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The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined
for all particles of a species including particles with spin-up and with spin-down. Different populations of states
with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD
model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different
projections of spins on the preferable direction are considered as two different species of particles. It is shown
that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain
sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms
of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent
variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the
electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is
considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as
the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD
equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up
and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence
of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation.
Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the
magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in
the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized
degenerate neutron matter are also considered.
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I. INTRODUCTION

Considering the quantum plasmas of spinning particles we
apply equations of the quantum hydrodynamics (QHD) or the
quantum kinetics. Different methods of the derivation of QHD
equations were presented in Refs. [1–4], they have also been
applied to the quantum plasmas of spinning particles [4–6].
These equations contain the particle concentration n(r,t), the
momentum density j(r,t), the velocity field v(r,t), and the
distribution function f (r,p,t) describing all particles of a
species independently of their spin directions. The difference
between the numbers of particles in the different spin states is
included in the spin density S(r,t) or magnetization M(r,t) =
γ S(r,t), where γ is the gyromagnetic ratio. These models do
not contain any explicit difference between the spin-up and
the spin-down states of particles.

Basic equations of the many-particle quantum hydrody-
namic of spin-1/2 particles were developed in Refs. [5–7].
Further development of the method can be found in Refs. [8–
13]. This includes the explicit consideration of the spin-current
[8] and the spin-orbit [10] interactions. Derivation of the
energy evolution equation [1,6,8] and the spin-current (the
magnetization flux) evolution equation [11] were performed.
The exchange interaction was considered in Refs. [1,7,12].
The QHD model for particles with the electric dipole moment
was developed in Ref. [13]. All these developments were
performed in terms of one method: the method of many-
particle quantum hydrodynamics suggested in Refs. [1,6].
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Comprehensive analysis of quantum hydrodynamic equations
for a single spin-1/2 particle in an external field had been
performed by Takabayasi [14–20].

In the single-fluid model of electrons with different spins
the dynamic of spins is governed by the generalization of Bloch
equation [14]

n(∂t + v∇)μ − �

2mγ
∂β[nμ,∂βμ] = 2γ

�
n[μ,B], (1)

where μ is the reduced magnetization M(r,t) = nμ, [a,b] is
the vector product of vectors a and b. The first group of terms
on the left-hand side of Eq. (1) is the substantial derivative of
the reduced magnetization. The second term is the quantum
Bohm potential for the Bloch equation. On the right-hand
side of Eq. (1) we have the torque caused by the interaction
with the external magnetic field and the interparticle spin-
spin interactions. In the two-fluid model the z projection of
magnetization Mz is no longer an independent variable. It is
proportional to the difference of concentrations of the spin-
up electrons and the spin-down electrons. Other projections
of the magnetization Mx and My appear in two-fluid model
as independent variables, but they do not wear indexes “up”
or “down” being related to both species of electrons. This
happens because the definitions of Mx and My contain the
wave functions of the spin-up and spin-down electrons.

For the development of the field of quantum plasma
[10,21–23] it is interesting to derive a set of QHD equations for
the degenerate electrons considering two different spin states
(spin-up and spin-down) as two different species of particles. In

1539-3755/2015/91(3)/033111(11) 033111-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.033111


PAVEL A. ANDREEV PHYSICAL REVIEW E 91, 033111 (2015)

this paper we perform a derivation of QHD equation explicitly
distinguishing the spin-up states and the spin-down states.

An attempt to consider the hydrodynamic model of quan-
tum particles with the separated spin-up and spin down
evolution has been made [24]. This model has found a number
of applications [25–29]. Unfortunately, this model does not
have any justification, and it is in contradiction with the model
we directly derive, in this paper, from the Pauli equation.

Different linear and nonlinear excitations were considered
in the quantum plasmas [21,22]. In this paper we also focus our
attention on the linear excitations in the magnetized quantum
plasmas of the degenerate electrons in terms of new form
of the QHD model. Basic linear phenomena in the spin-1/2
quantum plasmas were considered in Refs. [9,10,30–33],
where the contribution of spins in the dispersion of plasma
waves was found and the existence of spin-plasma waves was
demonstrated. Electrons were considered as a single fluid
in these papers. We are going to find out that changes at
application of the spin-separated QHD.

This paper is organized as follows. In Sec. II we derive the
QHD model considering the spin-up electrons and the spin-
down electrons as different species. In Sec. III we consider
the propagation of waves parallel to the external magnetic
field as an illustration of derived equations. This problem has
been solved in literature in term of usual QHD. We compare
results of two different methods of fluidization of the Pauli
equation. In Sec. IV we consider the contribution of the ion
motion into the properties of the spin-electron acoustic waves
(SEAWs) discovered in Sec. III. In Sec. V we study the spin-
electron acoustic waves in the neutron matter. In Sec. VI a
brief summary of obtained results is presented.

II. MODEL

In this section we are going to derive the set of QHD
equations for the degenerate electrons considering the spin-up
states and the spin-down states as two different species. This
derivation can be performed in terms of the many-particle
quantum hydrodynamics [5–13]. However, for simplicity of
presentation, we consider the Pauli equation for a single
particle in an external electromagnetic field following papers
of Takabayasi [14–20]. We should also notice that the set of
basic QHD equations for charged spinning particles considered
in the self-consistent field approximation almost coincide with
the single-particle one [34]. This coincidence has been actively
used over last decade (see, for instance, Refs. [22,30,31,34]).

Recently Krishnaswami et al. [35] and Melrose and Weise
[36] wisely pointed out that the theory of quantum plasmas
should be grounded on the many-particle methods instead of
being recaptured from the evolution of separated particles. In
the last case one drops the statistical many-particle effects
such as the Fermi pressure and properties of symmetry of
the full N particle wave function. In single particle picture
these effects can be partially restored by hand as it was done
in Refs. [30,31]. Thus we should stress attention of readers
that we follow the many-particle formalism called the many-
particle QHD [5–13]. And only reason why we apply, in this
paper, the single-particle Pauli equation is the simplification
of presentation.

