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Circular polarization memory in polydisperse scattering media
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We investigate the survival of circularly polarized light in random scattering media. The surprising persistence
of this form of polarization has a known dependence on the size and refractive index of scattering particles, how-
ever a general description regarding polydisperse media is lacking. Through analysis of Mie theory, we present a
means of calculating the magnitude of circular polarization memory in complex media, with total generality in the
distribution of particle sizes and refractive indices. Quantification of this memory effect enables an alternate path-
way toward recovering particle size distribution, based on measurements of diffusing circularly polarized light.
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I. INTRODUCTION

An understanding of scattered radiation is deeply embedded
within such scientific disciplines as astronomy, meteorology,
climatology, and more recently biomedical imaging [1].
Measurement of this radiation allows for the remote detection
of object properties, through inspection of both the spectral
and spatial redistribution of energy. Notably, the inclusion of
polarization in this analysis serves to enrich the source of
available information. An area of immense interest concerning
such behavior is the study of optical radiation scattering
within biological media [2]. It was first realized that through
appropriate filtering, polarized light could enable the selective
imaging of either surface or subsurface tissue layers [3]. Since
then, similar applications have helped to improve imaging
modalities such as optical coherence tomography [4] and light
scattering spectroscopy [5]. In addition to the advancement
of existing techniques, the recovery of physical properties
solely based on the observed transformation of polarized
light is the objective of much research [2]. Interestingly, in
media consisting of particles comparable to the wavelength
in size (the Mie regime), circular polarization can survive
many more scattering events than linear polarization due to
excessive forward scattering. Linear states depolarize once
the direction of the incident photon stream is eventually
isotropized [6]. On the other hand, due to the preference of
shallow angle scattering which generally preserves helicity,
incident circularly or elliptically polarized states persist on
a longer length scale. This effect is known as polarization
memory [7–9]. The extent of the polarization memory is
strongly dependent on the size parameter [10,11] and on
the refractive index mismatch between the particles and
background medium [12]. This offers an additional gauge by
which to characterize medium properties, as measurements of
the polarization state of multiply scattered light contain this
information, even beyond the distance required to randomize
photon direction, known as the transport length lt .
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In this article, we address the dynamic relationship between
circular polarization memory and the particles present in the
scattering medium. Recent studies have shown that the survival
of linear polarization exceeds that of circular polarization in
many biological tissues [13–15]. Such behavior is character-
istic of smaller Rayleigh scattering particles, although these
tissues exhibit anisotropic scattering typical of the Mie regime.
This has suggested an inability to predict depolarization rates
in complex media based purely on bulk scattering properties
such as the reduced scattering coefficient μ′

s , the absorption
coefficient μa , and the anisotropy g factor [16,17]. Here, we
demonstrate a quantitative description of circular polarization
memory in media consisting of a variety of independent
scattering spheres, with total generality in particle size, and
refractive index distribution. Our method uses direct analysis
of the single scattering behavior attained from Mie theory
and a flexible integral approach toward characterizing the
depolarization rate within complex media. This will allow for
additional information to be gathered from diffusing light mea-
surements and clarify the connection between particle distri-
bution and the observed crossover between scattering regimes.

II. HELICITY SURVIVAL PARAMETER

Mie theory offers an exact solution for scattering of a plane
wave by a single spherical particle of any size. The relationship
between the incoming and scattered Stokes vectors describing
polarization can be expressed in terms of the scattering
matrix [18]:⎡
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(1)

where the elements of the scattering matrix are dependent
on the scattering angle θ , and the Stokes vectors are both
defined with an orientation aligned to the scattering plane. For
an incident right-circularly polarized state, with Ii = Vi = 1,
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Qi = Ui = 0, the Stokes vector for the partial wave scattered
in the θ direction with φ azimuth is⎡

⎢⎢⎢⎣
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⎤
⎥⎥⎥⎦, (2)

which is identical for all φ due to the rotational invariance
of the input Stokes vector. The expression for the degree of
circular polarization of this partial wave is

Vs

Is

= S33(θ )

S11(θ )
, (3)

while the ensemble average of this quantity, denoted Pc, over
all scattering angles weighted by the intensity of each partial
wave is thus

Pc =
∫ 2π

0
S33(θ)
S11(θ)S11(θ ) dθ∫ 2π

0 S11(θ ) dθ
. (4)

After any arbitrary number of scattering events n from identical
independent spheres, the value of Pc for all partial waves can
be shown to follow an exponential decay [8]. Here we will
define the characteristic helicity survival parameter Nc, which
is a measure of the number of scattering events required to
depolarize an incident circular state. The average degree of
circular polarization as a function of scattering order n is then

Pc(n) = e−n/Nc , (5)

where Nc can be found from the single scattering behavior
calculated in Eq. (4) and the natural logarithm of Eq. (5)
with n = 1. This procedure can be carried out for a monodis-
perse system for any size parameter X = 2πanb/λ, and any
refractive index ratio m = ns/nb, where ns and nb are the
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FIG. 1. (Color online) Helicity survival parameter Nc of per-
fectly monodisperse systems of scattering spheres with size parameter
X and refractive index ratio m = 1.15 (dash-dotted black), m = 1.20
(solid blue), and m = 1.25 (dashed red).

refractive indices of the sphere and background, respectively,
and a is the particle radius. Figure 1 shows the calculated
survival parameter for a range of sphere sizes and refractive
indices. The value of Nc can be seen to fluctuate on both
large and small scales with respect to a change in the size
parameter X.

