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The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the
experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical
models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties
of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background.
Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG
at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs =
a/aB—the ratio of the mean interparticle distance to the Bohr radius—approaches 1. The validity range of these
simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown
quality of the used fixed nodes and of the finite-size scaling from N = 33 simulated particles (per spin projection)
to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte
Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects
not only in the electron system but also in their interaction with the uniform positive background. Also, we use
substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic
limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities
around rs = 4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high
electron degeneracy), rs � 1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign
problem.
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I. INTRODUCTION

In recent years, interest in high-density plasmas has
increased steadily. Examples are plasmas in the interior of
the giant planets [1] and compact stars as well as highly
compressed laboratory plasmas, such as laser plasmas or
inertial confinement fusion plasmas [2]; for a recent exper-
imental study, see [3]. In these systems, often the electrons
are quantum degenerate and weakly (or moderately) coupled,
whereas the ions are classical and moderately and sometimes
strongly coupled. For both components it is crucial to include
finite-temperature effects, which poses particular challenges
for theory [4,5] and computer simulations; see, e.g., Refs. [6,7]
and references therein.

The properties of the electron gas are a crucial ingredient to
correctly describe dense plasmas as well as the electron gas in
metals. Accurate data for the electron gas at zero temperature
were provided long ago by quantum Monte Carlo simulations
[8], and they have been widely used in density functional
calculations. In the meantime, new and improved ground-state
data have appeared, the most accurate ones, apparently, being
the configuration interaction Monte Carlo data of Refs. [9,10].
However, these are all restricted to zero temperature and are
not applicable to highly excited systems such as warm dense
matter.

The extension of ab initio simulations to finite temperature
is possible using the path integral Monte Carlo (PIMC)
technique, e.g., [11–16], and many results have been obtained
for fermions in the past two decades, including correlated
electrons in quantum dots, e.g., [17,18], or dense plasmas,
e.g., [19–23]. Only recently were PIMC simulations applied
to the electron gas at finite temperature. Brown et al. presented
restricted path-integral Monte Carlo (RPIMC) results that used

the fixed node approximation [24] and cover a broad param-
eter range of the homogeneous electron gas. Subsequently,
semianalytical fits were presented that intended to combine
the RPIMC results with the known analytical limits [25]. A
key problem of these data is that the accuracy of the results at
high degeneracy is unknown since the fixed nodes used in the
RPIMC simulations carry a systematic error that is difficult
to quantify. The use of the ideal gas nodes appears to be
problematic for the nonideal quantum Fermi gas (moderate
rs), where interaction effects may be relevant, as was shown
for the case of hydrogen by Militzer et al. [19,26]. At the same
time, these nodes are not able to reproduce the ideal Fermi gas
limit (rs → 0), as was proven by one of us [27,28].

As a test, Brown et al. also performed fermionic simulations
and observed increasing discrepancies at high degeneracy
(rs � 1.5). At the same time, they encountered large errors
of their fermionic simulations since the average sign was very
small, which is a direct manifestation of the fermion sign
problem. A second important question is the extrapolation
of the simulation data to the macroscopic limit. Note that
the RPIMC simulations of Ref. [24] were done with just 33
particles per spin projection, and the authors subsequently
employed a complex finite-size-scaling procedure. We note
that this issue is still unresolved, and subsequent works
applied very different finite-size scalings to the RPIMC data
[25,29,30]. Thus, the question of reliable high-temperature
data for the uniform electron gas at high densities remains.

Therefore, the motivation of the present work is to perform
independent first-principles direct fermionic PIMC simula-
tions and compare them to the earlier results. Toward that end,
we make use of a PIMC approach that was developed several
years ago and successfully applied to dense hydrogen [31–33],
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hydrogen-helium mixtures [34,35], electron-hole plasmas in
semiconductors [36,37] and nonideal quark-gluon plasma
[38,39]. To simulate the uniform electron gas, the code is
modified such that the positive charge component is treated
as a quantum gas neglecting correlations. Furthermore, to be
able to simulate situations of high degeneracy, the treatment of
exchange effects is substantially improved. Finally, to reduce
the issue of finite-size effects, we use significantly larger
particle numbers than previous simulations. We avoid artificial
finite-size corrections and, instead, use a modified treatment
of periodic boundary conditions proposed by Yakub et al.
[40], together with an extrapolation with respect to the particle
number. Details of the PIMC scheme are described in Sec. II.

Our numerical results are presented in Sec. III. There we
demonstrate the improved treatment of fermionic exchange
via a comparison with the analytical data for the ideal Fermi
gas. Our comparison with the RPIMC data reveals very good
agreement for low and moderate densities, rs � 4, for the
polarized electron gas, and slightly larger deviations for the
unpolarized case at temperatures below the Fermi temperature.

II. FERMIONIC PATH-INTEGRAL MONTE CARLO
SIMULATIONS

A. Jellium model

The neutral uniform electron gas (UEG) or jellium is a
quantum-mechanical model of interacting electrons where the
positive charges (e.g., atomic nuclei of a solid) are assumed
to form a uniform background that assures overall charge
neutrality but which is not treated microscopically. The model
allows one to focus on the effects that occur due to the quantum
nature of electrons and their repulsive interactions, and to
treat the electron-electron interaction rigorously. The artificial
and structureless background charge interacts electrostatically
with itself and the electrons.