Thus we start with the Pauli equation

ı�∂tψ =
((

�

ı
∇ − qe

c
A

)2

2m
+ qeϕ − γeσ̂B

)
ψ (2)

governing the evolution of the spinor wave function ψ(r,t). In
Eq. (2) ϕ = ϕext, A = Aext are the scalar and vector potentials
of the external electromagnetic fields, B = Bext is the external
magnetic field, qe = −e is the charge of electron, m is the mass
of the particle under consideration, γe is the gyromagnetic ratio
of electron, ∇ is the gradient operator, σ is the vector of Pauli
matrices, � is the reduced Planck constant, and c is the speed
of light.

Let us present the explicit form of the Pauli matrices

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −ı

ı 0

)
, σ̂z =

(
1 0
0 −1

)
.

(3)
The commutation relation for spin-1/2 matrices is

[̂σα,̂σ β] = 2ıεαβγ σ̂ γ . (4)

ρ = ψ+ψ is the probability density to find the particle in
a point r regardless its spin, where ψ+ is the Hermitian
conjugated wave function.

The spinor wave function ψ can be presented as

ψ =
(

ψ↑
ψ↓

)
. (5)

Applying the wave functions describing spin-up ψ↑ and spin-
down ψ↓ states we can write the probability density to find
the particle in a point r with spin-up ρ↑ = |ψ↑|2 or spin-down
ρ↓ = |ψ↓|2. We also see ρ = ρ↑ + ρ↓. Directions up ↑ (down
↓) corresponds to spins having same (opposite) direction as
(to) the external magnetic field. While the magnetic moments
have the direction opposite to the spin directions.

In many-particle systems we have the concentration of
particles n(r,t), which is proportional to the probability
density to find each particle in the point r, hence we have
n↑ = 〈ρ↑〉 and n↓ = 〈ρ↓〉. Full concentration of particles
in the sum of the particle concentrations with spin-up and
spin-down n = n↑ + n↓. The spin density Sz of electrons is
the difference between the concentrations of electrons with
different projection of spin Sz = n↑ − n↓. Its definition is
Sz = ψ+σzψ . We have that the z projection of the spin density
Sz is not an independent variable in this representation of the
quantum hydrodynamics.

We can derive equations for ρ↑, and ρ↓. They are analogous
to the continuity equations, but the number of particles with
the different spin projection (or corresponding probability for
a single particle) are not constants.

Let us rewrite the Pauli Eq. (2) in more explicit form

ı�∂tψ↑ =
((

�

ı
∇ − qe

c
A

)2

2m
+ qeϕ − γeBz

)
ψ↑

− γe(Bx − ıBy)ψ↓, (6)

and

ı�∂tψ↓ =
((

�

ı
∇ − qe

c
A

)2

2m
+ qeϕ + γeBz

)
ψ↓

− γe(Bx + ıBy)ψ↑. (7)
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The spin-up and spin-down directions are related to a
preferable direction in space. If we have an uniform external
magnetic field its direction can be taken as preferable direction.
In this case only the z projection of the magnetic field Bz enters
the Pauli equation for a single particle in the external magnetic
field. However we are going to apply corresponding QHD
equations for plasma description, where motion of charges and
spin evolution create Bx and By . An example of the existence
of nonzero Bx and By for a single particle in external field
is the presence of a weak electromagnetic wave propagating
parallel to the z direction.

Considering the time evolution of the probability densities
ρ↑ and ρ↓ we derive the continuity equations

∂tn↑ + ∇(n↑v↑) = γe

�
(BySx − BxSy), (8)

and

∂tn↓ + ∇(n↓v↓) = γe

�
(BxSy − BySx), (9)

where we have applied Sx and Sy for mixed combinations of
ψ↑ and ψ↓. Their explicit form is presented and discussed
below.

Usually the continuity equation shows the conservation of
the particle number. If we consider the spin-up electrons and
the spin-down electrons separately, we find that the particle
numbers change due to the interaction. The total number of
electrons N = N↑ + N↓ conserves only.

Particle current appears in the continuity equation in usual
form js = 1

2m
(ψ∗

s Dψs + c.c.), where s = ↑ or ↓, and D = p̂ −
qe

c
A. We have introduced the velocity fields vs via the particle

currents js ≡ nsvs , with the following explicit form of the
velocities vs = �

m
∇φs − qe

mc
A. Here we have applied the phase

of wave function ψs = ase
ıφs .

Considering the time evolution of the particle currents for
each projection of spin j↑ and j↓ we can derive corresponding
Euler equations

mn↑(∂t + v↑∇)v↑ + ∇p↑ − �
2

4m
n↑∇

(�n↑
n↑

− (∇n↑)2

2n2
↑

)

= qen↑

(
E + 1

c
[v↑,B]

)
+ γen↑∇Bz

+ γe

2
(Sx∇Bx + Sy∇By)

+ mγe

�
(J(M)xBy − J(M)yBx) − mv↑

γe

�
(BySx − BxSy),

(10)

and

mn↓(∂t + v↓∇)v↓ + ∇p↓ − �
2

4m
n↓∇

(�n↓
n↓

− (∇n↓)2

2n2
↓

)

= qen↓

(
E + 1

c
[v↓,B]

)
− γen↓∇Bz

+ γe

2
(Sx∇Bx + Sy∇By)

+ mγe

�
(J(M)yBx − J(M)xBy) − mv↓

γe

�
(BxSy − BySx),

(11)

with the following explicit form of the spin current

J(M)x = 1

2
(v↑ + v↓)Sx − �

4m

(∇n↑
n↑

− ∇n↓
n↓

)
Sy, (12)

and

J(M)y = 1

2
(v↑ + v↓)Sy + �

4m

(∇n↑
n↑

− ∇n↓
n↓

)
Sx, (13)

where qe = −e, γe = −g e�

2mc
is the gyromagnetic ratio for

electrons, and g = 1 + α/(2π ) = 1.00116, where α = 1/137
is the fine structure constant, which takes into account the
anomalous magnetic moment of electron. J(M)x and J(M)y are
elements of the spin current tensor J αβ .

