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Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation
with the self-induced parity-time-symmetric potential
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Via the N th Darboux transformation, a chain of nonsingular localized-wave solutions is derived for a nonlocal
nonlinear Schrödinger equation with the self-induced parity-time (PT ) -symmetric potential. It is found that the
N th iterated solution in general exhibits a variety of elastic interactions among 2N solitons on a continuous-wave
background and each interacting soliton could be the dark or antidark type. The interactions with an arbitrary
odd number of solitons can also be obtained under different degenerate conditions. With N = 1 and 2, the
two-soliton and four-soliton interactions and their various degenerate cases are discussed in the asymptotic
analysis. Numerical simulations are performed to support the analytical results, and the stability analysis indicates
that the PT -symmetry breaking can also destroy the stability of the soliton interactions.
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I. INTRODUCTION

In 1998, Bender and Boettcher pointed out that in quantum
mechanics a wide class of non-Hermitian but parity-time
(PT ) -symmetric Hamiltonians can possess entirely real
spectra as long as the PT symmetry is not spontaneously
broken [1]. Since then, there has been a growing interest in the
non-Hermitian systems with PT symmetry [2–12]. Generally,
the non-Hermitian Hamiltonian H = p̂2/2 + V (x) is said to
be PT symmetric if V (x) = V ∗(−x), where p̂ denotes the
momentum operator and V (x) is the complex potential [1,2].
From an experimental viewpoint, it has been suggested that
optics could provide an ideal testing ground for the unique
property of such systems in view of the mathematical similarity
between the paraxial equation of diffraction in optics and the
Schrödinger equation in quantum mechanics [3–6]. In optics,
the PT -symmetric potential can be realized by controlling the
complex refractive index distribution n(x) = nR(x) + inI (x)
[3–6], where the refractive index profile nR(x) must be an
even function in the transverse direction, while the gain or
loss component nI (x) should be an odd one [3–6]. Recently,
the PT -symmetry breaking within the realm of optics
has been observed in experiment [6–9], and some unusual
characteristics of the beam transmission in the PT -symmetric
waveguides have been revealed, such as the unidirectional
invisibility [10] and nonlinear switching effect [11].

In the nonlinear optics, the nonlinear Schrödinger (NLS)
equations including the Kerr nonlinearity and PT -symmetric
linear potentials have been intensively studied in the past
few years [12–16]. For instance, those works include the
following aspects: the interactions of bright and dark solitons
with a PT -symmetric dipole [13], the effect of competing
nonlinearities on beam dynamics in PT -symmetric potentials
[12,14], stable dark solitons in PT -symmetric dual-core
waveguides [15], and dynamical behaviors in the oligomers
[16]. However, the complex-valued linear potential usually
breaks the integrability of the equation, so that the nonlinear
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beam dynamics in the presence of PT -symmetric optical
potential has been mainly studied by the numerical methods
[17,18]. Moveover, the Kerr nonlinearity can dynamically
induce an effective linear potential which may break the even
symmetry of the real part in the PT potential, and further lead
to the PT -breaking instability of the beam evolution [19].

Recently, Ablowitz and Musslimani [20] proposed a
nonlocal NLS equation
iuz(x,z) = uxx(x,z) + 2σu(x,z)u∗(−x,z)u(x,z) (σ = ±1),

(1)

which is non-Hermitian but PT symmetric, where u(x,z) is a
complex-valued function of real variables x and z, and σ = ±1
denotes, respectively, the focusing (+) and defocusing (−)
cases. The nonlinear term in Eq. (1) brings a self-induced
potential of the form V (x,z) = u(x,z)u∗(−x,z) satisfying the
PT -symmetric condition V (x,z) = V ∗(−x,z). The Lax pair
and an infinite number of conserved quantities have been ob-
tained, which indicates that Eq. (1) is integrable [20]. However,
the exact moving one-soliton solution obtained via the inverse
scattering transform in Ref. [20] is singular for the focusing
case. Although the bright and dark solitons of Eq. (1) have
been obtained, both of them are static (i.e., the soliton does
not propagate with distance) [19]. In addition, several periodic
and hyperbolic soliton solutions have been given in Ref. [21].

