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We have combined the average-atom model with the hypernetted chain approximation (AAHNC) to describe the
electronic and ionic structure in the warm dense matter regime. On the basis of the electronic and ionic structures,
the x-ray Thomson scattering (XRTS) spectrum is calculated using the random-phase approximation. While
the electronic structure is described within the average-atom model, the effects of other ions on the electronic
structure are considered using an integral equation method of the theory of liquids, namely the hypernetted chain
approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the
electronic density distribution. Finally, the electronic and ionic structures are determined self-consistently. The
XRTS spectrum is calculated according to the Chihara formula, where the scattering contributions are divided
into three components: elastic, bound-free, and free-free. Comparison of the present AAHNC results with other
theoretical models and experimental data shows very good agreement. Thus the AAHNC model can give a
reasonable description of the electronic and ionic structure in warm dense matter.
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I. INTRODUCTION

Warm dense matter (WDM) [1] refers to conditions between
the physical regimes of condensed matter and weakly coupled
plasmas, with temperatures from a few to a few hundred
electronvolts (eV) and densities from a few hundredths to about
a hundred times solid density. Understanding the physical
properties of WDM, such as the equation of state, the radiation
opacity, and the transport properties, is crucial for modeling
astrophysical objects [2,3] and inertial confinement fusion
(ICF) experiments [4]. However, describing WDM faces
great challenges since partial ionization, electron degeneracy,
bound-state level shift, pressure ionization [5,6], and ion-ion
strong coupling must be taken into account in a consistent way.
In particular, the accurate description of the coupled electron-
ion system is of paramount important for WDM states.

Quantum molecular-dynamics (QMD) [7–11] simulations,
which treat the nuclei classically and the electrons quantum
mechanically by using finite-temperature density-functional
theory (DFT), have proven to yield an appropriate description
of the physical properties of WDM. Path integral Monte
Carlo or molecular-dynamics simulations [12–17] also give an
ab initio description of WDM. However, these first-principles
methods are computationally expensive, which limits their
applicability as a fast analysis tool. Orbital-free molecular
dynamics (OFMD) [18–20], where the electronic free energy
is a local functional of the electron density, can be used to com-
pute the physical properties at high temperatures. However, at
present OFMD is capable of simulating only about 103 atoms.
The average-atom (AA) model, which divides the plasma into
neutral Wigner-Seitz cells, is also a quite popular method in
describing warm and hot dense plasma. In a Wigner-Seitz
cell, a nucleus of charge Z and Z electrons are included. The
nucleus is fixed in the origin and the electrons are described by
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the semiclassical Thomas-Fermi (TF) approximation [21], the
quantum-mechanical Schrödinger equation, or the relativistic
Dirac equation. Many different versions of the AA model
have been implemented [21–29]. Furthermore, the hypernetted
chain (HNC) approximation was developed to calculate the
structure of classical liquids. It yields reasonable results even
for strongly coupled systems [30–34]. This method has also
been used to describe the ion structure in the WDM regime,
where the interparticle potential is obtained from the finite-
temperature Lindhard dielectric response function [35–38].

Spectrally resolved x-ray Thomson scattering (XRTS)
experiments [39–45] have shown that important plasma pa-
rameters such as temperature, density, and average ionization
degree can be determined in WDM. At the same time, different
theoretical methods [38,46–51] have been used to interpret the
XRTS signal via the dynamic structure factor. The dynamic
structure factor is usually calculated according to the Chihara
formula [52,53], which divides the scattering into three
components: elastic, bound-free, and free-free. The elastic
component stems from photons elastically scattered off elec-
trons either localized at the ions or screening the ion charge.
The bound-free and free-free components are the contributions
of photons inelastically scattered by bound and free electrons,
respectively. The free-free scattering contribution can be
described using the random-phase approximation (RPA) or
the Born-Mermin approximation (BMA), which includes the
effects of electron-ion collisions based on Mermin’s dielectric
function; see Ref. [54].

In the present study, we first investigate the electronic and
ionic structure by combining the average-atom model [27,55]
with the hypernetted chain approximation (AAHNC) in the
WDM regime, and then we calculate the XRTS spectrum
based on the results of AAHNC. The structure of bound
electrons is obtained by solving the Dirac equation in the
central field approximation. Free electrons are computed using
the TF approximation, where we consider the ionic structure
effects via the HNC approximation. The ionic pair potentials
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are obtained from the electronic density distributions of two
isolated ions based on a modified temperature- and density-
dependent Gordon-Kim model [56]. The results obtained
from this model are in excellent agreement with the known
equation of state and ionic structures for Al and Fe [57]. When
we calculate the electronic structure, the ionic structure is
considered; at the same time, when calculating the ion-ion
pair potential, the electronic structure is needed. This problem
is solved self-consistently. On the basis of the electronic
and ionic structures obtained from AAHNC, the dynamic
structure factors are calculated according to the Chihara
formula [52,53]. The static ion structure factors are determined
in the HNC approximation, and the electronic densities and
bound-free transitions are obtained from the modified AA
model [27,55], which considers the effects of other ions. We
describe the free-free scattering contribution using the RPA,
which is sufficient for the conditions considered here.

