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Drift wave stabilized by an additional streaming ion or plasma population
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It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be
suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is
essential, their response is of the type (vph − vf 0) exp[−(vph − vf 0)2], where vf 0 is the flow speed and vph is
the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion
exponential term, and this remains so for vf 0 < vph.
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I. INTRODUCTION

Drift wave is called the universally growing mode due to
the fact that it is unstable in both fluid and kinetic descriptions,
and in collisional and collisionless plasmas. The wave is
self-excited and it grows due to the free energy in plasma
inhomogeneity and this remains so even in plasmas with hot
ions. This fact was used in our recent papers where a paradigm
was put forward for the heating of the solar corona [1,2]
and solar wind [3] by drift waves, based on the stochastic
heating mechanism from Refs. [4,5]. In practical situations in
laboratory plasmas, in order to study the mode in a controlled
situation, the wave is on purpose excited and driven by an
electron current [6] or by a shear flow [7]. More recent experi-
mental studies of drift instabilities are available in Refs. [8,9].

This is a dangerous mode in any plasma environment
[10–15], and various effects have been studied in the past in
order to stabilize it. One of them is the magnetic shear which
in simple slab geometry introduces a layer, in the direction of
the shear gradient, at which the mode is stabilized by resonant
ions [16,17]. So although the stabilization is kinetic by nature
it is routinely described as an effect of the plasma geometry.

But in more realistic laboratory situations, the same
geometry which implies the stabilization by the magnetic shear
in fact includes some additional features, like toroidal mode
coupling, which may completely cancel the magnetic shear
stabilization [18]. Much more on these phenomena may be
found in our earlier works [19–21].

Yet another way of the drift wave stabilization is by cold
electrons added to the plasma. In the present work we show
that this can also be done by adding flowing ions or plasma,
which need not be cold at all.

II. MODEL AND DERIVATIONS

The geometry assumed in the derivation is such that the
background magnetic field (B0) is oriented along the z axis.
We assume a static (denoted by index s) inhomogeneous and
quasineutral electron-ion plasma nes0(x) = nis0(x), penetrated
by a homogeneous plasma stream (index f further in the text).
We allow for the presence of electrons as well in the f species
in order to avoid the issue of excess charge in the case that ions
alone are added, i.e., nef 0 = nif 0 = const, although stabiliza-
tion is mainly by the f ions. The equilibrium density gradient
is in the x direction and the wave vector k lies in the y,z plane.

Electrostatic perturbations are assumed propagating nearly
perpendicular to the magnetic field ∼ exp(−iωt + ik⊥ · r +
ikzz). The perturbed densities are
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α denotes the species, qα is their charge, nα0 is the equilibrium
density, Lnsα is the inhomogeneity scale length of static com-
ponent, and ω̃ = ω − kzvα0 is the Doppler shifted frequency
due to the streaming velocity vα0.

We are considering the case of low plasma beta βα =
2μ0nα0Tα/B2

0 � 1 due to which the magnetic field gradient
is ignored following the relation Lnsα/LBsα ∼ βα [3], where
LBsα is the scale length of magnetic field inhomogeneity. The
parallel integration gives rise to the plasma dispersion function
W (̃ξn(s,f )α) with the argument ξ̃n(s,f )α , where the perpendicular
integration yields the modified Bessel function in the term
�n(b(s,f )α) = e−b(s,f )α In(b(s,f )α) with the argument b(s,f )α .
For the static component vsα0 = 0, ω̃ = ω, and ω∗

se, ω
∗
si �= 0,
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while for streaming particles vf α0 �= 0 and ω̃ = ω − kzvf α0,
ω∗

f α = 0. The drift frequencies for electrons and ions are
related as ω∗

si = −(Tsi/Tse)ω∗
se where ω∗

se > 0.
The dispersion relation for the electrostatic drift waves is

obtained from linearized Poisson’s equation

ε0k
2φ1 = −e(nes1 + nef 1 − nis1 − nif 1).

The Larmor radii of electrons in both plasmas are very small
as compared to the ions, which allows for the expansion of the
modified Bessel function for small argument as �n(b(s,f )e) =
[b(s,f )e/2]n/n!. It is easy to see that only n = 0 terms survive
in the limit of a negligible value of the argument, i.e., for
b(s,f )e → 0, �0(b(s,f )e) = 1. We shall also separate the n = 0
terms in the ion contribution.