Since Eq. (1) has been proved to be integrable, in this
paper we will try to reveal abundant nonlinear localized-
wave phenomena. On the one hand, we will apply the N th
iterated Darboux transformation (DT) to derive a chain of
nonsingular localized-wave solutions that can describe the
soliton interactions on the continuous-wave (cw) background.
The types of soliton interactions will be discussed in detail. On
the other hand, we will perform numerical simulations on the
soliton interactions and study the effect of the PT symmetry
breaking on their stability.

II. DARBOUX TRANSFORMATION FOR EQ. (1)

In this section we construct the successively iterated DT
of Eq. (1). The DT, which comprises the eigenfunction and
potential transformations, can be used to recursively generate
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an infinite chain of solutions including the multisoliton
solutions, periodic wave solutions, and rational solutions [22]
from a trivial solution. Moreover, the DT algorithm enables
us to represent the iterated solutions in terms of determinants

such as the Wronskian and Grammian [22], which can further
provide an algebraic basis to analyze the asymptotic behavior
of the solutions [23].

The Lax pair of Eq. (1) takes the form [20]

�x = U� =
(

λ u(x,z)

−σu∗(−x,z) −λ

)
�, (2a)

�z = V � =
( −2iλ2 − iσu(x,z)u∗(−x,z) −2iλu(x,z) − iux(x,z)

2iσλu∗(−x,z) + iσu∗
x(−x,z) 2iλ2 + iσu(x,z)u∗(−x,z)

)
�, (2b)

where � = (ψ1,ψ2)T (the superscript T signifies the vector
transpose) is the vector eigenfunction, λ is the spectral
parameter, and the compatibility condition Uz − Vx + UV −
V U = 0 is exactly equivalent to Eq. (1). We assume the N th
iterated eigenfunction transformation on the Lax pair (2a) and
(2b) to be of the form

�N = TN�, TN =
(

AN (x,z,λ) BN (x,z,λ)
CN (x,z,λ) DN (x,z,λ)

)
(3)

with

AN (x,z,λ) = λN −
N∑

n=1

an(x,z)λn−1,

(4)

BN (x,z,λ) = −
N∑

n=1

bn(x,z)(−λ)n−1,

CN (x,z,λ) = −
N∑

n=1

cn(x,z)λn−1,

(5)

DN (x,z,λ) = λN −
N∑

n=1

dn(x,z)(−λ)n−1,

where TN is the N th iterated Darboux matrix, with an(x,z),
bn(x,z), cn(x,z), and dn(x,z) (1 � n � N ) to be determined,
and �N = (ψ1N,ψ2N )T is the N th iterated eigenfunction. With
the knowledge of the DT, �N is required to satisfy �N,x =
UN�N and �N,z = VN�N , where UN and VN are the same as
U and V except that u(x,z) and u∗(−x,z) are replaced by the
N th iterated potentials uN (x,z) and u∗

N (−x,z), respectively,
which are also to be determined.

It is easy to find that if �k = [fk(x,z),gk(x,z)]T satisfies the
Lax pair (2a) and (2b) with λ = λk (1 � k � N ), then �̄k =
[σ g∗

k (−x,z),f ∗
k (−x,z)]T is also a solution of the Lax pair (2a)

and (2b) with λ = λ∗
k (1 � k � N ) [20]. Thus, we choose �k

and �̄k (1 � k � N ) as the kernel for the construction of the
N th iterated DT, that is,

TN |λ=λk
�k = 0, TN |λ=λ∗

k
�̄k = 0, (6)

which yields the following two sets of linear equations:

QXi = Yi (i = 1,2) with Q =
(

FN×N GN×N

σḠN×N F̄N×N

)
,

(7)

where

X1 = [a1(x,z), . . . ,aN (x,z),b1(x,z), . . . ,bN (x,z)]T,

X2 = [c1(x,z), . . . ,cN (x,z),d1(x,z) . . . ,dN (x,z)]T,

Y1 = [
λN

1 f1(x,z), . . . ,λN
NfN (x,z),σλ∗N

1 g∗
1 (−x,z), . . . ,

σλ∗N
N g∗

N (−x,z)
]T

,

Y2 = [
λN

1 g1(x,z), . . . ,λN
NgN (x,z),λ∗N

1 f ∗
1 (−x,z), . . . ,

σλ∗N
N f ∗

N (−x,z)
]T

,

FN×N = [
λm−1

k fk(x,z)
]