In the next section, we give a detailed description of the
AAHNC method and the equations for the dynamic structure
factor. In Sec. III, we apply these methods to calculate the
electronic and ionic structures. We give results for the ion-ion
structure factor, the average ionization degree, and the XRTS
spectra for warm dense Al. Finally, we give a summary.

II. THEORETICAL METHODS

A. Average-atom model combined with the hypernetted
chain approximation

For an isolated atom or ion, the electron density is calculated
by using the modified AA model [27,55], which considers the
electron energy level broadening and includes the temperature
and density effects on the electronic distributions in a statistical
way. Each ion or atom is described in the ion sphere, and in the
central-field approximation the bound electrons are described
by the Dirac equation:

dPnκ (r)

dr
+ κ

r
Pnκ (r) = 1

c
[εnκ + c2 − V (r)]Qnκ (r), (1)

dQnκ (r)

dr
− κ

r
Qnκ (r) = −1

c
[εnκ − c2 − V (r)]Pnκ (r). (2)

Pnκ (r) and Qnκ (r) are, respectively, the large and small
components of the wave function of orbital nκ , c is the speed
of light, and V (r) is the self-consistent potential, which has
the form [35]

V (r) = −Z

r
+

∫
ρb(r ′)
|�r − �r ′|d

3r ′ + Vxc[ρb(r) + ρ0
e ] − Vxc

(
ρ0

e

)

− ρ0
e

β

∫
Cee(|�r − �r ′|)hie(r ′)d3r ′

− ρ0
i

β

∫
Cie(|�r − �r ′|)hii(r

′)d3r ′. (3)

The first four terms constitute the single ionic contribution,
namely the electron-nucleus potential, the electrostatic repul-
sion with the other bound electrons, and the exchange and
correlation potential, which are evaluated by using the local
density approximation (LDA). The last two terms in Eq. (3)
represent interactions with the surrounding free electrons
and other ions, respectively. Because V (r) depends on the

electron density and the correlation functions, the solution of
Eqs. (1)–(3) has to be done self-consistently if we know the
correlation functions. In local thermodynamic equilibrium, the
potential at the ion-sphere boundary is chosen as the common
reference point in the AA model in order to obtain the same
electron density at the boundary for all ions. In this way, we
define electrons with energies larger than zero as free and with
negative energies as bound. In our AA model, the boundary
conditions are the same as Eqs. (3) and (4) in Ref. [27] when
we solve Eqs. (1) and (2), where the bound state orbitals are
broadened to energy bands, and the density of bound electrons
is computed as

ρb(r) = 1

4πr2

∑
j

∫ ε+3�ε

ε−3�ε

bj (ε)
[
P 2

j (r) + Q2
j (r)

]
dε, (4)

where bj (ε) is the density of the occupation number of the
state j expressed in terms of the density of states and the
Fermi-Dirac distribution,

bj (ε) = 2|κj |ρ(ε)

exp[(ε − μ)/kBT ] + 1
. (5)

The density of states ρ(ε) is taken to be a Gaussian function
centered at the corresponding electron orbital energy. It
satisfies the requirement that

1 =
∫ ε+3�ε

ε−3�ε

ρ(ε)dε, (6)

where �ε is the full width at half-maximum of the energy
band, and it depends on the two orbital energies obtained
with two kinds of boundary conditions [27]. Free electrons
are considered much simpler using the TF approximation,
and the free electron density is calculated with a Fermi-Dirac
distribution in momentum space,

ρf (r)

= 1

π2

∫ ∞

k0(r)

k2dk

exp{[√k2c2 + c4 − c2 − V (r) −μ]/kBT } + 1
,

(7)

where k0(r) = [2V (r)c2 + V (r)2]1/2/c and μ is the chemical
potential. The total electron density of the isolated ion or atom
is the sum of the bound and free terms: ρtot(r) = ρb(r) + ρf (r).
The chemical potential μ is determined such that electrical
neutrality in the ion sphere is guaranteed,∫ rb

0
4πr2ρtot(r)dr = Z, (8)

where Z is the nuclear charge and rb is the ion-sphere radius
determined by the plasma density. Thus, the average charge
Z∗ = Z − Nb can be defined as the nuclear charge Z minus
the number Nb of all bound electrons in the ion sphere. In
our calculation, the correlation functions extend to the whole
space, but we only consider correlation effects inside the ion
sphere when calculating the electron structure of the isolated
ion.

