of ωSP,M ,
denoted as AωSP,M

(θ ′) and the contributions of ωSP,L, denoted
as AωSP,L

(θ ′), are plotted in Figs. 5(a)–5(d). The contributions
of ωSP,R maintain a close resemblance with the contributions
of ωSP,L and are not included in the plots for the sake of
brevity. The corresponding saddle points are represented by
the dotted line and the direction of their path is marked by the
black arrows. Accordingly, at each instant of time (θ ′),
the instantaneous fields are mapped to their corresponding
saddle-point frequencies on the same plot. It is worth noting
that the path of ωSP,R would exhibit a symmetry about the
horizontal frequency axis with ωSP,L path.
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FIG. 5. (Color online) Saddle-point contributions. The dotted
lines represent the path of the saddle points (ωSP,M and ωSP,L). The
left column corresponds to the contributions of ωSP,M and the right
column corresponds to the contributions of ωSP,L. Cases [(a)-(e),
(b)-(f), (c)-(g), and (d)-(h)] refer to propagation lengths of 25, 44.5,
54, and 63 (cm) inside the ammonia vapor cells, respectively.

As the propagation length increases from 25 to 63 cm,
the superluminal component—associated with ωSP,M—
experiences slight amplification and compression. On the
other hand, the subluminal components associated with ωSP,L

and ωSP,R experience broadening and are more significantly
amplified. Since the rate of amplification for the subluminal
components is much more significant than the rate of ampli-
fication for the superluminal component, the output pulse is
no longer dominated by the superluminal component at longer
propagation distances. This behavior is generic and represent a
duality with passive media in which the rate of absorption in the
superluminal region is much more pronounced as compared
to the absorption encountered in the subluminal region [25].

The total field is evaluated and plotted in Figs. 6(a)–6(d) by
adding the contributions of all the saddle points. The dashed
lines refer to the case of a companion pulse traveling the same
distance in vacuum for comparison. In order to quantitatively
characterize the arrival time for the pulses propagating in the
AGD medium, as compared to their counterpart in vacuum,
the center of mass of the pulse is calculated. The arrival
time expectation denoted as 〈t〉 is listed for cases (a)–(d) in
Figs. 6(a)–6(d) and is expressed as follows [11,20]:

〈t〉 = û · ∫∞
−∞ tS(z,t)dt

û · ∫∞
−∞ S(z,t)dt

. (11)

The term S(z,t) denotes the Poynting vector of the propagating
field and û is a unit vector along the normal direction to the
detector surface. This product becomes significant in angularly
dispersive media where the numerator and denominator of
Eq. (11) are not necessarily in parallel directions (which is not
the case in this analysis).

Figure 6 shows that the pulse, after propagating for 25 (cm)
in the AGD medium, exhibits time advancement as compared
to the companion pulse in vacuum. This is attributed to the
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FIG. 6. (Color online) The total output field A(L,t). The black
dotted curves correspond to the case of vacuum and 〈t〉 denotes the
pulse arrival time. Cases (a)–(d) refer to propagation lengths of 25,
44.5, 54, and 63 (cm), respectively.

fact that the superluminal components are dominant at this
propagation distance, as previously discussed. However, at
longer penetration depths, cases (b) through (d) [Figs. 6(b)–
6(d)], the subluminal components become more pronounced
and the pulse in the AGD medium is delayed as compared to
the companion pulse in vacuum. This implies that the center
of mass for a superluminal pulse is delayed after propagating
for distances longer than ∼43 cm, in agreement with the
expression in Eq. (4).

Moreover, the transition of a superluminal pulse to a
subluminal—in an inverted medium—is usually accompanied
with pulse broadening. For a Gaussian excitation, the pulse
width is proportional to the variance and can be described as
σ 2 = [〈t2〉 − 〈t〉2] [20]. The pulse broadening factor, 
, can
be expressed as


 = [〈t2〉 − 〈t〉2]AGD

[〈t2〉 − 〈t〉2]Vac
. (12)

From the definition in Eq. (12), intervals within which

 < 1 implies pulse compression, while 
 > 1 implies pulse
broadening. For the cases (a)–(d) [Figs. 6(a)–6(d)] considered
in this section, the pulse broadening factor 
 is equal to 0.9323,
32.15, 99.93, and 68.972, respectively. Pulse broadening
can be attributed to the fact that the spectral components
that lie within the subluminal region experience larger gain
and differential delay. It is concluded that pulse broadening
always precedes the transition of a superluminal pulse to the
subluminal regime.