Most of terms in the Euler equations (10) and (11) have
traditional meaning. The first group of terms on the left-hand
sides of the Euler equations are the substantial time derivatives
of the velocity fields v↑ and v↓. The second terms are the
gradients of the thermal pressures or the Fermi pressures. They
do not appear from the single-particle Pauli equation, but we
have included it assuming that the many-particle QHD gives
this effect [1,6,8]. The next group of terms, proportional to
the square of the Plank constant, are the contributions of the
quantum Bohm potential.

The right-hand sides of the Euler equations present the
interaction force fields. The first groups of terms on the
right-hand side are the Lorentz forces. Since we consider
two species of electrons these forces have the same structure,
with no explicit dependence on the spin direction. The
implicit dependence is presented via the subindexes of the
concentrations and velocity fields. The second terms describe
the action of the z projection of magnetic field on the mag-
netic moments (spins) of particles. Dependence on the spin
projection reveals in different signs before these terms. The
third groups of terms in the Euler equations contain a part of
well-known force field FS = Mβ∇Bβ describing the action
of the magnetic field on the magnetic moments [5,14]. Part
of this force field has been presented by previous terms
FS(z) = ±γen↑,↓∇Bz. The second part of the force field is
FS(x,y) = γe(Sx∇Bx + Sy∇By). The half of this force field
enters each of the Euler equations. The last two groups of
terms is related to nonconservation of particle number with
different spin-projection. This nonconservation gives extra
mechanism for change of the momentum density revealing
in the extra force fields. The last term in Eq. (10) [Eq. (11)]
appears due to application of the continuity Eq. (8) [Eq. (9)]
to the following terms ∂t (mnvα) + ∂β(mnvαvβ) arising at the
derivation of hydrodynamic equations.

Here we describe an explicit form of the spin density
projections on x and y axes. We have used notations Sx

and Sy in Eqs. (8)–(11). These quantities appear as fol-
lows Sx = ψ∗σxψ = ψ∗

↓ψ↑ + ψ∗
↑ψ↓ = 2a↑a↓ cos 
φ, Sy =

ψ∗σyψ = ı(ψ∗
↓ψ↑ − ψ∗

↑ψ↓) = −2a↑a↓ sin 
φ, where 
φ =
φ↑ − φ↓. Sx and Sy appear as mixed combinations of ψ↑ and
ψ↓. These quantities do not related to different species of
electrons having different spin direction. Sx and Sy describe
the simultaneous evolution of both species.

Sx and Sy enter Eqs. (8)–(11). We need to derive equations
for these quantities to get a closed set of QHD equations.
Differentiating the explicit forms of Sx and Sy and applying
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the Pauli equation (6) and (7) for the time derivatives of the
wave functions ψ↑ and ψ↓ we obtain the following equations

∂tSx + 1

2
∇[Sx(v↑ + v↓)] − �

4m
∇

(
Sy

(∇n↑
n↑

− ∇n↓
n↓

))

= 2γe

�
(BzSy − By(n↑ − n↓)), (14)

and

∂tSy + 1

2
∇[Sy(v↑ + v↓)] + �

4m
∇

(
Sx

(∇n↑
n↑

− ∇n↓
n↓

))

= 2γe

�
(Bx(n↑ − n↓) − BzSx). (15)

The first term in Eq. (14) [Eq. (15)] is the time derivative of
Sx (Sy). The second terms in these equations are gradients
of the spin fluxes. The third terms are the quantum Bohm
potential revealing the quantum part of the gradients of
the spin fluxes. The right-hand sides of Eqs. (14) and (15)
contain the torque caused by the interaction of the magnetic
moments with the magnetic field. The right-hand sides of these
equations correspond to the traditional form. For instance,
let us consider the torque in equation for Sx , which is Tx =
2γe

�
(SyBz − SzBy) = 2γe

�
(SyBz − (n↑ − n↓)By), that coincides

with the right-hand side of Eq. (14).
Let us mention that Sx and Sy do not wear subindexes ↑

and ↓. As we can see from the definitions of Sx and Sy they
are related to both projections of electron spin simultaneously:
spin-up ψ↑ and spin-down ψ↓.

Electromagnetic fields in the QHD equations presented
above obey the Maxwell equations

∇E = 4π (eni − ene↑ − ene↓), (16)

∇B = 0, (17)

∇ × E = −1

c
∂tB, (18)

and

∇ × B = 1

c
∂tE + 4π

c

∑
a=e,i

(qana↑va↑ + qana↓va↓)

+ 4π
∑
a=e,i

∇ × Ma, (19)

where Ma = {γaSax,γaSay,γa(na↑ − na↓)} is the magnetiza-
tion of electrons in terms of hydrodynamic variables.

A. Equation of state

We need to get a closed set of equations, so we should use an
equation of state for the pressure of spin-up p↑ and spin-down
p↓ electrons. We consider the degenerate electrons. Hence, in
the nonrelativistic case, we have

ps = (6π2)2/3

5

�
2

m
n5/3

s . (20)

From this equation of state we find ∂ps

∂ns
= (6π2)2/3

3
�

2

m
n

2/3
s giving

the contribution in the Euler equation via ∇ps = ∂ps

∂ns
∇ns . Here

we see that the equations of state for the spin-up electrons
and the spin-down electrons are different due to the presence
of the external magnetic field, which changes an equilibrium
concentration of each species n0↑ 
= n0↓. We have included
that only one particle with a chosen spin direction can occupy
one quantum state. As a consequence we have (6π2)2/3 instead
of (3π2)2/3 appearing in the Fermi pressure. At the derivation
of the Fermi pressure one assumes that two particles with
different spin directions could occupy a quantum state, but
we now consider spin-up and spin-down electrons as different
species.