The jellium Hamiltonian (for a textbook discussion, see
Ref. [41]) for N electrons confined within a volume V

having the microscopic density ρ(r) = ∑N
a=1 δ(r − ra) and

background charge density n(R) = N/V is

Ĥ = Ĥel + Ĥback + Ĥel-back, (1)

where Ĥel is the electron Hamiltonian consisting of kinetic and
electron-electron repulsion terms:

Ĥel =
N∑

a=1

p̂2
a

2m
+

N∑
a<b

e2

|r̂a − r̂b| . (2)

Ĥback is the Hamiltonian of the positive background charge
describing its electrostatic self-interaction. Its expectation
value is

〈Ĥback〉 = e2

2

∫
V

dR

∫
V

dR′ n(R)n(R′)
|R − R′|

= e2

2

N2

V 2

∫
V

dR

∫
V

dR′ 1

|R − R′| = N2

2V
lim
q→0

vq,

(3)

where we introduced the Fourier component of the Coulomb
potential, vq = 4πe2

q2 . The contribution of the electrostatic

electron-background interaction is given by

〈Ĥel-back〉 = −
∫

V

dr

∫
V

dR
e2ρ(r)n(R)

|r − R|

= −e2 N

V

N∑
a=1

∫
V

dR
1

|ra − R| = −N2

V
lim
q→0

vq. (4)

In a finite system, the results (3) and (4) are finite because q

approaches a finite minimal value determined by the system
volume. If, however, the thermodynamic limit is taken, this
limit for q becomes zero, as indicated in the formulas, and the
two results diverge. This divergence is exactly canceled by the
q = 0 contribution of the electron-electron interaction, which
has the form [41]

N (N − 1)

2V
lim
q→0

vq. (5)

This cancellation is due to the assumption of charge neutrality
and allows one to neglect the background contribution entirely
and just study the electron component, omitting the q = 0
contribution (i.e., the spatially homogeneous part) to the
thermodynamic quantities.

In our simulations, we employ a finite simulation cell.
For this case, again, the background related energies can be
calculated. Assuming, for simplicity, a spherical simulation
cell of radius R with a particle number chosen such that a given
density n is realized, i.e., N = n 4π

3 R3, one readily obtains from
standard electrostatics for the background energy (electrostatic
self-energy)

〈Ĥback〉(N ) = 3

5

Q2

R(N )
. (6)

Similarly, the interaction energy of N electrons homoge-
neously distributed in this sphere with the homogeneous
charge background is found to be

〈Ĥel-back〉(N ) = −6

5

Q2

R(N )
≡ −2〈Ĥback〉(N ), (7)

and it equals exactly minus two times the background energy,
independently of the system size. Both terms diverge with
increasing system size. But one readily sees that the sum of
both energies, again, is exactly canceled by the analogous
contribution of the electrons, which equals 〈Ĥback〉(N ). This
underlines that all electrostatic mean-field contributions com-
pensate each other, and the nonvanishing reminder of the
interaction energy is just due to electronic correlations, i.e.,
density fluctuations around the uniform density.

We can now estimate the scaling of the background energy
contribution with system size and density. Toward that end,
we switch to atomic units introducing the density (Brückner)
parameter, rs = a/aB , where the mean interparticle distance
is given by a = [ 3

4πn
]1/3, aB denotes the Bohr radius, and

energies are given in Hartrees, with 1 Ha = e2

4πε0

1
aB

. Then we
obtain for the background energy per particle:

〈Ĥback〉(N )

N Ha
= 3

5

N2/3

rs

. (8)
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B. Path-integral representation of thermodynamic quantities

Particle simulations of Coulomb systems face the problem
of an unlimited increase of the interaction energy at small
distances. Quantum simulations such as path-integral Monte
Carlo avoid the Coulomb divergences in a natural way. This
has been demonstrated before for PIMC simulations of two-
component electron-ion plasmas, e.g., [32,33], and electron-
hole plasmas [37]. Here we adapt these simulations to jellium
by treating it as the limiting case of the neutral two-component
plasma (Ne = Np = N ), where, in the end, the background
component (the ions) will be treated as noninteracting.

Let us start from a quantum two-component Coulomb
system of electrons and positive charges in equilibrium with
the Hamiltonian, Ĥ = K̂ + Û c, containing kinetic energy K̂

and Coulomb interaction energy contributions, Û c = Û c
pp +

Û c
ee + Û c

ep. The thermodynamic properties in the canonical
ensemble with given temperature T and fixed volume V are
fully described by the density operator ρ̂ = e−βĤ , with the
partition function

Z(Ne,Np,V ; β) = 1

Ne!Np!