In this section, the time-frequency dynamics associated
with superluminal pulse transition to a subluminal regime
(at longer propagation distances) has been presented. Fur-
thermore, the superluminal-to-subluminal cutoff distance pre-
dicted in Eq. (4) has been verified. A similar analysis can be
extended for input pulses with narrower temporal widths and
media with stronger dispersion strengths to reach the same
conclusions governed by Eq. (4).
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V. CONCLUSION

In this paper, we have presented a simple closed-form
analytic expression to predict the cutoff distance at which
a superluminal pulse becomes subluminal. The expression
provides the fundamental limitations of superluminal pulse
propagation in light of factors such as the propagation
distance, pulse spectrum, and medium dispersion strength.
Furthermore, the method of steepest descent has been utilized
to investigate the time-frequency dynamics associated with
the transition from the superluminal to the subluminal regime,
in an inverted medium. This has been done by decomposing
a superluminal pulse into its superluminal and subluminal
components under different configurations. Cases in which
a superluminal pulse evolves to the subluminal regime at
longer propagation depths have been presented to verify the
approximate analytic expression. This evolution is attributed
to the subluminal spectral components that dominate over the
pulse during propagation.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC-CREATE
Program) under Grant No. CREATE 371066-09.

APPENDIX: DERIVATION OF Zcutoff

In this Appendix, the equation for the cutoff distance—at
which a superluminal Gaussian pulse becomes subluminal—
in an inverted medium is derived. By calculating the energy
content of the subluminal component and comparing it with the
superluminal energy content of the pulse and performing the
formulation as a function of the medium length, one can derive
an expression for the cutoff distance at which the superluminal
and subluminal energy components are equal.

The double-resonance gain medium considered in the
analysis is given by

n(ω) =
√√√√1 + ω2

p,1

2iδω + ω2 − ω2
0,1

+ ω2
p,2

2iδω + ω2 − ω2
0,2

. (A1)

For this case, the approximation (
√

1 + x ≈ 1 + x/2) holds
and, thus, n(ω) can be rewritten as follows:

n(ω) = 1 + 1

2

(
ω2

p,1

2iδω + ω2 − ω2
0,1

+ ω2
p,2

2iδω + ω2 − ω2
0,2

)
.

(A2)

Accordingly, the imaginary part of n(ω) is written as

ni(ω) = −iδω

[
ω2

p,1

4δ2ω2 + (ω2 − ω2
0,1

)2
+ ω2

p,2

4δ2ω2 + (ω2 − ω2
0,2

)2
]

. (A3)

Furthermore, the medium gain is expressed [as a function of
ω, z, and n(ω)] by g(ω) = e−ωIm{n(ω)}z/c. In order to derive
the ratio between the gain associated with the subluminal and
superluminal components, we calculate the medium gain in the
corresponding frequency regions. For the subluminal region,
the maximum gain typically occurs at the position of the
resonance frequency (ω0i

); as such, the imaginary component
of n(ω), evaluated at (ω0,1), is given by

Im{n(ω0,1)} = − δω0,1ω
2
p,2

4δ2ω2
0,1 + (ω2

0,1 − ω2
0,2

)
2

− ω2
p,1

4δω0,1
. (A4)

Similarly,

Im{n(ω0,2)} = − δω0,2ω
2
p,1

4δ2ω2
0,2 + (ω2

0,1 − ω2
0,2

)
2

− ω2
p,2

4δω0,2
. (A5)

As for the gain in the superluminal region (which is typically
centered between the two resonances), the imaginary compo-
nent of n(ω) can be expressed as

Im

{
n

(
ω0,1 + ω0,2

2

)}
= 1

2
δ(ω0,1 + ω0,2)

{
− ω2

p,1

δ2(ω0,1 + ω0,2)2 + [ω2
0,1 − 1

4 (ω0,1 + ω0,2)2
]