We define the ion-electron pair correlation function via the
excess free-electron density,

hie(r) = ρf (r)

ρ0
e

− 1, (9)
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where ρ0
e is the uniform electron density given by ρ0

e = ρ(rb).
The ion-ion pair potential is calculated using the modified
Gordon-Kim (GK) model [57]. The ion-ion pair potentials are
computed via

V (R) = VCoul(R) + Vk(R) + Ve(R) + Vc(R), (10)

where R is the distance between the two nuclei, VCoul(R) is
their static Coulomb interaction, Vk(R) is the kinetic energy,
and Ve(R) and Vc(R) are the exchange and correlation energies,
respectively, which depend on the electron density ρ(r). The
static Coulomb potential can be calculated directly from
the electron density according to the GK model [56]. The
difference between the present model and the original GK
model is that the electronic density of the single ion is divided
into two parts, namely the uniformly distributed free-electron
sea ρ(rb) and the quasilocalized electrons ρ loc

i (r), shown in
Appendix A; see Ref. [57]. The kinetic energy Ek(ρ), exchange
energy Ee(ρ), and correlation energy Ec(ρ) [56,58–60] are
computed based only on the electron densities in the spheroidal
coordinate system, λ1 = (r1 + r2)/R,λ2 = (r1 − r2)/R.

The ion-ion and free electron-electron correlation functions
are calculated using the HNC approximation (a = e,i),

haa(r) = exp[−βVaa(r) + haa(r) − Caa(r)] − 1, (11)

and the Ornstein-Zernike relation in Fourier space,

haa(k) = Caa(k)
[
1 + ρ0

ahaa(k)
]
, (12)

where ρ0
a is the average density for the electrons and ions. The

pair potential between free electrons is considered using the
Deutsch formula [30],

V Deutsch
ee (r) = e2

4πε0r

[
1 − exp

(
− r

λee

)]

+ kBT ln 2 exp

[
− ln 2

π

(
r

λee

)2]
, (13)

with λee = �/
√

mekBT . This potential includes quantum
effects such as the uncertainty principle and exchange interac-
tions that lead to its temperature dependence.

The flow chart for calculating the electronic and ionic
structure self-consistently is explained in Appendix B.

B. Calculation of the dynamic structure factor

To compare with experimental XRTS spectra, the dynamic
structure factor S(k,ω) has been calculated for WDM. In
the AA model, we distinguish between bound and free elec-
trons when calculating the self-consistent electron structure.
According to the Chihara formula [38,52], S(k,ω) can be
calculated as the sum of three terms:

S(k,ω) = |fI (k) + q(k)|2Sii(k,ω) + Zf See(k,ω) + Sbf(k,ω).

(14)

The first term is the elastic component determined by the
ion-ion structure factor and electrons localized at the ions.
Due to their large mass, the dynamic ion structure factor
Sii(k,ω) is a very narrow feature in frequency, which can
be written as Sii(k,ω) = Sii(k)δ(ω). The static structure factor
Sii(k) is calculated from the pair distribution function obtained

in the HNC approximation. The form factors, fI (k) and
q(k), can be calculated by the bound-state density and the
free-electron screening cloud around the ion, respectively. In
the present work, we compute the term from the electron
density distribution inside the Wigner-Seitz sphere via Fourier
transform,

fI (k) + q(k) = 4π

k

∫ rb

0
[ρb(r) + ρf (r)]r sin(kr)dr. (15)

The second term is the free-electron scattering contribution,
which can be expressed using the plasma dielectric function
ε(k,ω) [50],

See(k,ω) = − ε0�k2

πe2ρ2
e

1

1 − exp(−�ω/kBT )
Im[ε−1(k,ω)],

(16)

where the free-electron density ρe is considered to be a uniform
distribution in the Wigner-Seitz sphere. The dielectric function
is calculated using the RPA according to [47,51]

Re ε(k,ω)

= 1 + 2

πk3

∫ ∞

0
ln

∣∣∣∣ (k2 + 2pk + 2ω)(k2 + 2pk − 2ω)

(k2 − 2pk + 2ω)(k2 − 2pk − 2ω)

∣∣∣∣
×F (p)p dp, (17)

Im ε(k,ω) = 2kBT

k3
ln

[
1 + exp[(μ − a2/2)/kBT ]

1 + exp[(μ − b2/2)/kBT ]

]
,

(18)

where a = |2ω − k2|/2k, b = (2ω + k2)/2k, and F (p) is the
free-electron Fermi distribution function. Collisions in the
plasmas are neglected in the RPA while the Born-Mermin
approximation (BMA) includes collision effects through the
ion-electron collision frequency [50].