1�k,m�N
,

GN×N = [(−λk)m−1gk]1�k,m�N,

F̄N×N = [(−λ∗
k)m−1f ∗

k (−x,z)]1�k,m�N,

ḠN×N = [(λ∗
k)m−1g∗

k (−x,z)]1�k,m�N .

Note that {�k}Nk=1 and {�̄k}Nk=1 are a set of linearly inde-
pendent functions because λk �= λl (1 � k < l � N ). That is
to say, the functions an(x,z), bn(x,z), cn(x,z), and dn(x,z)
(1 � n � N ) can be uniquely determined from Eq. (6) by
Cramer’s rule. On the other hand, Eq. (7) also implies that λk

and λ∗
k are both the single roots of det(TN ) for 1 � k � N .

Therefore, we can finally prove that the form-invariance
conditions for the Lax pair (2a) and (2b),

TN,x + TNU = UNTN, (8a)

TN,z + TNV = VNTN, (8b)

are exactly satisfied if the N th iterated potential transforma-
tions are given by

uN (x,z) = u(x,z) + 2
τN+1,N−1

τN,N

, (9a)

u∗
N (−x,z) = u∗(−x,z) + 2σ

τN−1,N+1

τN,N

, (9b)

with

τM,2N−M =
∣∣∣∣∣ FN×M GN×(2N−M)

σḠN×M F̄N×(2N−M)

∣∣∣∣∣,
where M = N − 1, N , or N + 1, the block matrices FN×M ,
GN×(2N−M), ḠN×M , and F̄N×(2N−M) are defined as above.

The verification of the conditions (8a) and (8b) suggests
that the new eigenfunction �N = TN� also satisfies the Lax
pair (2a) and (2b) with uN (x,z) and u∗

N (−x,z) given in (9a)
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and (9b) instead of u(x,z) and u∗(−x,z), respectively. That
is to say, the eigenfunction transformation (3) and potential
transformations (9a) and (9b) constitute the N th iterated DT
of Eq. (1). It should be noted that we require Im(λk) �= 0 for
1 � k � N so as to avoid the trivial iteration of the DT.

III. DARK AND ANTIDARK SOLITONS ON THE
CONTINUOUS-WAVE BACKGROUND

In this section we construct the localized soliton solutions
on the cw background. It is easy to find that Eq. (1) admits the
plane-wave solution

u = ρe−2iσρ2z+iφ, (10)

where ρ and φ are two real parameters. Inserting Eq. (10) into
the Lax pair (2a) and (2b) and taking λ = λk (1 � k � N ),

we obtain(
fk

gk

)
=

(
e(−2iσρ2z+iφ)/2(αke

skχk + βke
−skχk )

e−(−2iσρ2z+iφ)/2
( (2sk−λk)αk

ρ
eskχk − (2sk+λk)βk

ρ
e−skχk

)
)

,

(11)

with sk =
√

λ2
k − σρ2 and χk = x − 2iλkz, where αk and βk

(1 � k � N ) are nonzero complex parameters. Then, with
substitution of (11) into the potential transformations (9a)
and (9b), a series of exact solutions can be derived for
different choices of N . In order to obtain the localized solitonic
structure, we must impose sk (1 � k � N ) to be real numbers,
which is satisfied only when σ = −1, Re(λk) = 0, and 0 <

|Im(λk)| < ρ. In the following, we use the subscripts R and I

to denote the real and imaginary parts of λk , respectively.
With N = 1, if λ1R = 0 and 0 < |λ1I| < ρ, the solution (9a)

can be written as

u = ρe2izρ2+iφ

[
1 − 2λ1I(e2s1χ1 + γ1)(κ1e

−2s1ω1 + κ∗
1 γ ∗

1 )