2

− ω2
p,2

δ2(ω0,1 + ω0,2)2 + [ω2
0,2 − 1

4 (ω0,1 + ω0,2)2
]

2

}
. (A6)

In order to calculate the gain in the subluminal region,
we first evaluate ω0,1 × Im{n(ω0,1)} [or, equivalently, ω0,2 ×
Im{n(ω0,2)} since the only change between the two expressions
is substituting ω0,1 for ω0,2] and simplify the resulting
expression to get

ω0,1 × Im{n(ω0,1)} = − δω2
0,1ω

2
p,2

4δ2ω2
0,1 + (ω2

0,1 − ω2
0,2

)
2

− ω2
p,1

4δ
.

(A7)

By replacing ω0,2 with ω0,1 + �, and ignoring any higher-
order nonlinear terms in �, Eq. (A7) can be simplified to

ω0,1 × Im{n(ω0,1)} = − ω2
p,2

4δ�2
− ω2

p,1

4δ
. (A8)

However, since usually
ω2

p,2

4δ�2 	 ω2
p,1

4δ
, this can be further

simplified to

ω0,1 × Im{n(ω0,1)} ≈ −ω2
p,1

4δ
. (A9)
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Similarly, we can get

ω0,2 × Im{n(ω0,2)} ≈ −ω2
p,2

4δ
. (A10)

In most practical cases, the values for ωp,1 and ωp,2 are very
close in order to maintain a flat region between the gain
doublets. Furthermore, the frequency detuning between the
resonances (ω0,1 and ω0,2) is sufficiently close so we may
account for the gain of either resonance in terms of the
averaged value for ωIm{n(ω)}. Accordingly, the following
expression may be used instead of Eqs. (A9) and (A10) to
calculate the gain in the subluminal region:

ω0,i × Im{n(ω0,i)} = −ω2
p,2 + ω2

p,1

8δ
. (A11)

This approximation is valid as long as ω0,2 is not much
larger than ω0,1 (ω0,2 < 10 × ω0,1), which is typically the
case in most practical scenarios. Consequently, the gain
associated with the subluminal region (for only one resonance)
is expressed by

g(ω,z)subluminal = exp

[(
ω2

p,2 + ω2
p,1

8δ

)
z

c

]
. (A12)

To calculate the gain at the superluminal region, we
must first evaluate ω0,1+ω0,2

2 × Im{n(ω0,1+ω0,2

2 )} and simplify the
resulting expression. Consequently, the following equation can
be derived:

ω0,1 + ω0,2

2
× Im

{
n

(
ω0,1 + ω0,2

2

)}
= 1

4
δ(ω0,1 + ω0,2)2

{
− ω2

p,1

δ2(ω0,1 + ω0,2)2 + [ω2
0,1 − 1

4 (ω0,1 + ω0,2)2
]

2

− ω2
p,2

δ2(ω0,1 + ω0,2)2 + [ω2
0,2 − 1

4 (ω0,1 + ω0,2)2
]

2

}
. (A13)

In general, δ 	 ω0,i and hence the term δ2(ω0,1 + ω0,2)2 in the denominator is usually ∼2 orders of magnitude smaller than the
other term in the denominator and, as such, can be omitted in both fractions. Accordingly, we get

ω0,1 + ω0,2

2
× Im

{
n

(
ω0,1 + ω0,2

2

)}
= 1

4
δ(ω0,1 + ω0,2)2

{
− ω2

p,1[
ω2

0,1 − 1
4 (ω0,1 + ω0,2)2

]
2

− ω2
p,2[

ω2
0,2 − 1

4 (ω0,1 + ω02 )2
]

2

}
. (A14)

By replacing the term ω0,2 with ω0,1 + �, and ignoring any higher-order nonlinear terms in �, Eq. (A14) can be simplified to

ω0,1 + ω0,2

2
× Im

{
n

(
ω0,1 + ω0,2

2

)}
= 1

4
δ(ω0,1 + ω0,2)2

[
− ω2

p,1

ω2
0,1(ω0,2 − ω0,1)2

− ω2
p,2

ω2
0,2(ω0,2 − ω0,1)2

]
. (A15)

Thus the gain at the superluminal region can be written in a straightforward manner in the following form:

g(ω,z)superluminal = exp

{
1

4
δ(ω0,1 + ω0,2)2

[
ω2

p,1

ω2
0,1(ω0,2 − ω0,1)2

+ ω2
p,2

ω2
0,2(ω0,2 − ω0,1)2

]
z

c

}
. (A16)

Thus far, we have derived expressions for the gain associ-
ated with the superluminal and subluminal regions. In the
following, we include the input pulse into the calculations
in order to evaluate the corresponding energy content in the
superluminal and the subluminal regions. Accordingly, the
cutoff distance (at which the energy contents level out) can be
derived.