Using the identity �n(x) = �−n(x) and the expansion of
the plasma dispersion function for n �= 0 terms in limit of the
large argument, and assuming the realistic low frequency case
for both the components, i.e., ξ̃nf i ,ξnsi 
 1 and ω � �(s,f )i ,
respectively, one can easily prove that the n �= 0 terms vanish
from the last terms of Eqs. (1)–(4) and we get the dispersion
relation
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In order to calculate the growth rate of the drift wave, we
separate the real and the imaginary parts of Eq. (5) and the
growth rate becomes
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. (8)

The real dispersion relation may be obtained by taking εr = 0,
i.e.,
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) = 0.

The wave behavior will be discussed in two different frequency
limits.

A. Specific frequency limits

a. In what follows the electrons and ions in the static
component satisfy the following frequency limits: kzvtsi �
ω � kzvtse, while for the streaming species we have
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The growth rate for the drift wave becomes
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Here, the meaning of the terms g1,g2,g3 is obvious, and
they describe the contribution of static electrons and ions and
flowing electrons and ions, respectively. The real part of the
frequency may be written as

ω = ω∗
se�0(bsi)

nes0
nis0

+ k2
⊥ρ2

ss + nif 0

nis0

Tse

Tf e

(
1 + k2
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) . (11)

Here, ρs(s,f ) = cs(s,f )/�i , c2
s(s,f ) = T(s,f )e/mi . The static ions

term g2 in Eq. (10) causes damping regardless of parameters,
while the electrons term g1 yields the usual kinetic instability
provided that the necessary condition ωr < ω∗

se is satisfied.
As for the contribution of the flowing plasma, the g3 term,

it turns out that the universally growing mode can completely
be stabilized and this will be demonstrated below using some
parameters that may be applicable to the laboratory plasma
conditions.

We choose parameters which will show that damping by
f plasmas is essentially due to their flow. We take B0 = 2 T,
Lnsi = Lnse = Ln = 0.1 m, Tsi = Tse = Ts = 105 K, nis0 =
nes0 = ns0 = 1019 m−3, λ⊥ ≡ λy = 3 mm, and take kz/ky =
0.0002. For such parameters the drift wave is unstable,
ωr = 74 659 Hz, γ1/ωr = 0.034 in spite of so hot s ions. When
f -plasma particles are added, and with the same temperature
Tf i = Tf e = Ts , there is very little change in γ1 and the wave
remains growing even if nf 0 is strongly increased, and this
remains so as long as f particles do not flow (see the full line
in Fig. 1).

But if the f plasma is flowing, the growth and damping
is changed. In this case the initial instability caused by the
electron term g1 is first increased for small nf 0, but for larger
f -plasma density the mode is heavily damped. The effect of
the flow of the added plasma is thus essential; it has a profound
effect on the drift wave. See more details in Fig. 2 which shows
that it is possible to find particular speed values for which
the mode is most effectively damped. Note that here vf 0 <

vph ≡ ωr/kz = 148 530,137 104,127 311 km/s for nf 0/ns0 =
0.2,0.3,0.4.

The effect of the flow may be understood from Fig. 3,
where the f -plasma term g3 is presented in terms of vf 0 for
the three values nf 0. The essential part is the ion term, which is
of the shape (vph − vf 0) exp[−(vph − vf 0)2], so that normally
destabilizing the first part vph − vf 0 is counteracted by the

033113-2



DRIFT WAVE STABILIZED BY AN ADDITIONAL . . . PHYSICAL REVIEW E 91, 033113 (2015)

FIG. 1. (Color online) The imaginary part of the drift wave
frequency (10) normalized to ωr in terms of the flowing plasma
density, for the same temperature of both plasmas.

ion exponential part, and the f -ion part in g3 goes to zero
for large vf 0 instead of linearly increasing the growth rate
indefinitely due to the (vph − vf 0) term alone (for vf 0 > vph).
The electrons have a minor role and contribute only in the
range vf 0 > vph when the flow destabilizes the mode (not
presented here). The lines are made broken to mark regions
where kzvtf i � |ω − kzvf 0| is violated and this analytical
model should not be used, hence the given speed limit here
and in Figs. 4 and 6.

To check the effects of the f -plasma temperature, in Fig. 4
we give the imaginary part of frequency in terms of vf 0 for
the two densities nf 0/ns0 and for Tf /Ts = 0.2. It is seen
that for nf 0/ns0 = 0.1 the mode is immediately damped even
for vf 0 = 0 as soon as the f plasma is added, and there is
a strong damping for larger vf 0. The dependence of γ1 on
Tf is complicated, but Fig. 4 may partly be understood from
Fig. 5 where we set nf 0/ns0 = 0.1; it is seen that in the given
temperature range, around Tf /Ts = 0.2, the g3 term in (10) is
positive and it causes strong damping, but this is not always so.