We show below that the difference between p↑ and p↓
existing due to the difference of n↑ and n↓ leads to effects in
quantum plasmas. One of these effects is the appearance of a
wave, which we call the spin-electron acoustic wave.

Interactions of magnetosonic waves in spin-1/2 degenerate
quantum plasmas have been recently considered in Ref. [37]
in terms of quantum magnetohydrodynamics. In Ref. [38] the
quantum magnetohydrodynamics was applied as well. Let us
mention that the magnetohydrodynamics is a very useful tool,
where electron-ion plasmas are considered as a single liquid,
whereas we move in the opposite direction developing a many-
liquid model for electrons.

Considering the quantum spin-1/2 plasmas, researchers
usually apply the equation of state for unpolarized electrons

punpol = (3π2)
2
3

5

�
2

m
n

5
3 , (21)

see for instance Refs. [39,40], however, this does not include
the effect of the external magnetic field on the equation of
state. In Ref. [28] the authors use another equation of state,
but they give no change in the problem under consideration.

In Ref. [29] the author presented an attempt to consider a
two-fluid model of electrons, which treats the spin-up and spin-
down populations relative to the magnetic field as different
species, to obtain the permittivity tensor of plasmas, which
appears to be incomplete. Moreover, the equation of state for
unpolarized single-liquid electrons (21) was used there. In
Ref. [29], the author followed the model presented in Ref. [24],
which does not fit equations we have directly derived from the
Pauli equation.

Obtained hydrodynamic equations (8)–(19), together with
the equations of state (20), are aimed to consider degenerate
electron gas of paramagnetic and ferromagnetic metals. Simple
modification can also allow us to consider the two-dimensional
electron gas, or the electron-hole gas of semiconductors.

Considering the low-frequency limit we deal with the
frequencies near the ion Langmuir frequency. In this region
the ion-acoustic wave transforms into the ion-plasma wave.
Both these waves are parts of the one branch of the dispersion
dependence, but they have different mechanisms of propaga-
tion. While the frequencies of the ion-acoustic wave lie below
the ion Langmuir frequency, the frequencies of the ion-plasma
wave are above the ion Langmuir frequency [41].

Regarding the exchange of momentum between two sys-
tems of electrons at the collisions of electrons we need to
mention the following: Scattering of the electrons with the
same spin projection has zero amplitude of scattering in a
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system of degenerate electrons since all states with momentum
between 0 and (6π2n0s)

1
3 � are occupied.

The Fermi step of the spin-up electrons is shorter than the
Fermi step of the spin-down electrons. In spite this fact we
do not have any contribution of outer-species collisions. If
we have two electrons with energies lower than the Fermi
energy of the spin-up electrons our conclusion is obvious.
Let us illustrate our conclusion for the collision of the
spin-down electron with energy in the interval between the
Fermi energies of spin-up electrons and the Fermi energy of
spin-down electrons, while energy of the spin-up electron is
below than the Fermi energy of the spin-up electrons. This
collision can increase the energy of the spin-up electron, and
we have many unoccupied states with energies E > EFe↑,
where EFe↑ is the Fermi energy for the spin-up electrons,

EFe,s = (6π2)
2
3 �

2n
2
3
s /2m. However, in this process the spin-

down electron would decrease its energy, while all spin-down
states with the lower energies are occupied. Hence this channel
of collisions is also blocked. Therefore we conclude that we do
not have the exchange of the momentum between two systems
of electrons with different spin projection during collisions.

The collision process can play a role in the momentum
exchange between electron species at the larger temperatures
comparable with the Fermi temperatures. However, we do not
consider this regime in this paper.

Vranjes et al. [42,43] expressed concerns about agreement
between the areas of application of the quantum hydrodynamic
equations and the areas where they were applied. This is a
reasonable remark for a large number of papers. Therefore,
let us describe the area of application of our results. In this
paper we consider degenerate electrons in metals at room
temperature and below T ∈ (10,300) K, since at temperatures
below 10 K metals demonstrate the superconductivity of
electrons. Concentrations of electrons in metals are about
1021 ÷ 1023 cm−3. Corresponding Fermi temperatures TFe =
kB(3π2ne)

2
3 �

2/(2me) are about 3.6 ÷ 77.6 103 K, where kB

is the Boltzmann constant. Hence we have electrons well
below the degeneracy limit T � TFe. The low-temperature
limit minimizes deformation of the Fermi-step distribution
due to finite temperatures, while the external magnetic field
leads to additional change of occupation of the quantum states
by the spin-up and spin-down electrons.

We consider quantum plasmas of degenerate electrons,
where the concentration is small enough to drop the contri-
bution of the quantum Bohm potential. Meanwhile, the notion
of quantum plasmas is frequently used in the narrower meaning
of the study of the contribution of the quantum Bohm potential.

The hydrodynamic structure of equations for the quantum
collective variables directly follows from the many-particle
Schrödinger or Pauli equations with no particular limits of
the space or time scale [1,6,13,44]. Nevertheless, in our
paper, we apply the self-consistent field approximation, which
corresponds to the long-range interaction between particles.
The range of the Coulomb interaction in plasmas is restricted
by the Debye screening. In the classic plasmas the potential of
a chosen motionless charge q surrounded by plasmas decays
as ϕ(r) = qe−r/rD /r , where rD = vTe/ωLe is the Debye radius.
The Debye radius characterizes the area of action of the
charge. The Debye radius should be much larger than the

average interparticle distance 1/ 3
√

n0 to bring the collective
effects.