ρ2e2s1(χ1−ω1) + λ1Iκ1γ1e−2s1ω1 + λ1Iκ
∗
1 γ ∗

1 e2s1χ1 + |γ1|2ρ2

]
, (12)

where χ1 = x + 2λ1Iz, ω1 = x − 2λ1Iz, κ1 = λ1I − is1, s1 =
√

ρ2 − λ2
1I, and γ1 = β1/α1. It can be proved that the solution (12)

has no singularity if and only if the following condition is satisfied:

Im(γ1κ1) �= 0 or sgn(λ1I)Re(γ1κ1) > 0. (13)

To better understand the solitonic behavior in the solution (12) under the condition (13), we make an asymptotic analysis as
follows.

(i) Along the line x + 2λ1Iz = 0 as |z| → ∞, we have

u → u±
1 = ρe2iρ2z+iφ

[
1 − 2λ1I(e2s1χ1 + γ1)

μ±
1 e2s1χ1 + ν±

1

]
, (14a)

|u|2 → |u±
1 |2 = ρ2

[
1 − 2γ1Is1

Re(γ1κ1) + sgn(λ1I)ρ|γ1| cosh(2s1χ1 + �±
1 )

]
, (14b)

with μ−
1 = λ1I, ν

−
1 = γ1κ1, μ+

1 = κ∗
1 , ν+

1 = γ1λ1I, �
−
1 = ln |λ1I|

ρ|γ1| , and �+
1 = ln ρ

|γ1||λ1I| , where the plus sign corresponds to λ1I > 0
as z → ∞ or λ1I < 0 as z → −∞ and the minus sign to λ1I < 0 as z → ∞ or λ1I > 0 as z → −∞.

(ii) Along the line x − 2λ1Iz = 0 as |z| → ∞, we have

u → u±
2 = ρe2iρ2z+iφ

[
1 − 2λ1I(κ1e

−2s1ω1 + κ∗
1 γ ∗

1 )

ξ±
1 e−2s1ω1 + η±

1

]
, (15a)

|u|2 → |u±
2 |2 = ρ2 + 2s1Im

(
γ1κ

2
1

)
sgn(λ1I)ρ|γ1| cosh(2s1ω1 − �±

1 ) + Re(γ1κ1)
, (15b)

with ξ−
1 = κ1λ1I, η−

1 = ρ2γ ∗
1 , ξ+

1 = ρ2, and η+
1 = κ∗

1 λ1Iγ
∗
1 ,

where the plus sign corresponds to λ1I < 0 as z → ∞ or λ1I >

0 as z → −∞ and the minus sign to λ1I > 0 as z → ∞ or
λ1I < 0 as z → −∞.

If Im(γ1κ1) �= 0 or sgn(λ1I)Re(γ1κ1) > 0, Eq. (14a) rep-
resents the antidark soliton for λ1Iγ1I < 0 or dark soliton for
λ1Iγ1I > 0 on a cw background, while Eq. (15a) also represents
the antidark soliton for λ1IIm(γ1κ

2
1 ) > 0 or dark soliton for

λ1IIm(γ1κ
2
1 ) < 0 on the same cw background. From Eqs. (14b)

and (15b) we can observe the following features. (a) The
heights of the antidark solitons (or the depths of the dark
solitons) from the cw background are the same for |u−

i |2 and

|u+
i |2 (i = 1,2), that is,

A±
1 = 2ρ2|γ1Is1|

Re(γ1κ1) + sgn(λ1I)ρ|γ1| ,
(16)

A±
2 = 2

∣∣s1Im
(
γ1κ

2
1

)∣∣
sgn(λ1I)ρ|γ1| + Re(γ1κ1)

.

(b) The envelope velocity of u−
i is also exactly equal to that

of u+
i (i = 1,2), i.e., v−

1 = v+
1 = −2λ1I and v−

2 = v+
2 = 2λ1I.