∑
σ

∫
V

dq ρ(q,σ ; β), (9)

where β = 1/kBT , and ρ(q,σ ; β) denotes the diagonal ele-
ments of the density matrix in coordinate representation at
a given value σ of the total spin. In Eq. (9), q = {qe,qp}
and σ = {σe} are the spatial coordinates of electrons and
protons and spin degrees of freedom of the electrons, i.e.,
qa = {q1,a · · · ql,a · · · qNa,a} and σe = {σ1,e · · · σl,e · · · σNe,e}.
To calculate thermodynamic functions, the logarithm of the
partition function has to be differentiated with respect to
thermodynamic variables. For example, for pressure and
internal energy, it follows that

βp = ∂ lnZ

∂V
=
[

α

3V

∂ lnZ

∂α

]
α=1

, (10)

βE = −β
∂ lnZ

∂β
, (11)

where α = L/L0 is a length scaling parameter.
The exact density matrix of interacting quantum systems

is not known (particularly for low temperatures and high
densities), but it can be constructed using a path-integral
approach [11] based on the operator identity,

e−βĤ = e−
βĤ e−
βĤ · · · e−
βĤ , 
β = β/(n + 1), (12)

which involves n + 1 identical high-temperature factors with
temperature (n + 1)T , which allows us to rewrite the integral
in Eq. (9),

∑
σ

∫
dq(0) ρ(q(0),σ ; β)

=
∫

dq(0) · · · dq(n) ρ(1)ρ(2) · · · ρ(n)

×
∑

σ

∑
Pe

(±1)κPe S(σ,P̂eσ
′
a) P̂eρ

(n+1)
∣∣
q(n+1)=q(0),σ ′=σ

.

(13)

The spin gives rise to the spin part of the density matrix
(S) with exchange effects accounted for by the permutation
operator P̂e acting on the electron coordinates q(n+1) and spin
projections σ ′. The sum is over all permutations with parity κPe

.
Equation (13) involves the off-diagonal high-temperature den-
sity matrices, ρ(l) ≡ ρ

(
q(l−1),q(l); 
β

) = 〈q(l−1)|e−
βĤ |q(l)〉,
where l = 1, . . . ,n + 1. Accordingly, each particle is rep-
resented by a set of n + 1 coordinates (“beads”), i.e., the
whole configuration of the particles is represented by a
3(Ne + Np)(n + 1)-dimensional vector

q̃ ≡ {
q

(0)
1,e, . . . ,q

(n+1)
1,e ,q

(0)
2,e, . . . ,q

(n+1)
2,e ,

. . . ,q
(n+1)
Ne,e

; q(0)
1,p, . . . ,q

(n+1)
Np,p

}
. (14)

To determine the energy in the path-integral representation
(13), each high-temperature density matrix has to be differen-
tiated [15,33],

βE = − 1

Z

∫
dq(0) · · · dq(n)

∑
σ

∑
Pe

(±1)κPe S(σ,P̂eσ
′)

×
n+1∑
k=1

ρ(1) · · · ρ(l−1)

[
β

∂ρ(l)

∂β

]
ρ(l+1)

· · · ρ(n)P̂eρ
(n+1)

∣∣∣∣
q(n+1)=q(0), σ ′=σ

. (15)

It is straightforward to show that the matrix elements ρ(l) can
be rewritten as

ρ(l) ≡ 〈q(l−1)|e−
βĤ |q(l)〉
=
∫

dp̃(l−1)dp̄(l) 〈q(l−1)|e−
βÛc |p̃(l−1)〉

× 〈p̃(l−1)|e−
βK̂ |p̄(l)〉〈p̄(l)|e− 
β2

2 [K̂,Û c] · · · |q(l)〉,
(16)

where p̃(l−1)(p̄(l)) are the conjugate variables to q(l−1)(q(l)). To
further evaluate the derivatives in Eq. (15), it is convenient to
introduce dimensionless integration variables η(l) = (η(l)

p ,η(l)
e ),

where η(l)
a = κa(q(l)

a − q(l−1)
a ) for l = 1, . . . ,n, and we intro-

duced the dimensional factor κ2
a ≡ ma/(2π�

2
β) = 1/λ2

,a

for a = e,p. The main advantage is that differentiation of the
density matrix now affects only the interaction terms,

β
∂ρ(l)

∂β
= −β

∂[
βUc(X(l−1))]

∂β
ρ(l) + βρ̃

(l)
β , (17)

where

ρ̃
(l)
β =

∫
dp(l) 〈X(l−1)|e−
βÛc |p(l)〉e− 〈p(l) |p(l)〉

4π(n+1)

×〈p(l)| ∂

∂β
e− (
β)2

2 [K̂,Û c] · · · |X(l)〉, (18)

with p(l)
a = p̃(l)

a /(κa�), p(l) ≡ (p(l)
p ,p(l)

e ), in accordance
with Eq. (16). Furthermore, X(0) ≡ (κpq(0)

p ,κeq
(0)
e ), X(l) ≡

(X(l)
p ,X(l)

e ) with X(l)
a = κaq

(0)
a +∑k

l=1 η(l)
a (k runs from 1 to n),

and X(n+1) ≡ (κpq(n+1)
p ,κeq

(n+1)
e ) = X(0).
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For k = n + 1, we have

β
∂

∂β
P̂eρ

(n+1) = −β
∂
βUc(X(n))

∂β
P̂eρ

(n+1) + βP̂eρ̃
(n+1)
β , (19)

and, together with Eq. (15), we obtain for the energy

βE = 3

2
(Ne + Np) − 1

Z

1

λ
3Nh
p λ

3Ne
e

∫
V

dq(0)dη(1) · · · dη(n)
∑

σ

∑
Pe

(±1)κPe S(σ,P̂eσ
′)

×
{ n+1∑

k=1

ρ(1) · · · ρ(l−1)

[
βρ̃

(l)
β − β

∂
βUc(X(l−1))

∂β
ρ(l)

]
ρ(l+1) · · · ρ(n)P̂eρ

(n+1)

}∣∣∣∣
X(n+1)=X(0), σ ′=σ

. (20)

This way, the derivatives of the density matrix have been cal-
culated and we turn to the next point: finding approximations
for the high-temperature density matrices ρ(l).