The third term is the bound-free component, which de-
scribes bound electrons ionized by photons in the scattering
process. In the AA model, Sbf(k,ω) is calculated via the matrix
elements for transitions between bound and free electrons [47],

Sbf(k,ω) =
∑
m

∫
p dp

(2π )3

∣∣∣∣
∫

d3rψ†
p(r)eik·rψnlm(r)

∣∣∣∣
2

ε=ω+εnl

,

(19)

where ψnlm(r) and ψp(r) are the wave functions of a bound
state with quantum numbers (n,l,m) and a continuum state
with momentum p, respectively.

III. RESULTS AND DISCUSSION

A. Ion-ion pair distribution function

In partially ionized plasmas, the electronic distribution will
be influenced by the ionic structures, and ion-ion interaction
potentials are conversely based on the electronic density distri-
bution. In the central-field approximation, the electron density
is computed by using the AA model in the self-consistent
potential of Eq. (3), where the ionic correlation functions
are calculated by the quantum Ornstein-Zernike relation and
the HNC closure relation using pair potentials obtained from
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FIG. 1. (Color online) The ion-ion pair distribution functions
g(r) for Al at a temperature of 10 eV and a mass density of 2.7
g/cm3. Black solid line: AAHNC result, red dashed line with circles:
calculated by classical molecular-dynamics simulations using the
ion-ion pair potential from AAHNC, blue dot-dashed line: QHNC
result [35], green dashed line: QMD result [48]. The orange dashed
line labels the distance of twice the ion-sphere radius.

the modified GK model [57]. The bound-electron density
distribution is computed by solving the Dirac equation, and
the free-electron density distribution is computed by the TF
approximation, i.e., we solve this problem self-consistently;
see Appendix B.

First, we present the ion-ion pair distribution functions g(r)
for warm dense aluminum at a temperature of 10 eV and a
density of 2.7 g/cm3 calculated within the AAHNC model
(black solid line) in Fig. 1. QHNC [35] (blue dot-dashed line),
quantum molecular dynamics (QMD) [48] (green dashed line),
and classic molecular dynamics (CMD) (red dashed line with
circles) results are given as well. The QHNC method uses the
finite-temperature Lindhard dielectric response function for

the calculation of the ion-ion pair potentials, and it determines
the ionic structure through the HNC approximation. The
QMD method describes the electronic structure using finite-
temperature density-functional theory, and it identifies the
ionic structure via classical molecular-dynamics simulations
in which the forces onto the ions are determined from
the Hellmann-Feynman theorem, i.e., without using pair
potentials. The CMD result is obtained based on the converged
ion-ion pair potential from the AAHNC result. Figure 1 shows
that the AAHNC result agrees well with the CMD curve,
i.e., we have successfully combined the AA model with the
HNC approximation. However, a slight difference between the
AAHNC and the QHNC and QMD results occurs at the first
peak that is due to the different approximations for the ion-ion
pair potentials.

B. Average ionization degree

In Fig. 2, we show the average ionization degree of
aluminum ions as a function of the density for temperatures
of 100 and 10 eV. The black line with circles represents the
AAHNC results, and the red line with squares is the result of
the AA model without considering the effects of other ions.
Both methods include the energy level broadening [27,55].

For 100 eV (left panel) we can see that the average charge
decreases with increasing density. Most electrons of an Al atom
are ionized at a temperature of 100 eV and low densities. With
increasing density, the average frequency of collision between
free electrons and ions increases and, as a result, recombination
occurs. The two peaks in the lines are signatures of pressure
ionization of the 3s and 3p orbitals that occurs at medium
densities. The AAHNC results, considering the effects of other
ions, are smaller than those of the AA model in the whole
density regime, and pressure ionization is shifted to higher
densities. This means that in the AAHNC approximation,
electron recombination is stronger so that a greater fraction
of free electrons is relocalized in bound states.

Similar results are shown for 10 eV in the right panel of
Fig. 2. Before pressure ionization of 2p electrons occurs,

011
Density  ρ (g/cm3)

7

7.5

8

8.5

A
ve

ra
ge

 C
ha

rg
e 

Z*

AA

AAHNC

T=100 eV

Al

011
Density  ρ (g/cm3)

2

3

4

5

6

7

A
ve

ra
ge

 C
ha

rg
e 

Z*

AA

AAHNC

T=10 eV

Al

FIG. 2. (Color online) Density dependence of the average ionization degree of Al at a temperature of 100 eV (left panel) and 10 eV (right
panel). Black line with circles: AAHNC result, red line with squares: result of the AA model with broadening of the energy levels.
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the AAHNC results are also slightly smaller than those of
the AA model. However, the AAHNC results become larger
after pressure ionization of 2p electrons has occurred at about
20 g/cm3 due to the fact that the average ionic distance
decreases with increasing density, and ion-ion collisions favor
electron ionization. Thus, ionic contributions yield a sharper
2p pressure ionization. We conclude that ion correlations affect
ionization and recombination in the partially ionized plasma: at
low densities, the recombination of free electrons is enhanced,
while at high densities electron ionization is enhanced.