(c) There exists a phase shift between u−
i and u+

i (i = 1,2)
and its absolute value can be calculated by |�+

1 − �−
1 | =
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FIG. 1. (Color online) Elastic interactions via the solution (12) between (a) two dark solitons with ρ = 1, λ1 = −0.5 i, and γ1 = 0.4 − 0.5 i;
(b) two antidark solitons with ρ = 1, λ1 = 0.4 i, and γ1 = −2 − 0.5i; and (c) dark and antidark solitons with ρ = 1, λ1 = 0.4 i, and γ1 =
1 − 0.6i.

2| ln ρ

|λ1I| |, which means that the phase shift depends on both
ρ and λ1I.

The above three features suggest that the solution (12)
under the condition (13) can describe the elastic two-soliton
interactions on the cw background. To be specific, the elastic
interactions may occur between two dark solitons, two antidark
solitons, or dark and antidark solitons, as shown in Figs. 1(a)–
1(c). In any of the three kinds of interactions, the interacting
solitons can completely recover their individual shapes and
velocities upon an interaction and experience only the phase
shifts for their envelops. Particularly taking γ1I = 0, the pair
of asymptotic solitons (u−

1 ,u+
1 ) disappears as z → ±∞, but

(u−
2 ,u+

2 ) still exists and represent a pair of antidark solitons for
γ1R > 0 or dark solitons for γ1R < 0 [see Fig. 2(a)]. However,
the solution (12) in this degenerate case cannot be regarded
as the conventional single soliton because there exists a phase
shift between the soliton envelopes of u−

2 and u+
2 . Similarly,

for the degenerate case Im(γ1κ
2
1 ) = 0, one can find that only

the pair of asymptotic solitons (u−
1 ,u+

1 ) exists as |z| → ∞
and there is also a phase shift between u−

1 and u+
1 [see

Fig. 2(b)]. Associated with λ1Iγ1I < 0 and λ1Iγ1I > 0, (u−
1 ,u+

1 )
can represent a pair of antidark solitons and a pair of dark

solitons, respectively. In Table I we present all possible types
of soliton interactions in the solution (12) and their associated
parametric conditions.

If λkR = 0 and 0 < |λkI| < ρ for k = 1,2, the solution (9a)
with N = 2 can describe abundant soliton interactions on the
cw background. In this case, the solution has in general four
pairs of asymptotic solitons along four lines x ± 2λkIz = 0
(k = 1,2) as |z| → ∞. The expressions of asymptotic soliton
pairs along x + 2λkIz = 0 and x − 2λkIz = 0, respectively,
have the same form of Eqs. (14a) and (14b) but for some
difference in the parameters (details are omitted to save space).
Therefore, each pair of asymptotic solitons as z → ±∞ could
be either dark or antidark ones depending on the different
parametric choices. Moreover, they have the same shapes,
velocities, and intensities and differ only by the phases of their
envelopes, which satisfies the standard of elastic interactions.
For example, Figs. 3(a)–3(c) present three different types
of elastic four-soliton interactions. In addition, if γkI = 0 or
Im(γkκ

2
k ) = 0 (k = 1,2), some asymptotic solitons will disap-

pear as z → ±∞, so the four-soliton interactions degenerate to
the three-soliton interactions and even two-soliton interactions,
as shown in Figs. 4(a)–4(c).

FIG. 2. (Color online) Degenerate two-soliton interactions via the solution (12): (a) dark soliton that has a phase shift between two soliton
segments as z → ±∞, where ρ = 1, λ1 = −0.3 i, and γ1 = 1, and (b) antidark soliton that has a phase shift between two soliton segments as
z → ±∞, where ρ = 1, λ1 = 0.5 i, and γ1 = 2/

√
3 − 2i.
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TABLE I. Asymptotic patterns of the solution (12) under different parametric conditions.