III. POLYDISPERSE MEDIA

For a medium consisting of a range of particle sizes, Eq. (5)
must be generalized to a distribution of exponentials:

Pc(n) =
∫ ∞

0
If (X)e−n/Nc(X) dX, (6)

where If (X) is appropriately normalized such that∫ ∞

0
If (X) dX = 1. (7)

If (X) is the fraction of total intensity scattered, on average, by
particles of size X with corresponding helicity survival param-
eters given by Nc(X). This function is directly proportional to
the scattering coefficient of each particle size, If (X) ∝ μs(X).
In other words, the resulting circular depolarization rate of
a polydisperse system is dependent on not only the helicity
survival parameters of the constituent particles but also the
relative scattering cross sections σs(X) and number densities
ρ(X). We then have

If (X) = ρ(X)σs(X)∫ ∞
0 ρ(X)σs(X) dX

, (8)

and finally, in terms of the volume fraction distribution f (X),

If (X) =
f (X)
ν(X) σs(X)∫ ∞

0
f (X)
ν(X) σs(X) dX

, (9)

where ν(X) is the single particle volume for spheres of
size parameter X. Equation (6) integrates over the helicity
survival parameters of all particles present in the medium, with
each Nc being calculated from the single scattering behavior.
Thus, with a database of values stored for Nc(X), and σs(X),
the effective helicity survival parameter for any polydisperse
system of spheres defined by the distribution function If (X)
can be found immediately, a key advantage of this approach.

Narrow polydispersion in scattering media effectively
washes out the short scale fluctuations of particle size on the
helicity survival Nc. For example, media with particle number
densities ρ(X) obeying a normal distribution with a small
(10%) coefficient of variance in particle size are shown in
Fig. 2. Here the ratio Nc/Nt is used to show the extent of
the circular polarization memory, where Nt is the number
of scattering events required to randomize photon direction,
i.e., the number of scattering events in one transport length lt .
Narrow polydisperse distributions shown in Fig. 2 are common
in media such as solutions of polystyrene microspheres in
water (m = 1.2), where the coefficient of variance is typically
2–10%. These solutions are widely used as simulating media,
or “phantoms,” due to their well defined bulk scattering
properties.

Scattering from more complex materials such as biological
tissue can include contributions from a wide array of particle
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FIG. 2. (Color online) Circular polarization memory (Nc/Nt ) for
a range of size parameters, refractive index ratio m = 1.04 (red up-
per), and m = 1.2 (blue lower). Monodisperse media are represented
by solid lines. Polydisperse media with a 10% coefficient of variance
in particle size are represented by dashed lines.

sizes. Disagreement between measurements of circularly
polarized light scattered from tissue samples and from matched
phantoms has been reported [14,19]. This is likely due in
part to the presence of both large Mie scattering structures
in tissue such as cell nuclei (typically 5–10 μm) as well as
smaller Rayleigh-Gans scatterers (mitochondira, lysosomes,
etc., <0.5 μm) [20]. These phantom studies often use a
monodisperse solution with particle size and concentration
chosen to match the reduced scattering coefficient μ′

s =
μs(1 − g), and the scattering anisotropy g, to another more
complex medium. However, this is an oversimplification and
fails to reproduce the depolarization behavior, as we shall
demonstrate. To approximate scattering from cell nuclei with
smaller interspersed cellular organelles, we have calculated Nc

for media where the volume fraction contributions from small
scatterers and large scatterers have been varied. Here, f (X) is
chosen to take a bimodal form, with one normally distributed
contribution with size parameter X = 1.3 ± 10% and another
normally distributed contribution at X = 50 ± 10%. The
fraction of the total volume of scattering material taken by
the small scatterers is varied from zero (nuclei only scattering)
to one (small organelle only scattering). The refractive index
ratio used is m = 1.04, which is typical of biological media
with ns ≈ 1.42 (organelles), and nb ≈ 1.37 (cytoplasm) [20].
The results are shown in Fig. 3. It can be seen that the circular
polarization memory rapidly deteriorates with the addition of
small scatterers to the medium. For relative volume fractions
of small particles above 10%, the effectiveness of the medium
to preserve multiply scattered circularly polarized light is
significantly diminished. To emphasize the importance of
adequately accounting for polydispersion in scattering media,
we have also calculated the circular polarization memory
(Nc/Nt ) for a set of media with only one dominant size. These
points on the graph (Fig. 3) represent typical “monodisperse”
optical phantoms with a 10% size distribution about the mean
diameter. In each case, these phantoms have been chosen to
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FIG. 3. (Color online) Solid line: Circular polarization memory
(Nc/Nt ) vs relative volume fraction of small scatterers of size X =
1.3 ± 10%, with remaining scattering material composed of particles
with X = 50 ± 10%. The refractive index ratio is m = 1.04. Also
shown are “monodisperse” phantoms with equivalent macroscopic
scattering anisotropy, refractive index ratio m = 1.040 (circles), and
m = 1.2 (squares). Inset: Matched scattering anisotropy of all three
types of media.