C. X-ray Thomas scattering spectrum

In this section, we discuss the dynamic structure factor
S(k,ω) based on the AAHNC results according to Eq. (14).
The free-electron scattering contribution See(k,ω) is expressed
in terms of the dielectric function ε(k,ω) and calculated in
the RPA. The average ionization degree is determined within
the AAHNC model. Bound-free transitions are calculated via
the matrix elements using the AAHNC results. In Fig. 3, we
display the elastic ion feature as a function of k at a temperature
of 10 eV and a density of 8.1 g/cm3. To describe different
results in the same figure, the static structure factors were
multiplied by 20 and the form factors by 5. All black lines with
circles in Fig. 3 represent the results of the AAHNC method,
red lines with triangles those of QMD [61], and blue lines with
squares those of HNC [38]. The static structure factors Sii(k)
are shown as dot-dashed lines, total form factors |fI (k) + q(k)|
as dashed lines, and the ion features |fI (k) + q(k)|2Sii(k) as
solid lines with the respective color code.

The static structure factors Sii(k) agree well despite a
different behavior at low k, where the AAHNC method
overestimates the isothermal compressibility Sii (k = 0). Nev-
ertheless, this difference would not affect the XRTS spectra at
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|fI(k)+q(k)| (x5)

|fI(k)+q(k)|2Sii(k)

k (units of a

FIG. 3. (Color online) Elastic XRTS contribution for Al as a
function of k at a temperature of 10 eV and a density of 8.1
g/cm3: AAHHC (black lines with circles), QMD (red lines with
triangles) [61], and HNC (blue lines with squares) [38] results are
compared with experimental results (points with error bars) [39].
The static structure factors Sii(k) are shown as dot-dashed lines,
total form factors |fI (k) + q(k)| as dashed lines, and the ion features
|fI (k) + q(k)|2Sii(k) as solid lines with the respective color code.

both angles 69◦ and 111◦. q(k) and fI (k) are the form factors
of the screening cloud around the ion and of bound electrons
in the ion, respectively. |fI (k) + q(k)| is calculated from the
Fourier transform of the electron density in the Wigner-Seitz
sphere according to Eq. (15). The red dashed line with triangles
is computed via the Hartree-Fock (HF) approximation [62],
which has been used to obtain the elastic ion feature in
Ref. [61]. The HF approximation refers to isolated atoms so
that plasma effects are not included, which appears to be a
small difference from the AAHNC result at low k values.

In Fig. 3, we also display the elastic ion features |fI (k) +
q(k)|2Sii(k) calculated by using the AAHNC method (black
solid line with circles), QMD (red solid line with trian-
gles) [61], and HNC (blue solid line with squares) [38],
respectively, and we compare with experimental results (points
with error bars) [39]. Our AAHNC results are in good
agreement with the experimental results except for the two
highest points. At low k, our results are larger than those of
the QMD [61] and HNC method [38]; this difference stems
from the static ion-ion structure factor and the form factor.
However, our result is very similar to that of the QMD at the
peak position.

The dynamic structure factors S(k,ω) at a temperature of
10 eV and a density of 8.1 g/cm3 are calculated from the
sum of the three terms according to the Chihara formula,
Eq. (14) [52,53], at the scattering angles 69◦ (k = 5.44a−1

B )
and 111◦ (k = 7.94a−1

B ). The elastic ion feature is calculated
as in Fig. 3 for these angles. We determine the bound-
free contribution using the bound and free electronic wave
functions as obtained from the converged AAHNC results
according to Eq. (19) [47].

It has been shown that the difference between the RPA and
the BMA is very small for the angles considered here [38],
so that we use the RPA to describe the free-free scattering
process in the present study. In Fig. 4 (left panel), we show the
dynamic structure factor at the scattering angle 69◦. The black
solid, blue dot-dashed, and red dashed lines denote the present
AAHNC results, experimental results [39], and the results of
Souza et al. [38], respectively. The orange solid and green
dashed lines (low) represent bound-free (bf) contributions of
our AAHNC method and that of Souza et al. [38], respectively;
they agree well. We conclude that the present AAHNC results
for the XRTS spectra of warm dense Al are in good agreement
with experimental and theoretical results.