We chose an input-modulated Gaussian excitation with
carrier frequency (ωc) that is centered at (ω0,1+ω0,2

2 ). The input

pulse envelope is given by e− 1
4 T 2(ω−ωc)2

. We estimate the sublu-
minal region associated with the resonances (ω0,1 and ω0,2) to
be extended over the frequency ranges: [ω0,1 − 3δ,ω0,1 + 3δ]
and [ω0,2 − 3δ,ω0,2 + 3δ], respectively. Consequently, the
energy content of the input pulse that lies within the subluminal
part (for each resonance) is roughly proportional to

6δe− 1
4 T 2(ω0,1−ωc)2

. (A17)

To account for both resonances, Eq. (A17) is rewritten as

12δe− 1
4 T 2(ω0,1−ωc)2

. (A18)

The gain experienced by this component has been given in
Eq. (A12).

As for the superluminal region, we assume that it extends
over the remaining frequency range. The average energy
content of the input pulse that lies within the superluminal
region is proportional to

1
2 (−6δ − ω0,1 + ω0,2), (A19)

where the factor ( 1
2 ) accounts for averaging the peak value

of the Gaussian (centered at the carrier frequency) over the
superluminal frequency range. The gain experienced by this
component has been given in Eq. (A16).

In order to obtain the cutoff distance at which a superlumi-
nal pulse become subluminal, we solve for the distance z at
which the energy content associated with the superluminal and
subluminal components of the pulse become equal. By scaling
the input energy associated with the subluminal component
[from Eq. (A18)] by its corresponding gain [obtained in
Eq. (A12)] and equating the result with the energy content of
the superluminal part [from Eq. (A19)] scaled by the respective
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gain [in Eq. (A16)], the following equation can be derived:

12δ exp

[
z
(
ω2

p,1 + ω2
p,2

)
8cδ

− 1

4
T 2(ω0,1 − ωc)2

]

= 1

2
(−6δ − ω0,1 + ω0,2) × exp

⎧⎪⎨
⎪⎩

δ(ω0,1 + ω0,2)2z
[ ω2

p,1

ω2
0,1(ω0,1−ω0,2)2 + ω2

p,2

(ω0,1−ω0,2)2ω2
0,2

]
4c

⎫⎪⎬
⎪⎭ . (A20)

By solving this equation for z, the cutoff distance zcutoff can be expressed as

zcutoff = − 2cδω2
0,1(ω0,1 − ω0,2)2ω2

0,2

[
T 2(ω0,1 − ωc)2 + 4 log

(− 6δ+ω0,1−ω0,2

24δ

)]
2δ2(ω0,1 + ω0,2)2

(
ω2

0,2ω
2
p,1 + ω2

0,1ω
2
p,2

)− ω2
0,1

(
ω0,1 − ω0,2

)
2ω2

0,2

(
ω2

p,1 + ω2
p,2

) . (A21)

In fact, the expression for zcutoff [given in Eq. (A21)] can be further simplified by omitting the term [log(− 6δ+ω0,1−ω0,2

24δ
)] in

the numerator and the term [2δ2(ω0,1 + ω0,2)2(ω2
0,2ω

2
p,1 + ω2

0,1ω
2
p,2)] in the denominator. It can be shown that the contributions

of both terms can be neglected [as long as δ <
ω0,2−ω0,1

10 and (ω0,2 − ω0,1) <
ω0,1

10 ]. Therefore, Eq. (A21) can be rewritten in the
following compact form:

zcutoff ≈ cδ(ω0,2 − ω0,1)2T 2

4ω2
p

. (A22)
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