match the scattering anisotropy of the bimodal distribution
used to model tissue. The circles represent phantoms consist-
ing of particles with m = 1.04. The squares are calculated with
m = 1.2, to represent polystyrene phantoms. The branching of
these points is due to the multiple possibilities in particle size
for certain anisotropy g values, and the partial absence of data
points expresses that the upper limit of scattering anisotropy
for polystyrene microspheres is g = 0.93 (in water). It is
clear from the figure that a significant overestimation is made
of circular polarization memory when such phantoms are
used, even if they are chosen such that μs , g, and hence μ′

s

are equivalent. The shortcomings of monodisperse phantoms
evident here are in direct agreement with the previously
mentioned studies [14,16,19]. It is important to note that the
ability of small scatterers to reduce the polarization memory
of larger constituent particles is heavily dependent on the
relative scattering cross section σ (X). In the example situation
shown in Fig. 3, X = 1.3 spheres were chosen because they
are more effective at reducing circular polarization memory
than smaller (X < 1.1) spheres, which have intrinsically
lower values of Nc. This is due to the tradeoff between
faster depolarization but lower scattering efficiency as size
is reduced. This demonstrates that depolarization of incident
circular states within polydisperse media is an intricate process
dependent on the specific size and refractive indices of each
contributing particle. Equation (6) can be generalized further
to include variations in particle refractive index mismatch m:

Pc(n) =
∫ ∞

0

∫ ∞

0
If (X,m)e−n/Nc(X,m) dm dX, (10)

where If (X,m) now represents the fraction of total intensity
scattered by particles for which Nc = Nc(X,m). The effective
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FIG. 4. (Color online) Contour plot of circular polarization mem-
ory (Nc/Nt ) for size parameter 0.1 < X < 80 and refractive index
ratio 0.85 < m < 1.5. Each point represents the circular polarization
memory for a narrow polydispersion (10% coefficient of variance)
about the mean size parameter X.

helicity survival parameter of the polydisperse medium can
once again be found by inverting Eq. (5) after evaluating this
integral. To further highlight the flexibility of the approach
presented here, Fig. 4 shows the magnitude of circular
polarization memory for a wide range of size parameters X and
refractive index ratios m. Each point on the image represents
Nc/Nt for a 10% particle size distribution about the mean
size parameter X. Incident circularly polarized light is seen
to be preserved most in media where both |m − 1| << 1 and
particle size is large. Such properties are consistent with large
cellular structures in tissue. A complex cellular model could
be proposed by the integration over all types of organelles
present, including vacuoles with m < 1. However, the closely
packed nature of scattering centers in many biological tissues
may cause discrepancies from such models when dependent
scattering arises, as shown in Ref. [21]. Thus, care is
required when generalizing these findings which are a result

of the independent scattering approximation for spherical
particles.

IV. SUMMARY

In summary, we have presented here a method for charac-
terizing circular polarization memory in polydisperse media,
where the particle distribution has been demonstrated to intri-
cately determine the decay rate of incident circularly polarized
light: Narrow polydispersion about one dominant size param-
eter has the effect of smoothing out the short scale fluctuations
seen with theoretical solutions containing perfectly identical
centers. This type of polydispersion is typical of phantom
media such as polystyrene microspheres and demonstrates
that models using pure monodispersion can differ somewhat
from realistic media where statistical variations in particle
size are unavoidable (see Fig. 2). In complex media, where
size distribution spans from the Rayleigh regime to the Mie
regime, the extent of circular polarization memory is shown
to be greatly impacted by only a small volume fraction of
subwavelength scatterers. In our particular example (Fig. 3) we
showed that circular polarization decays within approximately
two transport lengths (Nc/Nt < 2) for media consisting of over
20% relative volume fraction of small 1.1 < X < 1.5 particles.
With the method put forward here, it is now possible to rapidly
calculate the helicity survival parameter Nc for a medium with
any general form of polydispersion in both size parameter X

and refractive index ratio m. Thus, recovery of this parameter
from degree of polarization measurements of semidiffuse
light can provide an alternate means toward characterizing
particle distribution. Furthermore, although circular polariza-
tion memory is a manifestation of anisotropic scattering, we
have demonstrated the important distinction that it cannot be
characterized solely by the scattering anisotropy g parameter.
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