In the degenerate plasmas, on the other hand, we do not
have the fast exponential decay of the potential. Calculation
of the static response of the degenerate plasmas on the electric
field created by the small charge q presented in literature (see
for instance the Landau textbook [45], Sec. 40, formula 40.23)
gives

ϕ(r) = qα�
2

2β2p̃2
Fe

cos
( 2p̃Fer

�

)
r3

, (22)

where p̃Fe = (3π2n0) 1
3 � is the Fermi momentum, α =

me2/(2π�p̃Fe), β = 1 + α. Formula (22) shows the slow
decay of the potential as 1/r3 combined by the space
oscillation. It reveals a rather large area of interaction of the
charge with the surrounding charges and applicability of the
self-consistent field approximation.

III. PERTURBATION EVOLUTION

Interest in the spin contribution in the properties of plasmas
has appeared since the many-particle quantum hydrodynamics
of spin-1/2 particles was derived [5,46]. Many results have
been obtained (see review papers [21,22,47]), but we should
especially mention Refs. [9,10,32,33], where some interesting
effects were found in the linear regime on the small pertur-
bations in the magnetized plasmas. It was shown that the
spin evolution leads to the existence of new wave solutions.
There are two types of spin excitations in quantum plasmas
propagating by means of the perturbations of the electric field
[32,33], and by means of the perturbations of the magnetic field
with no electric field involved in it (the quasimagnetostatic
regime) [9,10,32].

Some recent research reveals new linear wave solutions.
Most of them are related to spin evolution [10,32,33]. In
addition, a longitudinal solution, which is called the positron
sound wave, was found in Ref. [48]. In this section we present
a longitudinal wave in degenerate electrons moving on a
background of motionless ions, which we call the spin-electron
acoustic wave.

Here we consider the propagation of waves parallel to the
external field. This includes the consideration of spin-plasma
waves propagating by means perturbations of the electric field
[32,33].

Equilibrium condition is described by the nonzero concen-
trations n0↑, n0↓, n0 = n0↑ + n0↓, and the external magnetic
field Bext = B0ez. Other quantities equal to zero v0↑ = v0↓ =
0, E0 = 0, S0x = S0y = 0. Assuming that the perturbations are
monochromatic⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δn↑
δn↓
δv↑
δv↓
δE
δB
δSx

δSy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

NA↑
NA↓
VA↑
VA↓
EA

BA

SAx

SAy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

e−ıωt+ıkr, (23)
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we get a set of linear algebraic equations relatively to NA↑,
NA↓, VA↑, VA↓, EA, BA, SAx , and SAy . Condition of the
existence of nonzero solutions for amplitudes of perturbations
gives us a dispersion equation.

The difference of spin-up and spin-down concentrations
of electrons 
n = n0↑ − n0↓ is caused by the external
magnetic field. Since electrons are negative their spins get
the preferable direction opposite to the external magnetic
field 
n

n0
= tanh( γeB0

Te
) = − tanh( |γe|B0

Te
). Here, as always we

consider the temperature in units of energy, so we do not
write the Boltzmann constant.

We consider plasmas in the uniform constant external
magnetic field. We see that in the linear approach numbers
of electrons of each species are conserved.

After some straightforward calculations we find the follow-
ing dispersion equations for the longitudinal

1 − ω2
Le↑

ω2 − u2
↑k2

− ω2
Le↓

ω2 − u2
↓k2

= 0, (24)

and the transverse

k2c2 − ω2 + ω2
Le

ω

ω ± |�|
− 4πγ k2c2 2γ

�

n0↑ − n0↓
ω ± g|�| = 0, (25)

waves, where

ω2
Le(s) = 4πe2n0s

m
(26)

is the Langmuir frequency for species s = ↑,↓ of electrons,
ω2

Le = ω2
Le,↑ + ω2

Le,↓ is the full Langmuir frequency, u2
s =

22/3

3 v2
Fe + �

2k2

4m2 .

Keeping in mind that n0 = n0↑ + n0↓ and Mez = γe(ne0↑ −
ne0↓) = χeB0, where χe is the ratio between the equilibrium
magnetic susceptibility and the magnetic permeability of
electrons, we find no crucial difference between Eq. (25) and
results of usual QHD applied in Refs. [10,32,33]. However a
great difference appears for the longitudinal waves presented
by Eq. (24). Let us mention that two different signs in formula
(25) correspond to left- and right-circular polarized waves.

Now we focus our attention on Eq. (24). If equilibrium
concentrations approximately equal n0↑ ≈ n0↓, it is possible
in the small magnetic field, Eq. (24) gives spectrum of the
Langmuir waves

ω2 = ω2
Le + 1

3
v2

Fek
2 + �

2k4

4m2
, (27)

where vFe = (3π2n0)1/3
�/m is the Fermi velocity. It has the

well-known structure.
If we can not neglect difference between n0↑ and n0↓, which

increases with the increase of the external magnetic field we
have the following dispersion equation

ω4 − ω2
[
(u2

↑ + u2
↓)k2 + ω2

Le↑ + ω2
Le↓

]
+ (

u2
↑ω2

Le↓ + u2
↓ω2

Le↑
)
k2 + u2

↑u2
↓k4 = 0. (28)

The general solution of the dispersion equation for the
longitudinal waves appears as a couple of solutions

ω2 = 1
2

[
(u2

↑ + u2
↓)k2 + ω2

Le↑ + ω2
Le↓ ±

√
(u2

↑ − u2
↓)2k4 + (

ω2
Le↑ + ω2

Le↓
)2 + 2(u2

↑ − u2
↓)

(
ω2

Le↑ − ω2
Le↓

)
k2

]
. (29)

We now describe some limit cases of these formulas.
As the first step we consider the limit of small magnetic fields and, consequently, we have a small, but non-neglectable,

difference between n0↑ and n0↓. In this limit we obtain

ω2
+ = ω2

Le + 1

2
(u2

↑ + u2
↓)k2 + (u2

↑ − u2
↓)k2

(u2
↑ − u2

↓)k2 + 2
(
ω2

Le↑ − ω2
Le↓

)
4
(
ω2

Le↑ + ω2
Le↓

) , (30)

and

ω2
− = 1

2
(u2

↑ + u2
↓)k2

− (u2
↑ − u2

↓)k2

(
u2

↑ − u2
↓
)
k2 + 2

(
ω2

Le↑ − ω2
Le↓

)
4
(
ω2

Le↑ + ω2
Le↓

) . (31)

ω− presents a soundlike solution existing in the electron gas
due to the different equilibrium distribution of spin-up and
spin-down electrons.