C. High-temperature asymptotics of the density matrix:
The Kelbg potential

In this section, we discuss approximations for the high-
temperature density matrix that can be used for efficient direct
PIMC simulations. Our approach involves effective quantum
pair potentials �ab, which are approximated by the Kelbg
potential. Here, we closely follow our earlier work [33], in
which details and further references can be found.

1. Pair approximation and the Kelbg potential

The N -particle high-temperature density matrix is ex-
pressed in terms of two-particle density matrices (higher-order
terms become negligible at sufficiently high temperature, i.e.,
for a large number n of imaginary “time slices”) given by

ρab(qk,a,q
′
k,a,qt,b,q

′
t,b; β)

= (mamb)3/2

(2π�β)3
exp

[
− ma

2�2β
(qk,a − q ′

k,a)2

]

× exp

[
− mb

2�2β
(qt,b − q ′

t,b)2

]
exp

[− β�OD
ab

]
, (21)

where a,b = e,p and k,t = 1, . . . ,N . This result is ob-
tained from factorization into kinetic and interaction parts,
ρab ≈ ρK

0 ρUc

ab , which is exact in the classical case, i.e.,
at sufficiently high temperature. The error made at finite
temperature vanishes with the number of time slices as n−2;
cf. Ref. [33]. The off-diagonal density matrix element (21)
involves an effective pair interaction that is approximated by its
diagonal elements according to �OD

ab (qk,a,q
′
k,a,qt,b,q

′
t,b; β) ≈

1
2 [�ab(qk,a − qt,b; β) + �ab(q ′

k,a − q ′
t,b; β)], for which we use

the familiar Kelbg potential [42,43],

�ab(xab; β) = eaeb

λabxab

[1 − e−x2
ab + √

πxab {1 − erf(xab)}],
(22)

where xab = |qk,a − qt,b|/λab, and we introduced the error
function, erf(x) = 2√

π

∫ x

0 dt e−t2
. Note that the Kelbg potential

is finite at zero distance, which is a consequence of quantum
effects. The validity of this potential as well as of the diag-
onal approximation is restricted to temperatures substantially

higher than the binding energy [44–46], which puts another
lower bound on the number of time slices n. For completeness,
we also note other effective potentials, e.g., Refs. [47,48], as
well as recently derived improved versions that are applicable
to strong coupling [45,46].

Summarizing, we can conclude that, with the approxima-
tions (21) and (22), each of the high-temperature density matrix
factors on the right-hand side of Eq. (13) carries an error of
the order 1/(n + 1)2,

ρ(l) = ρ
(l)
0 e−
βU (X(l−1))δ(X(l−1) − X(l)) + O[(n + 1)−2],

(23)

where ρ
(l)
0 is the kinetic density matrix, and U denotes the sum

of all interaction energies, each consisting of the respective
sum of pair interactions given by Kelbg potentials, U (X(l)) =
Upp(X(l)

p ) + Uee(X(l)
e ) + Uep(X(l)

p ,X(l)
e ).

2. Estimator for the total energy

Let us now return to the computation of thermodynamic
functions and derive the final expressions, following from
Eq. (23), that will be used in the simulations. First, we note
that in Eq. (20), special care has to be taken in performing
the derivatives of the Coulomb potentials with respect to β:
Products β

∂
β·Uc(X(l−1))
∂β

have a singularity at zero interparticle
distance that is integrable but leads to difficulties in the
simulations. To assure efficient simulations, we transform the
e-e, p-p, and e-p contributions in the following way:

〈X(l−1)|e−
βK̂ |X(l)〉
[
−β

∂

∂β
[
βUc(X(l−1))]

]

≈
∫ 1

0
dα

∫
dX̃(l−1)〈X(l−1)|e−
βαK̂ |X̃(l−1)〉

×
[
−β

∂

∂β
(
βUc(X̃(l−1)))

]

×〈X̃(l−1)|e−
β(1−α)K̂ |Xk〉 + O[(n + 1)−2]

≈ 〈X(l−1)|e−
βK̂ |X(l)〉
[
−β

∂

∂β
[
βU (X(l−1))]

]

+O[(n + 1)−2], (24)

where 〈· · · | · · · 〉 denotes the scalar product. This means that
within the standard error of our approximation, O(n−2),
we have replaced the sum of the Coulomb potentials Uc

by the corresponding sum of Kelbg potentials U , which
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is much better suited for MC simulations. This result co-
incides with expressions that can be obtained if we first
choose an approximation for the high-temperature density

matrices ρ(l) using the Kelbg potential and then take the
derivatives.