The right panel in Fig. 4 shows the results for the other
angle 111◦. The two theoretical results (AAHNC, Souza
et al.) are again in good agreement. However, a big difference
between the experimental and theoretical results occurs. Souza
et al. [38] have discussed this difference based on the Chihara
formula, Eq. (14) [52,53], and they found that the behavior of
the free-free contribution and of the elastic-ion feature is not
capable of explaining this discrepancy. Our AAHNC method
uses the modified GK model [57] to compute the ion-ion pair
potentials and the Deutsch potential to calculate the electron-
electron correlation function. Therefore, we apply different
descriptions for the electronic and ionic structures. However,
we obtain similar results compared with the study of Souza
et al. [38]. Comparing with the experimental results [39],
the spectra have been broadened using Gaussian profiles
(325 eV full width at half-maximum). A larger width of
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FIG. 4. (Color online) Calculated XRTS spectra for warm dense Al at a temperature of 10 eV and a density of 8.1 g/cm3 compared with
experimental results (blue dot-dashed line) [39] at scattering angles 69◦ (left panel) and 111◦ (right panel). The black and orange solid lines
denote the total spectrum (high) and bound-free (bf) (low) contributions, respectively, calculated from the AAHNC method; the free-free
contribution is calculated in the RPA. The red and green dashed lines are, respectively, the total spectrum (high) and the bound-free (low)
contributions from Souza et al. [38].

the instrumental function may need to be considered when
calculating the dynamic structure factor at this larger angle of
111◦. This issue has to be addressed in future studies.

IV. SUMMARY

We have computed the electronic and ionic structures of
warm dense aluminum by using the AAHNC model. When
calculating the electronic structures within the average-atom
model, the ion-ion and ion-electron correlation functions were
considered in a self-consistent manner. The consideration
of correlation effects of the ions (AAHNC versus the AA
model) enhances the recombination of free electrons at high
temperatures and, subsequently, the average ionization degree
decreases; see Fig. 2. However, at lower temperatures, the
opposite behavior arises at high densities because the corre-
lation effects of the ions enhance ionization due to collisions.
On the basis of the electronic and ionic structures determined
within the AAHNC method, x-ray Thomson scattering spectra
were computed using the random-phase approximation for the
free-free contribution in the Chihara formula (14). Comparison
shows that the AAHNC results are in good agreement with
other theoretical approaches [38] and experiments [39]. We
conclude that the AAHNC model is a reliable tool for the
determination of the electronic and ionic structure in hot and
warm dense matter.
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APPENDIX A: THE MODEL OF THE
ION-ION PAIR POTENTIAL

We divide the electron density into two parts: the uniformly
distributed free-electron sea ρ(rb) in the whole space with
a density equal to that of the electrons at the ion-sphere
boundary rb, and the quasilocalized electrons ρ loc

i (r)
representing the dramatic spatial variation of the electronic
distribution around the nucleus. The latter quantity is the total
density minus the uniformly distributed free-electron density;
it is assumed to be unchanged when two ions come closer.
The distributions of quasilocalized electrons, labeled by the
red dashed line in Fig. 5, will overlap and the total density of
the interacting ions is the sum of the two separate ions in the
overlap region. To keep the electron density of the uniformly
distributed free-electron sea unchanged when the electrons of
two ions overlap, the boundary changes in such a way that the
truncated spherical volume, labeled by the black solid line in

FIG. 5. (Color online) Electron density distribution when two
nuclei approach each other; see [57].
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Fig. 5, equals the sum of the two separated ions; this ensures
electrical neutrality in the whole interaction region. Thus,
the total density is ρ = ρ loc

A + ρ loc
B + ρ(rb), where A and B

represent the different ions, respectively.

APPENDIX B: FLOW CHART OF THE CALCULATION

When calculating the electronic and ionic structures, we
start with an initial correlation function and calculate the
initial electronic potential as shown in Fig. 6. On the basis
of this electronic potential, the Dirac equation is solved
and the chemical potential is determined according to the
electrical neutrality condition in the ion sphere. We recalculate
the electronic potential using the old correlation functions
repeatedly until a self-consistent electron structure is obtained.
Afterward, the ion-ion pair potential is calculated based on
this electron structure according to the modified Gordon-Kim
method. The new correlation function is obtained within the
HNC approximation and compared with the old ones. If the
results for the ion structure are not converged, we enter the
loop for computing the electron structure again using this new
correlation function until converged results for the electron as

FIG. 6. (Color online) Flow chart for the self-consistent calcula-
tion of the electronic and ionic structure in the AAHNC method.

well as the ion structure are obtained. The flow chart of this
self-consistent treatment is shown in Fig. 6.
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and R. Redmer, Contrib. Plasma Phys. 47, 324 (2007).
[33] V. Bezkrovniy, M. Schlanges, D. Kremp, and W.-D. Kraeft,

Phys. Rev. E 69, 061204 (2004).
[34] M. Baus and J. Hansen, Phys. Rep. 59, 1 (1980).
[35] D. Saumon, C. E. Starrett, J. D. Kress, and J. Clérouin, High

Energy Density Phys. 8, 150 (2012).
[36] C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013).