Formula (30) presents the Langmuir wave dispersion.
However, the coefficient in front of k2 has more complicate
form instead of the usual contribution of the Fermi pressure
1
3v2

Fe. The equilibrium distribution of spinning particles being
in the external magnetic field differs from the distribution in

absence of the magnetic field. This difference reveals a more
complicated form of the equation of state. A suitable equation
of state can be applied even in the single-fluid model of electron
motion [12,46]

psf = (6π2)
2
3

5

�
2

m

(
n(av) + 
n

2

) 5
3

+ (6π2)
2
3

5

�
2

m

(
n(av) − 
n

2

) 5
3

. (32)

However, this effect was not included in Refs. [10,30–33,40]
at the consideration of spectrum of magnetized plasmas of
spinning particles. Now we consider the spin-up electrons and
the spin-down electrons separately having different equations
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of state for each of them. Hence it hard to miss this effect. So
let us describe its contribution in the spectrum of the Langmuir
waves.

In the small external magnetic field we can make the
expansion of n↑ and n↓ in series on the small deviation of spin-
up and spin-down concentrations from the average one n(av) ≡
n0/2, with n↑ = n(av) − 
n/2 and n↓ = n(av) + 
n/2. Thus
we have more a explicit form of solutions

ω2
+ = ω2

Le + 1

3
v2

Fek
2

[
1 − 1

9

(

n

n0

)2]
+ �

2k2

4m2

+
(


n

n0

)2
v2

Fek
2

9ω2
Le

(
1

9
v2

Fek
2 + ω2

Le

)
, (33)

and

ω2
− = 1

3
v2

Fek
2

[
1 − 1

9

(

n

n0

)2]
+ �

2k2

4m2

−
(


n

n0

)2
v2

Fek
2

9ω2
Le

(
1

9
v2

Fek
2 + ω2

Le

)
. (34)

In this limit the external magnetic field gives an extra term in
the Langmuir wave dispersion dependence.

For the first step on the path of estimations we consider n0 =
1022 cm−3, k ∼ 107 cm−1, 
n/n0 ∼ 10−2, what corresponds
to short-wavelength dynamics in metals. In this case we can
simplify formulas (33) and (34)

ω2
+ = ω2

Le + 1

3
v2

Fek
2

[
1 + 2

9

(

n

n0

)2]
, (35)

and

ω2
− = 1

3
v2

Fek
2

[
1 − 4

9

(

n

n0

)2]
. (36)

At the parameters under consideration we find that the shift of
the Fermi pressure prevails the quantum Bohm potential. We
see that the dependence of dispersion on 
n/n0 is quadratic
at the small magnetization. Formula (36) shows the linear
dependence of frequency on the wave vector, so we call this
solution the spin-electron acoustic wave.

Let us mention that in absence of the spin we do not have
dependence of the frequency on the magnetic field for the
Langmuir waves propagating parallel to the external magnetic
field.

Spins are highly polarized at the large external magnetic
fields. In this limit we can neglect the concentration of spin-up
electrons and consider n0 ≈ n↓, so all spins are antiparallel
to the external magnetic field. Taking into account the small
amount of spin-up particles we introduce the following vari-
ables n↓ = n0 − δ, n↑ = δ, 
n = n0 − 2δ, δ � n↓, δ � n0,
δ � 
n. In this limit the general dispersion dependence (29)

simplifies to

ω2
+ = ω2

Le + 1

3
22/3v2

Fek
2

(
1 − 2

3

δ

n0

)
+ �

2k2

4m2

−ω2
Le

δ

n0

1
3 22/3v2

Fek
2

ω2
Le + 1

3 22/3v2
Fek

2
, (37)

and

ω2
− = 1

3
22/3v2

Fe

(
δ

n0

)2/3

k2

+ω2
Le

δ

n0

1
3 22/3v2

Fek
2

ω2
Le + 1

3 22/3v2
Fek

2
. (38)

If we neglect 
n/n0 in formula (37) (ω2
+ = ω2

Le +
3
√

2 1
3v2

Fek
2 + �

2k4

4m2 ) we find the increase of the Fermi pressure

contribution in 3
√

2 times in comparison with the Fermi
pressure of unpolarized systems usually applied in literature
[10,30–33].

Formulaes (37) and (38) are obtained for the large mag-
netization. Formula (37) shows the linear dependence of ω2

+
on 
n/n0. Spin-electron acoustic wave dispersion ω2

−(k) has
two terms with different dependence on 
n/n0. One of them
has linear dependence and another one is proportional to
(
n/n0)

2
3 .

The spin-electron acoustic wave is a low-frequency so-
lution. Consequently its properties might be affected by the
ion motion. This problem will be considered during further
development and application of the spin-separated QHD model
developed in this paper.

Now we move to the description of Eq. (25). The first
two terms in Eq. (25) describe the propagation of the light
in vacuum. The third term presents the contribution of the
medium of charged particles moving in the external magnetic
field. The last term presents the medium of spinning particles.
The last term exists even for neutral particles. Each of
the last two terms increase the degree of the dispersion
equation on one in comparison with the mediumless case. A
simultaneous account of these two terms increases the degree
of the dispersion equation on two due to the difference of
denominators of these terms. The difference of denominators
is caused by the anomalous magnetic moment of electrons.
If we neglect the anomalous magnetic moment of electrons
we find that the account of the electron spin does not change
the degree of dispersion equation. This gives contribution in
coefficients of the equation only. Corresponding spin-plasma
waves are described in Refs. [10] and [33]. The quantum Bohm
potential in the spin evolution equation [14] [see also the
second term in Eq. (1) of this paper] of the single-fluid QHD
model of electrons gives the shift of the cyclotron frequency
of magnetic moment rotation. Thus, it leads to the appearance
of the spin-plasma wave along with the anomalous part of the
magnetic moment [23,49] (see also Ref. [50]).