Parametric conditions Asymptotic soliton u±
1 Asymptotic soliton u±

2

λ1Iγ1I > 0, λ1IIm(γ1κ
2
1 ) < 0 dark soliton dark soliton

λ1Iγ1I < 0, λ1IIm(γ1κ
2
1 ) > 0 antidark soliton antidark soliton

λ1Iγ1I < 0, λ1IIm(γ1κ
2
1 ) < 0 antidark soliton dark soliton

λ1Iγ1I > 0, λ1IIm(γ1κ
2
1 ) > 0 dark soliton antidark soliton

γ1I = 0, γ1R < 0 disappear dark soliton
γ1I = 0, γ1R > 0 disappear antidark soliton
Im(γ1κ

2
1 ) = 0, λ1Iγ1I < 0 antidark soliton disappear

Im(γ1κ
2
1 ) = 0, λ1Iγ1I > 0 dark soliton disappear

FIG. 3. (Color online) Elastic interactions among (a) four dark solitons with ρ = 1, φ = 0, γ1 = 1 + 2i, γ2 = 1 + i, λ1 = 0.5 i, and
λ2 = −0.25 i; (b) three dark solitons and one antidark solitons with ρ = 1, φ = 0, γ1 = 1 − i, γ2 = 1 + i, λ1 = 0.8 i, and λ2 = −0.25 i; and
(c) four antidark solitons with ρ = 1, φ = 0, γ1 = 1.5 + i, γ2 = i, λ1 = 0.2 i, and λ2 = −0.6 i.

FIG. 4. (Color online) Degenerate four-soliton interactions via the solution (9a) with N = 2: (a) elastic interactions among three dark
solitons with ρ = 1, φ = 0, γ1 = 1, γ2 = 1 − 2i, λ1 = 0.5 i, and λ2 = 0.25 i; (b) elastic interactions among one dark soliton and two antidark
solitons with ρ = 1, φ = 0, γ1 = 1, γ2 = 4 + i, λ1 = −0.6 i, and λ2 = 0.25 i; and (c) elastic interactions between dark and antidark solitons
with ρ = 1, φ = 0, γ1 = 2, γ2 = 0.5, λ1 = −0.25 i, and λ2 = 0.5 i.
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FIG. 5. (Color online) Numerical simulations of the elastic two-soliton interactions with initial value u(x,−5) in Eq. (17), where the
parameters are the same as those in Fig. 2: (a) two dark solitons, (b) two antidark solitons, (c) dark and antidark solitons, (d) unstable case of
(a) with a 0.1 shift, (e) unstable case of (b) with a 0.1 shift, and (f) unstable case of (c) with a 0.02 shift.

IV. NUMERICAL SIMULATIONS AND
PT -SYMMETRY BREAKING

It has been suggested in Ref. [19] that the stability of
the solutions of Eq. (1) may be influenced by the shift
in the transverse coordinate. In contrast with the standard
NLS equation, the self-induced potential in Eq. (1), i.e.,
V (x,z) = u(x,z)u∗(−x,z), can break its PT symmetry if
the square modulus of the solution u(x,z) is not sym-
metric in the transverse coordinate x or the imaginary
part increases beyond a certain threshold. The breaking of

PT symmetry will lead to the instability of the solution. In
Ref. [19], the static bright and dark one-soliton solutions
have been shown to be unstable due to the spontaneous
PT -symmetry breaking. In this section, numerical simulations
of Eq. (1) are performed by using the time-splitting spectral
(TSS) method to support the theoretical analysis in Secs. II
and III and to analyze the instability of the soliton interactions
caused by the PT -symmetry breaking.

For the numerical experiments, we choose u(x,z) in the
solution (12) at z = −5 as the initial value:

u(x, − 5) = ρe−10iρ2+iφ

[
1 − 2λ1I(e2s1χ1 + γ1)(κ1e

−2s1ω1 + κ∗
1 γ ∗

1 )