Thus, our final result for the energy is

βE = 3

2
(Ne + Np) + 1

Z

1

λ
3Np

p λ
3Ne
e

Ne∑
s=0

∫
V

dq(0)dη(1) · · · dη(n) ρs(q
(0),η(1), . . . ,η(n),β)

×
⎧⎨
⎩

n∑
l=0

[ Np∑
k=1

Ne∑
t=1

�ep

(∣∣xl
kt

∣∣)+
Np∑
k<t

�ee

(∣∣rl
kt

∣∣)+
Ne∑
k<t

�pp

(∣∣ql
kt

∣∣)]

+
n∑

l=1

⎡
⎣ Np∑

k=1

Ne∑
t=1

D
(
xl

kt

)∂
β�ep

∂|xl
kt |

+
Ne∑
k<t

C
(
rl
kt

)∂
β�ee

∂|rl
kt |

+
Ne∑
k<t

C
(
ql

kt

)∂
β�pp

∂|ql
kt |

⎤
⎦− 1

det
∣∣∣∣ψn,0

kt

∣∣∣∣
s

∂ det
∣∣∣∣ψn,0

kt

∣∣∣∣
s

∂β

⎫⎬
⎭ , (25)

with the definitions

C
(
rl
kt

) =
〈
rl
kt

∣∣yl
kt

〉
2
∣∣rl

kt

∣∣ , C
(
ql

kt

) =
〈
ql

kt

∣∣ỹl
kt

〉
2
∣∣ql

kt

∣∣ ,

D
(
xl

kt

) =
〈
xl

kt

∣∣yl
p − ỹl

t

〉
2
∣∣xl

kt

∣∣ , �ab(x) ≡ 
β
∂[β ′�ab(x,β ′)]

∂β ′|β ′=
β

.

Here we introduced the following notation for the differences
of two coordinate vectors:

qkt ≡ qk,p − qt,p, rkt ≡ qk,e − qt,e, xkt ≡ qk,e − qt,p,

rl
kt = rkt + yl

kt , ql
kt = qkt + ỹl

kt , xl
kt ≡ xkt + yl

k − ỹl
t ,

yl
kt ≡ yl

k − yl
t , ỹl

kt ≡ ỹl
p − ỹl

t ,

with yl
t = 
λe

∑l
k′=1 η

(k′)
t and ỹl

k = 
λp

∑l
k′=1 η̃

(k′)
k . The den-

sity matrices ρs appearing in Eq. (25) are given by

ρs = Cs
Ne

e−βU det
∣∣∣∣ψn,0

kt

∣∣∣∣
s

n∏
l=1

Ne∏
k=1

Np∏
t=1

φl
k φ̃l

t , (26)

where U is the total interaction energy comprised of contribu-
tions from all time slices,

U = 1

n + 1

n∑
l=0

{
Ue

(
X(l)

e ,
β
)+ Up

(
X(l)

p ,
β
)

+ Uep

(
X(l)

p ,X(l)
e ,
β

)}
, (27)

and we defined

φl
t ≡ exp

[− π
∣∣η(l)

t

∣∣2], φ̃l
k ≡ exp

[− π
∣∣η̃(l)

k

∣∣2],
(28)∣∣∣∣ψn,0

kt

∣∣∣∣
s
= ∥∥e− π


λ2
e
|(rk−rt )+yn

k |2∥∥
s

∥∥e− π


λ2
e
|(rk−rt )+yn

k |2∥∥
Ne−s

.

Notice that the density matrix (26) does not contain an
explicit sum over the permutations, and thus no sum of terms
with alternating sign. Instead, the whole exchange problem
is contained in the determinant (28), which is a product of
exchange matrices of electrons, where s denotes the number
of electrons having the same spin projections (for more details,
we refer to Ref. [49]). This grouping of terms with different
signs into the spin determinant is similar to “blocking”
algorithms, e.g., [17], and it allows us to substantially weaken
the fermion sign problem.

D. Path-integral Monte Carlo procedure for jellium

The above formulas have been applied successfully
to multicomponent dense quantum plasma simulations
[31,33,35,50], to the electron-hole plasmas in semiconductors
[36,37], as well as to the quark-gluon plasma [38,39]. It is
therefore desirable to retain the same program also for the
simulation of jellium where the positive component (protons)
is treated as a homogeneous static background. This has the
advantage that both components are treated consistently. In
particular, the background contribution will be automatically
adjusted to the chosen particle number (which would not be
the case if we used the known corrections for the case of an
infinite system).

To perform the transition to the case of jellium with minimal
changes, we set the potential energy contributions of the
protons—the p-p and p-e interactions in the exponent of the
high-temperature density matrices—to zero. Thus expression
(27) is reduced to

U = 1

n + 1

n∑
l=0

Ue

(
X(l)

e ,
β
)
. (29)

At the same time, the interaction terms �ep and �pp are
retained as they produce the energy contribution of the
“background.” With this, the proton component is treated as
an ideal gas of given density and temperature with the proton
number always matching that of the electrons, guaranteeing
charge neutrality. With these trivial changes, expressions (25),
(26), and (29) are well suited for efficient fermionic PIMC
simulations of jellium using standard METROPOLIS Monte
Carlo techniques (see, e.g., [12,15,16]). In our Monte Carlo
scheme, we use three different types of moves, where either
electronic (qt,e) or positive charge coordinate (qp,h) or the
individual electronic beads (η(k)

t ) are moved until convergence
of the calculated values is reached.