We have presented formulas for the limit cases of solution
(29). Let us now present the numerical analysis of solutions in
the area of intermediate polarizations with the relevant plasma
parameters.

Presenting the spectrum (29) via the dimensionless vari-
ables ξ = ω2/ω2

Le, k/ 3
√

n0, and η = 
n/n0 we get an extra
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(b)

(a)

k/n0
1/3

k/n0
1/3

FIG. 1. (Color online) Dependence of dimensionless frequency
square in units of the square of Langmuir frequency ξ = ω2/ω2

Le

on the dimensionless wave vector k/ 3
√

n0 and the spin polarization
η = 
n/n0 for two longitudinal waves existing in the spin-up–spin-
down degenerate electron quantum plasmas. The figure is obtained
for the waves propagating parallel to the external magnetic field.
Ions are assumed to be motionless. (a) shows the dispersion of the
Langmuir wave, (b) presents the dispersion properties of the spin-
electron acoustic wave. This figure is obtained for n0 = 1021 cm−3.
Hence the Langmuir frequency ωLe, in our case, is equal to 1.5 ×
1015 radians per second. Estimation for maximal wave vector is k <

107 cm−1.

parameter � = (�2/me2) 3
√

n0 depending on the fundamental
physical constants �, m, e and the equilibrium particle
concentration. For numerical estimations we need to choose
the equilibrium concentration n0 and obtain �. Next we can
find ξ (k/ 3

√
n0) at different spin polarization η. Results of these

calculations are presented in Fig. 1. Figure 1 is obtained for
n0 = 1021 cm−3. Figure 1(a) [1(b)] shows the upper (lower)
branch, which is the Langmuir (new) wave.

In Fig. 1(a) we see the growth of the frequency square ξ

with the increase of the wave vector. This happens due to the
presence of the Fermi pressure. This growth speeds up with
the increase of polarization η in agreement with approximate
formulas (33) and (35). This effect is related to the modification
of equation of state (32). In different notations this effect is
included in Ref. [12] at consideration of electrons as a single
fluid.

Figure 1(b) shows the new longitudinal wave (the spin-
electron acoustic wave), which has been found due to consid-
eration of electrons as two different species: spin-up electrons
and spin-down electrons. It is essential for the existence
of this wave that the occupation numbers of the spin-up
and spin-down degenerate electrons are different. Hence, the
equilibrium concentrations are different n0↑ 
= n0↓ and the
contributions of pressure of degenerate spin-up and spin-down
electrons are different. Figure 1(b) shows the increase of the
frequency square of the spin-electron acoustic wave with the
increase of the wave vector. We also see that this growth slows
down with the increase of the spin polarization. This is in
agreement with approximate formulas (34) and (36). We see
that the frequencies of the spin-electron acoustic wave ∼√

ξ is
about 1% of the Langmuir frequencies 0.01ωLe at intermediate
wave vectors k ∼ 106 cm−1.

IV. CONTRIBUTION OF THE ION MOTION

As we have shown above the frequency of the SEAWs
becomes rather small at the large spin polarization. Hence
the ion motion is relevant in this regime. Therefore we apply
Eqs. (8)–(16) along with the hydrodynamic equations for ions.
We consider ions as a single fluid without the spin separation.
It leads to the following dispersion equation

1 − ω2
Le↑

ω2 − u2
↑k2

− ω2
Le↓

ω2 − u2
↓k2

− ω2
Li

ω2 − v2
Fik

2/3
= 0. (39)

Equation (39) corresponds to Eq. (24), but it contains an extra
term describing the ion contribution. This equation allows to
study the ion Langmuir wave [41]. We analyze this equation
numerically.

Figure 2 demonstrates that at large spin polarization up to
η = 0.98 the frequency of the spin-electron acoustic waves are

=0.98

FIG. 2. (Color online) The dispersion of the ion acoustic wave
and the spin-electron acoustic wave at rather large spin polariza-
tion η = 0.98. The branch with the largest phase velocity ω/k

(the red branch) presents the spin-electron acoustic wave. Lower
curve presents the ion acoustic wave. Here and in other figures below
we draw the horizontal line presenting the ion Langmuir frequency.
The frequency is presented in units of the electron Langmuir
frequency � = ω/ωLe, and the wave vector is presented in units
of the inverse electron Debye radius κ = krDe, with rDe = vFe/ωLe.
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=0.8

FIG. 3. (Color online) We present all three longitudinal waves
propagating parallel to the external magnetic field at η = 0.8. We have
the following waves in order of the frequency decrease: the Langmuir
wave, the spin-electron acoustic wave, and the ion-acoustic wave.

much larger than frequencies of the ion-acoustic waves for all
wave vectors.

Position of the dispersion branch of the spin-electron
acoustic wave relatively to the Langmuir wave and the ion-
acoustic wave is demonstrated in Figs. 3 and 4 for different
spin polarizations. Figures 3 and 4 show the decrease of
the frequencies of the spin-electron acoustic wave with the
increase of the polarization.

At very small concentration of the spin-up electrons
n0u/n0 = 10−6 and 1 − η = 2 × 10−6 the dispersion depen-
dencies of the ion-acoustic wave and the spin-electron acoustic
wave get close to each other (see upper picture in Fig. 5).