033114-7

http://dx.doi.org/10.1017/S0263034602202293
http://dx.doi.org/10.1017/S0263034602202293
http://dx.doi.org/10.1017/S0263034602202293
http://dx.doi.org/10.1017/S0263034602202293
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1103/PhysRevLett.108.091102
http://dx.doi.org/10.1088/0004-637X/744/1/59
http://dx.doi.org/10.1088/0004-637X/744/1/59
http://dx.doi.org/10.1088/0004-637X/744/1/59
http://dx.doi.org/10.1088/0004-637X/744/1/59
http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1038/nature10746
http://dx.doi.org/10.1038/nature10746
http://dx.doi.org/10.1038/nature10746
http://dx.doi.org/10.1038/nature10746
http://dx.doi.org/10.1016/j.hedp.2012.12.014
http://dx.doi.org/10.1016/j.hedp.2012.12.014
http://dx.doi.org/10.1016/j.hedp.2012.12.014
http://dx.doi.org/10.1016/j.hedp.2012.12.014
http://dx.doi.org/10.1103/PhysRevB.68.064204
http://dx.doi.org/10.1103/PhysRevB.68.064204
http://dx.doi.org/10.1103/PhysRevB.68.064204
http://dx.doi.org/10.1103/PhysRevB.68.064204
http://dx.doi.org/10.1103/PhysRevB.73.041105
http://dx.doi.org/10.1103/PhysRevB.73.041105
http://dx.doi.org/10.1103/PhysRevB.73.041105
http://dx.doi.org/10.1103/PhysRevB.73.041105
http://dx.doi.org/10.1103/PhysRevLett.98.066401
http://dx.doi.org/10.1103/PhysRevLett.98.066401
http://dx.doi.org/10.1103/PhysRevLett.98.066401
http://dx.doi.org/10.1103/PhysRevLett.98.066401
http://dx.doi.org/10.1103/PhysRevE.75.056404
http://dx.doi.org/10.1103/PhysRevE.75.056404
http://dx.doi.org/10.1103/PhysRevE.75.056404
http://dx.doi.org/10.1103/PhysRevE.75.056404
http://dx.doi.org/10.1103/PhysRevLett.104.245001
http://dx.doi.org/10.1103/PhysRevLett.104.245001
http://dx.doi.org/10.1103/PhysRevLett.104.245001
http://dx.doi.org/10.1103/PhysRevLett.104.245001
http://dx.doi.org/10.1088/0004-637X/721/2/1158
http://dx.doi.org/10.1088/0004-637X/721/2/1158
http://dx.doi.org/10.1088/0004-637X/721/2/1158
http://dx.doi.org/10.1088/0004-637X/721/2/1158
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.76.1240
http://dx.doi.org/10.1103/PhysRevLett.85.1890
http://dx.doi.org/10.1103/PhysRevLett.85.1890
http://dx.doi.org/10.1103/PhysRevLett.85.1890
http://dx.doi.org/10.1103/PhysRevLett.85.1890
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.110.065702
http://dx.doi.org/10.1103/PhysRevLett.110.065702
http://dx.doi.org/10.1103/PhysRevLett.110.065702
http://dx.doi.org/10.1103/PhysRevLett.110.065702
http://dx.doi.org/10.1038/srep03272
http://dx.doi.org/10.1038/srep03272
http://dx.doi.org/10.1038/srep03272
http://dx.doi.org/10.1038/srep03272
http://dx.doi.org/10.1038/srep05484
http://dx.doi.org/10.1038/srep05484
http://dx.doi.org/10.1038/srep05484
http://dx.doi.org/10.1038/srep05484
http://dx.doi.org/10.1103/PhysRevE.73.016403
http://dx.doi.org/10.1103/PhysRevE.73.016403
http://dx.doi.org/10.1103/PhysRevE.73.016403
http://dx.doi.org/10.1103/PhysRevE.73.016403
http://dx.doi.org/10.1103/PhysRevE.77.026402
http://dx.doi.org/10.1103/PhysRevE.77.026402
http://dx.doi.org/10.1103/PhysRevE.77.026402
http://dx.doi.org/10.1103/PhysRevE.77.026402
http://dx.doi.org/10.1103/PhysRevE.86.026405
http://dx.doi.org/10.1103/PhysRevE.86.026405
http://dx.doi.org/10.1103/PhysRevE.86.026405
http://dx.doi.org/10.1103/PhysRevE.86.026405
http://dx.doi.org/10.1103/PhysRevE.87.023104
http://dx.doi.org/10.1103/PhysRevE.87.023104
http://dx.doi.org/10.1103/PhysRevE.87.023104
http://dx.doi.org/10.1103/PhysRevE.87.023104