Computer simulations of disordered systems, such as plas-
mas, require an accurate account of the long-range Coulomb
forces since they strongly affect the thermodynamic and
transport properties. Accurate simulations sometimes require
up to a million particles in the main Monte Carlo cell. (While
in PIMC simulations such numbers are not feasible, the large
number of “time slices” gives rise to a comparable or even
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larger effective system size.) Thus, the larger the number
of charged particles in the main cell, the more acute is the
problem of an efficient evaluation of the Coulomb interaction
contributions. To reduce boundary effects, periodic boundary
conditions (PBCs) are usually imposed on the main Monte
Carlo cell, and they have to be properly combined with the
long-range Coulomb forces. One way to do this is the Ewald
summation method; however, the usual procedure invokes an
artificial nonisotropic electric “crystalline field” in the spatially
uniform and isotropic Coulomb system. Moreover, periodicity
artifacts are a heavy processor load in computer simulations.
To avoid the “crystalline field,” recently a modified Ewald
scheme has been derived and applied to Coulomb systems
[40]. This scheme uses suitable angle averages and is used
below for particles interacting via the Kelbg potential. We
expect that this extension is justified because the Kelbg and
Coulomb potentials have identical long-range asymptotics.

To implement this concept, we identically rewrite the Kelbg
potential as the sum of a short-range part, 
�ab(xab; β) =
�ab(xab; β) − eaeb

λabxab
, and the long-range Coulomb potential,

�ab(xab; β) = 
�ab(xab; β) + eaeb

λabxab

. (30)

Following Ref. [40], after averaging over all orientations of
the main Monte Carlo cell, we obtain a potential �̃ab(xab; β)
that accounts for PBC, for distances xab < xm,

�̃ab(xab; β) = 
�ab(xab; β) + θ (xm − xab)
eaeb

λabxab

×
{

1 + 1

2

(
xab

xm

)[(
xab

xm

)2

− 3

]}

= �ab(xab; β) + [θ (xm − xab) − 1]
eaeb

λabxab

+ 1

2
θ (xm − xab)

eaeb

λabxm

[(
xab

xm

)2

− 3

]
, (31)

where θ (xm − xab) is the Heaviside step function. The pa-
rameter xm, defined by 4

3πx3
m = L3, is the radius of the

volume-equivalent sphere of the main Monte Carlo cell of
length L. The effective pair potential �̃, Eq. (31), has the
following properties:

(i) At small distances, x < xm, it tends to the Kelbg potential
with PBC corrections arising from its long-range Coulomb
asymptotic.

(ii) At large distances, x > xm, due to the coincidence of the
long-range asymptotics of the Kelbg and Coulomb potentials,
the effective potential �̃ tends to zero.

In expressions (25) and (29) and related calculations,
we now replace the potential �ab(xab; β) with �̃ab(xab; β),
thereby accounting for PBC effects. Note that one has to add
to the first term in curly brackets in Eq. (25) a constant equal
to − 3eaeb(Ne+Np)

16πλabxm
[40]. An analogous constant shift appears in

the sum Eq. (29), but it is not important in the following, and
it will therefore be omitted.

The main contribution to the path-integral representation of
the partition function comes from configurations for which the
typical size of the clouds of electronic beads is of the order of
the thermal wavelength λ of the electrons. In the simulations

below, we use up to about 100 electrons in the basic MC cell.
Due to this limitation, we have a related restriction on the size
of the MC cell for a given density.

Let us note another important improvement made in
the present simulations. In our previous calculations, the
determinants of the exchange matrices were only computed
for particles belonging to the main Monte Carlo cell. However,
for high degeneracy, nλ3 	 1, the thermal wavelength (and
the typical size of the electronic clouds of beads) may easily
exceed the box size L. So beads of electrons belonging to the
main cell can penetrate into neighboring images of the main
cell, and vice versa. This requires a modified treatment of
exchange in the PIMC simulations: it is necessary to include
exchange effects between particles in the main MC cell and
their images in the neighboring cells as well. Therefore, in
the present calculations we take into account the exchange
interactions of electrons with the electrons from the (33 − 1)
nearest-neighbor cells [51].

These are the main modifications to the PIMC algorithm,
compared to our earlier work. Following the previous PIMC
studies of the finite-temperature UEG, we separately study the
polarized and unpolarized cases. This substantially simplifies
the sums over the total electron spin s. Our simulations with the
improved treatment of the electronic exchange are first tested
for an ideal quantum system. The agreement with the known
analytical results for an ideal finite-temperature Fermi gas is
found to be very good, up to densities where the degeneracy
parameter nλ3 reaches values of the order of 100. This is
demonstrated below in Figs. 2 and 3.

III. SIMULATION RESULTS

We now apply the theoretical scheme developed in the
preceding sections to unpolarized and polarized jellium.
Below, the density of the electrons is characterized by the
Brückner parameter, rs = a/aB , defined as the ratio of the
mean distance between particles, a = [ 3

4πne
]1/3, and the Bohr

radius, aB , where ne is the electron density. Temperatures will
be given in units of the Fermi energy, � = kBT /EF .

We now present our fermionic path-integral Monte Carlo
simulation results for the energy of the uniform electron gas,
based on Eq. (25), with the simplifications discussed above.
We use the same density and temperature interval that was
studied in Ref. [24]: rs � 1 and � = 0.0625, . . . ,8. Higher
densities are not considered since there the sign problem is too
severe and the data are not reliable.