The approach of two branches creates a resonance point,
where two branches could cross each other. Therefore we have
the area of interaction of oscillations with close values of ω

and k, related to two different branches of the spectrum of the
dissipationless systems. Presence of the interaction between
branches changes the behavior of the branches. We obtain

=0.9998

FIG. 4. (Color online) Comparison of this figure with Fig. 3
shows the decrease of the frequency of the spin-electron acoustic wave
with the increase of spin polarization up to η = 0.9998. Figures 3
and 4 show this decrease in compare with the frequency of the ion
acoustic wave. Distribution of the dispersion branches in this figure
corresponds to their distribution in Fig. 3.

1- =2x10 6-

1- =2x10 7-

FIG. 5. (Color online) Continuation of the comparison of the
dispersion branch positions presented in Figs. 3 and 4. Increasing
the spin polarization we decrease the frequency of the spin-electron
acoustic waves. At η = 999998 and η = 9999998 the frequencies
of the spin-electron acoustic wave and the ion-acoustic wave are
comparable.

real functions ω(k) and k(ω) in this area. Hence, systems are
stable. Nevertheless we see that new hybrid branches have
the following structure. The wave with the larger frequencies
coincides with the ion-acoustic wave at small wave vectors

1- =2x10 7-

FIG. 6. (Color online) Figure 5 shows hybridization of the ion-
acoustic and spin-electron acoustic waves and area of splitting of the
hybrid waves. Detailed picture of the splitting of the hybrid waves is
presented in this figure.
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1- =2x10 6-

FIG. 7. (Color online) Comparison of dispersion dependence of
the spin-electron acoustic wave and the ion-plasmas wave at large
spin polarization of electrons n0u/n0 = 10−6, η = 0.999998, when
the frequency of the spin-electron acoustic wave is rather small.

and turns into the spin-electron acoustic wave after the area
of interaction of branches. The hybrid wave with the lower
frequencies coincides with the spin-electron acoustic wave at

1- =2x10 9-

1- =2x10 9-

FIG. 8. (Color online) Comparison of dispersion dependence of
the spin-electron acoustic wave and the ion-plasmas wave at larger
spin polarization of electrons n0u/n0 = 10−9, η = 0.999999998 than
in Fig. 7. The upper figure shows dispersion branches in a wide range
of the wave vectors. The lower figure shows area of splitting of the
hybrid branches. Comparing this figure with Fig. 6 we see that at
larger spin polarization the splitting of the branches becomes smaller.

the small wave vectors and turns into the ion-acoustic wave at
the large wave vectors.

Further increase of the polarization decreases the frequency
of the spin-electron acoustic wave, so the dispersion branches
cross each other at the larger wave vectors k (see Fig. 5,
bottom). Figure 6 presents a detailed picture of the splitting of
the hybrid dispersion branches.

Figure 7 shows that in spite of the hybridization of the
dispersion branches at low frequencies, the high-frequency
part of the spin-electron acoustic wave remains unchanged.
Figure 8 repeats the results of Figs. 5 and 6 for larger spin
polarization, when area of interaction of branches shifts to the
larger wave vectors, where the ion-acoustic wave transforms
into the ion Langmuir wave.

V. SPIN-ELECTRON ACOUSTIC WAVES IN NEUTRON
MATTER: REGIME OF PARTIAL SPIN POLARIZATION

OF DEGENERATE NEUTRONS

The appearance of the spin-electron acoustic waves is not
related to the charge of particles. However, the properties of
plasmas seriously affect the properties of the spin-electron
acoustic waves, as we have demonstrated in Secs. III and IV.

It is interesting to consider the spin-electron acoustic waves
in the magnetized neutron stars [51,52], where the spin-
electron acoustic waves appear as the splitting of the acoustic
waves existing due to the Fermi pressure in nonpolarized
matter. Acoustic waves and spin-electron acoustic waves exist
in the neutron matter along with the spin wave on the cyclotron
frequency.

In electron-ion plasmas the spin-electron acoustic wave
can be found at application of the Poisson equation, since
it is a longitudinal wave. The Poisson equation gives us
the contribution of the mixture of species: spin-up electrons,
spin-down electrons, and ions.

Due to neutrality of the neutron matter we have a different
picture. Considering propagation of waves parallel to the
external magnetic field B0 = B0ez we obtain δBz = 0 from
∇B = 0. As a consequence the right-hand sides of the Euler
equations (10) and (11) are equal to zero. It gives us two
independent dispersion equations, which can be written as
follows:

ω2
s = u2

s k
2 + �

2k4

4m2
. (40)

Formula (40) shows that the sound wave in the magnetized
neutron matter splitting on two acoustic branches. This appears
due to the difference of the Fermi pressures for the spin-up and
spin-down electrons. At zero spin polarization these branches
coincide giving the usual sound wave.

VI. CONCLUSIONS

We have derived QHD equations for charged spin-1/2
particles considering evolution of electrons with spin-up and
spin-down separately. These equations appear as a gener-
alization of usual quantum hydrodynamics, where physical
quantities appear via the contribution of all particles together,
with the spin-up and the spin-down. This generalization reveals
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the existence of a wave solution and the possibility to find more
solutions.

We have studied the propagation of waves parallel to the
external magnetic field. We have found the contribution of
the magnetic field in the Langmuir wave dispersion via the
difference of occupation of the spin-up and spin-down states.
We have considered the limits of small and large magnetic
fields, which reveal the small and large spin polarizations

n/n0 and the contribution of 
n/n0 in the dispersion
dependence. Similarly we have described a solution. It appears
as a soundlike solution, which we call the spin-electron
acoustic wave. We have a general form of this solution and
considered its limits for the small and large magnetization.

We have paid special attention to the ion motion contribu-
tion in the spectrum at the large spin polarization of electrons,
when the frequency of the spin-electron acoustic wave is rather
small. We have also considered the dispersion of waves in the
partially polarized neutron matter, studying the consequences
of the spin separation and the difference in occupation of the
spin-up and spin-down states. We have obtained splitting of
the sound wave on two branches.
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