FIG. 2. (Color online) The imaginary part of the drift wave
frequency (10) normalized to ωr in terms of the f -plasma speed,
for the same temperature of both plasmas.

FIG. 3. (Color online) The flowing plasma term g3 from Eq. (10)
used in Figs. 1 and 2, in terms of the f -plasma speed vf 0. The peaks
are the f -ion exponential term contribution.

FIG. 4. (Color online) The growth rate and damping (10) for a
cooler f plasma Tf /Ts = 1/5 in terms of the speed vf 0.

FIG. 5. (Color online) Flowing plasma term g3 in the imaginary
part of frequency (10) in terms of f -plasma temperature.
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b. In the frequency range

|ω − kzvf 0| � kzvtf i, (12)

the f -ion response is nearly Boltzmannian while the electron
contribution is negligible (see further in the text), and with
similar approximations as above we have
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Here, nes0 = nes0 = ns0, nef 0 = nif 0 = nf 0. The f -ion term
α3 causes a strong damping when vf 0 is small and this can
be checked for the same parameters as before. However, for
vf 0 > vph the wave is destabilized and this can easily be
more efficient than in the case of the electron-current driven
mode [1,6]. Indeed, in the usual electron-ion plasmas, the latter
implies an additional electron current term α4 = u0/vTe in
the growth rate (13), but this can easily be smaller than the
existing α3 term. For vf 0 > vph we have that α3 > u0/vTe if
vf 0/u0 > (vtf i/vTe)(Tf i/Tse)(ns0/nf 0). Taking vTe as our vtse,
here the right-hand side can clearly be much below unity, so
the ion flow in this regime can be far more efficient in exciting
the drift mode.

The omitted electron terms make only minor changes in
Eqs. (13) and (14): the α3 term is multiplied by a small
factor 1 + (me/mi)1/2(Tf i/Tf e)3/2, and the last term in the
denominator of Eq. (14) is multiplied by a term 1 + Tf i/Tf e.

B. Flowing ions case

We checked the case of adding flowing ions only, in the
range kzvtf i � |ω − kzvf 0|, assuming that plasma adjusts in
such a way that global quasineutrality is preserved, nes0 =
nis0 + nif 0. This is completely equivalent to Ref. [22] where
the stabilization is discussed by an additional cold electron
population. In Eqs. (10) and (11) the f -electron term and the
factor 1, respectively, vanish. The result is presented in Fig. 6
for several densities of the flowing ions and the result is similar
to Fig. 2. The frequency is ωr = 70 926, 67 193, 59 723 Hz for
nf i0/nse0 = 0.05, 0.1, 0.2. Here we keep Tf i = Tsi = Tse =
105 K, and other parameters are the same as before. The wave
behavior is very similar to the previous plasma flow case.

FIG. 6. (Color online) Drift wave stabilized by flowing ions.

Here, the f -ion flow in principle implies a current that might
cause a sheared magnetic field component Bs = μ0enf 0vf 0Ls ,
where Ls is the characteristic shear length, which is known to
stabilize the drift wave itself [17,23]. However, for parameters
used in the text the sheared component is negligible; at the
perpendicular distance Ls = Ln it remains below 0.001B0. At
shorter distances it is even smaller and can be neglected.

III. SUMMARY

In conclusion, this work provides some clear recipes for
damping of the drift wave which is usually believed to be
universally unstable. The stabilization is expected to work for
various modes from the drift wave spectrum and it can be used
as an alternative for some other mechanisms proposed in the
past [24–26].

The model presented here also has an obvious advantage
with respect to so called stabilization by cold electrons (having
some temperature Tc) [22] because the latter disregards simul-
taneous cold electron collisions with other species (which is
proportional to 1/T

3/2
c , so the cooler the electrons the more

collisions). Hence, these collisions can be frequent even if the
plasma is fairly collisionless regarding its usual components
(ions and hot electrons). On the other hand, thermalization
of such cold electrons is instant and its characteristic time
is the same as their velocity relaxation, and they are thus
totally inefficient in stabilizing the drift mode. So the ion
(plasma) flow stabilization presented here is clearly a far better
alternative.
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