ρ2e2s1(χ1−ω1) + λ1Iκ1γ1e−2s1ω1 + λ1Iκ
∗
1 γ ∗

1 e2s1χ1 + |γ1|2ρ2

]
, (17)

where χ1 = x − 10λ1I, ω1 = x + 10λ1I, and κ1, s1, and γ1 are
the same as those in the solution (12). When the parameters
are the same as those in Fig. 1(a), the initial value corresponds
to two well-separated dark solitons with different incident
angles. Through the TSS numerical method, we find that those
two dark solitons pass through each other without any change
except for the small shift [see Fig. 5(a)], which is consistent
with the theoretical analysis in Fig. 1(a). Similarly, with the
parametric choice in Figs. 1(b) and 1(c), the stable interactions
between two antidark solitons and between dark and antidark
solitons are desmonstrated in Figs. 5(b) and 5(c), respectively.
However, when the initial value in Eq. (17) has a small shift in

the x coordinate the PT symmetry will break and those three
types of interactions between two solitons will be unstable.
For the dark-dark soliton interaction case with a 0.1 shift in
the x coordinate, Fig. 5(d) shows that the depth of the dark
soliton on the minus axis is smaller than that in Fig. 5(a)
before the interaction, while after the interaction the soliton
becomes an antidark one and the amplitude grows rapidly.
For the case of two antidark soliton interaction with a 0.1
shift in the x coordinate, the amplitudes of the two solitons
get enhanced after the interaction, as shown in Fig. 5(e). In
addition, if we only make a 0.02 shift for the dark-antidark
soliton interaction, there still exists an obvious instability: The
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FIG. 6. (Color online) Numerical simulations of the degenerated cases of two-soliton interactions with initial value u(x, − 5) in Eq. (17),
where the parameters are the same as those in Fig. 3: (a) dark soliton, (b) antidark soliton, (c) unstable case of (a) with a 0.01 shift, and (d)
unstable case of (b) with a 0.01 shift.

depth of the dark soliton increases while the amplitude of the
antidark one decreases as the distance z evolves, as shown in
Fig. 5(f).

For the degenerate cases of two-soliton interactions, the
stable propagation of a dark soliton and an antidark soliton
are also simulated in Figs. 6(a) and 6(b) by choosing the same
parameters as in Figs. 2(a) and 2(b), respectively. Although one
soliton can disappear by taking particular parametric values,
the remaining soliton is not the conventional single soliton
because there is a phase shift between the two segments as
z → ±∞. When the initial value in solution (17) is shifted
slightly in the x coordinate, Figs. 6(c) and 6(d) show that the
PT -symmetry breaking stimulates the disappearing soliton
and makes the propagation of the remaining one unstable.
The numerical analysis of the three-soliton interactions can be
performed similarly (details are omitted for brevity). Those

simulations above not only support the theoretical analysis in
Secs. II and III, but also show that the PT -symmetry breaking
can lead to instability of the soliton interactions.

V. CONCLUSION

In this paper we have studied the nonlinear localized-wave
phenomena on the cw background for a nonlocal NLS equation
with the self-induced PT -symmetric potential [i.e., Eq. (1)].
We have constructed the N th iterated DT of Eq. (1) and derived
a chain of nonsingular localized-wave solutions starting from
a plane-wave solution. With N = 1, we have obtained the
solution (12), which describes the two-soliton interactions
on the cw background. Through asymptotic analysis, we
have presented several types of two-soliton interactions (e.g.,
between two dark, two antidark, and dark and antidark
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solitons), as shown in Fig. 1. In particular, we have found
that one of the asymptotic solitons can disappear as |z| → ∞
under the degenerate parametric conditions, as shown in Fig. 2,
and the remaining dark or antidark soliton undergoes a phase
shift, which is different from the conventional single soliton.
The associated parametric conditions for all possible types of
soliton interactions in the solution (12) have been given in
Table I. Similarly, with N = 2, the four-soliton interactions
and their various degenerate cases (three- and two-soliton
interactions) have been analyzed in Figs. 3 and 4, respectively.
Finally, numerical simulations of the soliton interactions have
been performed, which shows that thePT -symmetry breaking
can destroy the stability of the soliton interactions, as shown
in Figs. 5 and 6.

We can infer that the N th iterated solution in general
exhibits a variety of elastic interactions among 2N solitons

on the cw background and each interacting soliton could be
of the dark or antidark type. The interactions with an arbitrary
odd number of solitons can also be obtained under different
degenerate conditions. If the initial value has no shift in the x

coordinate, those solitons can have stable interactions on the
cw background; otherwise, the PT symmetry will break and
the soliton interaction strucures become unstable.
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