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRev.75.1561
http://dx.doi.org/10.1103/PhysRevA.5.1137
http://dx.doi.org/10.1103/PhysRevA.5.1137
http://dx.doi.org/10.1103/PhysRevA.5.1137
http://dx.doi.org/10.1103/PhysRevA.5.1137
http://dx.doi.org/10.1016/0022-4073(82)90111-X
http://dx.doi.org/10.1016/0022-4073(82)90111-X
http://dx.doi.org/10.1016/0022-4073(82)90111-X
http://dx.doi.org/10.1016/0022-4073(82)90111-X
http://dx.doi.org/10.1016/0022-4073(90)90004-P
http://dx.doi.org/10.1016/0022-4073(90)90004-P
http://dx.doi.org/10.1016/0022-4073(90)90004-P
http://dx.doi.org/10.1016/0022-4073(90)90004-P
http://dx.doi.org/10.1103/PhysRevB.20.4981
http://dx.doi.org/10.1103/PhysRevB.20.4981
http://dx.doi.org/10.1103/PhysRevB.20.4981
http://dx.doi.org/10.1103/PhysRevB.20.4981
http://dx.doi.org/10.1016/0022-4073(82)90125-X
http://dx.doi.org/10.1016/0022-4073(82)90125-X
http://dx.doi.org/10.1016/0022-4073(82)90125-X
http://dx.doi.org/10.1016/0022-4073(82)90125-X
http://dx.doi.org/10.1103/PhysRevE.51.4869
http://dx.doi.org/10.1103/PhysRevE.51.4869
http://dx.doi.org/10.1103/PhysRevE.51.4869
http://dx.doi.org/10.1103/PhysRevE.51.4869
http://dx.doi.org/10.1103/PhysRevE.56.3474
http://dx.doi.org/10.1103/PhysRevE.56.3474
http://dx.doi.org/10.1103/PhysRevE.56.3474
http://dx.doi.org/10.1103/PhysRevE.56.3474
http://dx.doi.org/10.1103/PhysRevE.56.3488
http://dx.doi.org/10.1103/PhysRevE.56.3488
http://dx.doi.org/10.1103/PhysRevE.56.3488
http://dx.doi.org/10.1103/PhysRevE.66.047401
http://dx.doi.org/10.1103/PhysRevE.66.047401
http://dx.doi.org/10.1103/PhysRevE.66.047401
http://dx.doi.org/10.1103/PhysRevE.66.047401
http://dx.doi.org/10.1063/1.2338023
http://dx.doi.org/10.1063/1.2338023
http://dx.doi.org/10.1063/1.2338023
http://dx.doi.org/10.1063/1.2338023
http://dx.doi.org/10.1016/j.jqsrt.2005.05.026
http://dx.doi.org/10.1016/j.jqsrt.2005.05.026
http://dx.doi.org/10.1016/j.jqsrt.2005.05.026
http://dx.doi.org/10.1016/j.jqsrt.2005.05.026
http://dx.doi.org/10.1016/j.jqsrt.2005.05.053
http://dx.doi.org/10.1016/j.jqsrt.2005.05.053
http://dx.doi.org/10.1016/j.jqsrt.2005.05.053
http://dx.doi.org/10.1016/j.jqsrt.2005.05.053
http://dx.doi.org/10.1002/ctpp.201200117
http://dx.doi.org/10.1002/ctpp.201200117
http://dx.doi.org/10.1002/ctpp.201200117
http://dx.doi.org/10.1002/ctpp.201200117
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1103/PhysRevE.77.056404
http://dx.doi.org/10.1002/ctpp.200710043
http://dx.doi.org/10.1002/ctpp.200710043
http://dx.doi.org/10.1002/ctpp.200710043
http://dx.doi.org/10.1002/ctpp.200710043
http://dx.doi.org/10.1103/PhysRevE.69.061204
http://dx.doi.org/10.1103/PhysRevE.69.061204
http://dx.doi.org/10.1103/PhysRevE.69.061204
http://dx.doi.org/10.1103/PhysRevE.69.061204
http://dx.doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1016/0370-1573(80)90022-8
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1016/j.hedp.2011.11.002
http://dx.doi.org/10.1103/PhysRevE.87.013104
http://dx.doi.org/10.1103/PhysRevE.87.013104
http://dx.doi.org/10.1103/PhysRevE.87.013104
http://dx.doi.org/10.1103/PhysRevE.87.013104


HOU, BREDOW, YUAN, AND REDMER PHYSICAL REVIEW E 91, 033114 (2015)

[37] C. E. Starrett and D. Saumon, High Energy Density Phys. 10,
35 (2014).

[38] A. N. Souza, D. J. Perkins, C. E. Starrett, D. Saumon, and S. B.
Hansen, Phys. Rev. E 89, 023108 (2014).
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