For the present simulations, we varied both the particle
number, in the range of Ne = Np = 50–100, and the number
of beads, in the range M = 20–90. Larger bead numbers are
presently not feasible for such large systems. This interval
of N and M has been used to perform an extrapolation to
the macroscopic limit. Toward that end, we first performed
an extrapolation N → ∞ for fixed values of M . These
extrapolated data were then used in a second extrapolation
with respect to the bead number, M → ∞. This procedure
is demonstrated in Fig. 1 for the unpolarized case and the
parameters � = 0.625 and rs = 1. We purposely selected the
most difficult case in which the accessible number of beads
is, most likely, insufficient to produce a reliable macroscopic
result giving rise to a large statistical error. However, for
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FIG. 1. (Color online) Illustration of the extrapolation of the total
energy with respect to the number of beads M and the particle
number N . First, for a fixed value of M , an extrapolation N → ∞ is
performed (upper curve). Subsequently, these results are extrapolated
with respect to M (lower curve). Results are for the unpolarized case
with � = 0.0625 and rs = 1. DPIMC data points are in blue, while
the extrapolation (fit) is shown by the red line.

all other situations, the extrapolation works satisfactorily and
produces a statistical error not exceeding a few percent.

Figures 2 and 3 show the results for a polarized electron
gas and for the unpolarized case, respectively. The left columns
show the total energy for four different temperatures, whereas
the right columns contain the correlation energy, which was
calculated as Ec = Etot − E0 − Ex,HF, subtracting from the
total energy the kinetic energy and the finite-temperature
Hartree-Fock (mean field plus exchange) energy of Ref. [24].
Since Etot and E0 + Ex,HF are of the same order of magnitude,
the remainder (the correlation energy) is very susceptible to
different approximations and allows for sensitive comparisons
of our results to those of Ref. [24].

A. Polarized electron gas

Consider first the polarized case, Fig. 2. The much improved
treatment of fermionic exchange (see above) is confirmed
by the four plots for the total energy (left columns). The
curve denoted “E0” shows the (kinetic) energy of an ideal
polarized Fermi gas at finite temperature computed from the
relevant Fermi integral. The curves “DPIMC E0” show the
same result obtained with our fermionic PIMC simulations (in
these simulations, all interaction terms were turned off). For
the two highest temperatures, � = 8 and 1, the results coincide
practically for all densities. For � = 0.25, small deviations are
seen at the highest density, rs = 1, whereas for � = 0.0625,
deviations are visible up to rs ∼ 3. This behavior is a very
good test for the order of magnitude of the error and for the
reliability of our simulations.

If interactions are included, the total energy is lower
compared to the ideal case. The curves are denoted by
“DPIMC” and are compared to the corresponding restricted
PIMC data of Brown et al. [24] labeled “RPIMC.” Again,
the agreement over the entire temperature interval is rather
good. An exception is the point rs = 1 corresponding to the
highest density. For � = 0.25, our data are substantially lower
than RPIMC. Interestingly, for � = 0.0625 the agreement is

significantly better, although the accuracy of our results is most
likely lower due to the increased sign problem. Also, notice the
fermionic (“signful”) PIMC simulations of Ref. [24] labeled
“SFPIMC” that are plotted with the open (pink) circles. For low
densities, we observe good agreement with our data, whereas
for rs � 4 there are significant deviations. At these points, the
SFPIMC data already carry large error bars, and we expect that
our results, due to the various improvements of the simulation
approach, are more accurate.

In contrast to the rather good agreement of the total energies,
there is a quite large deviation between DPIMC and RPIMC for
the correlation energy. For different densities, the deviations
can be positive or negative: for high temperatures (� � 1), our
values are generally higher, whereas for � = 0.25, 0.0625 our
results are substantially lower, at high densities rs � 4.

Possible reasons for these deviations are (a) quantum
effects in the interaction of electrons with the uniform
background described, in our calculations, by the effective
Kelbg pseudopotential, instead of the Coulomb potential.
The Kelbg pseudopotential is defined by the logarithm of
the high-temperature asymptotic of the quantum two-particle
density matrix. The Coulomb potential cannot be obtained in
the same way as the classical density matrix of two oppositely
charged particles diverges at small interparticle distances.
Other sources for deviations are (b) the different particle
numbers used in DPIMC and RPIMC, and (c) finite-size
correction that are applied to the RPIMC data [24] but not
to our results—we instead performed an extrapolation to the
macroscopic limit; cf. Fig. 1.

B. Unpolarized electron gas

Consider now the energies in the case of an unpolarized
electron gas; see Fig. 3. Again, the ideal system constitutes
a benchmark for the treatment of fermionic exchange in our
simulations. Here the agreement with the analytical results
is slightly worse than in the polarized case before, due to
poorer convergence. Deviations are seen already for � = 1
and rs = 1 and continue to grow for � = 0.25 and 0.0625.
The comparison of the results for the interacting electron gas
with the RPIMC data of Ref. [24] is similar to that in the
polarized case. At temperatures � � 1, the agreement is very
good. Deviations start to appear for � = 1 at rs = 1. At the
lowest temperature, � = 0.0625, deviations are observed for
all densities. Comparing again with the fermionic (SFPIMC)
data of Ref. [24], cf. the data point at � = rs = 1, we observe
dramatic deviations because the SFPIMC results of Ref. [24]
carry a very large error. Interestingly, in our case the error
appears to be much smaller, which we attribute to the improved
treatment of fermionic exchange (taking into account exchange
contributions from electron images in the nearest-neighbor
cells) and the use of the exchange determinant, which con-
stitutes an efficient approach to grouping different exchange
contributions together that partially compensate each other
and increase the sign in the simulations. The difference in
the correlation energies of our results compared to Ref. [24]
are larger than in the polarized case, and the discrepancies
now extend to rs = 10. A possible reason for the increased
deviations in the unpolarized case is the use of twice as many
particles (N = 66) in Ref. [24]. In contrast, in our DPIMC
simulations, doubling the particle number was not feasible.
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FIG. 2. (Color online) Total energy per particle (left column) and correlation energy per particle (right column) for a polarized ideal (E0)
and interacting electron gas (PUEG) with temperatures ranging from � = 8 to 0.0625; see text in the graphs. Comparison of restricted PIMC
(RPIMC, Ref. [24]), fermionic PIMC (SFPIMC, open pink circles [24]), and the present DPIMC results. The correlation energy is given by
Ec = Etot − E0 − Ex,HF using the Hartree-Fock energy of Ref. [24]; see the main text.)
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FIG. 3. (Color online) Same as Fig. 2 but for an unpolarized electron gas.

IV. DISCUSSION

In this paper, we have presented improved direct fermionic
path-integral Monte Carlo (DPIMC) simulations for the
thermodynamic properties of the uniform electron gas over
a wide density and temperature range relevant for warm dense
matter conditions. The results were produced with a previ-

ously developed code for two-component Coulomb systems;
herein, for the treatment of the homogeneous background, the
spatial correlations of the particles of the second component
were neglected. The present simulations contain two main
improvements: first, we included long-range Coulomb effects
via Ewald summation, where an angle average was performed,
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as proposed by Yakub et al. [40]. Second, we improved
the treatment of fermionic exchange in the case of strongly
degenerate electrons. For cases in which the electron thermal
wavelength exceeds the length of the simulation cell, we
included not only exchanges between particles in the main
Monte Carlo cell, but also with electrons from the nearest-
neighbor cells. This had a drastic effect on the computed
energy, and good accuracy was demonstrated for the limiting
case of an ideal Fermi gas, which matches the analytically
known results very well. We observed deviations for the lowest
temperatures (� = 0.0625,1) and highest densities, rs = 1.
Evidently, here it would be desirable to include also exchanges
with electron images from the next-to-nearest-neighbor cells.
These simulations require an order of magnitude more CPU
time and are presently not feasible.

For the interacting case, we compared our direct fermionic
PIMC simulations with recent restricted PIMC simulations
and direct (signful) simulations by Brown et al. [24]. First we
notice that our simulations carry a much smaller statistical
error than the signful results of Ref. [24], and they are
significantly closer to the RPIMC data at high degeneracy.
This is attributed to the improved treatment of exchange in
our approach. Second, the comparison to the RPIMC results
revealed very good agreement for all densities, rs � 1, for
temperatures above the Fermi energy. For lower temperatures,
we observe good agreement for moderate densities, rs � 4,
for the spin-polarized case, and slightly larger deviations for
the unpolarized electron gas. The good agreement, over such
a broad range of parameters, between the two independent
approaches that involve entirely different approximations is
certainly remarkable, and we consider it to be our main result.
Thus, we have mapped out the parameter range where the
predictions for the energy of the UEG can be considered
reliable.

Furthermore, an analysis of the deviations between our
DPIMC results and the RPIMC data of Ref. [24] will allow us
to develop strategies for improved simulations in the future.
While RPIMC is presently not able to correctly treat the kinetic
energy at high degeneracy, our DPIMC simulations have

achieved an improved treatment that should make accurate
simulations for rs ∼ 1.5 possible in the near future, at the cost
of a substantial increase in CPU time. On the other hand,
while the total energies of our DPIMC simulations are in
overall good agreement with the RPIMC results of Ref. [24],
we observe significant deviations of the correlation energies,
particularly in the unpolarized case. Possible reasons are (a)
the different treatment of quantum effects in the interaction
of electrons with the uniform background, (b) the different
number of particles in the two simulations, and (c) finite-size
corrections that are applied in Ref. [24] but not in our results.
Here more analysis has to be done to arrive at a one-to-one
comparison.

A useful first step could be a detailed comparison for a
given, possibly small, particle number without any finite-size
corrections. Here, for the model case N = 4, recently accurate
energy data for the entire density range have been presented
[52]. This paper uses the recently developed configuration
path-integral Monte Carlo (CPIMC) approach [53]; for an
introduction to the method, see Ref. [54]. This method allows
for ab initio simulations in the opposite parameter range
rs � 1 [55]. Another novel approximate treatment of fermionic
exchange cycles was recently proposed [56]. A combination of
these concepts with the DPIMC approach of the present work
and RPIMC should allow one to achieve reliable theoretical
predictions for the uniform electron gas in the entire parameter
range in the near future.
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