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Electric microfields in dense carbon-hydrogen plasmas
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Classical molecular dynamics is used to investigate stationary and time-dependent properties of microfields in
hot, solid density, electron-ion plasmas. Even at the high temperatures considered here, such simulations require
quantum statistical potentials (QSPs) to mimic the essential effects of diffraction and exchange symmetry for
electrons. Fortunately, key results relevant to microfield distributions are found to be insensitive to different,
plausible QSP choices. Atomic processes in plasmas will depend on the time average of the microfields. It is not
clear, a priori, what the time duration of this average should be. The question of how best to extract the quasistatic
(low-frequency) microfield from a classical molecular dynamics simulation is explored in some detail, and the
time-averaging approach we adopt involves both plasma and atomic time scale constraints. One of the major
findings described in the paper is that for a large time interval, the time-averaged microfield does not significantly
change. Our discussion of this suite of large simulations for plasma mixtures focuses on understanding various
features and trends revealed by data for C-H plasmas having carbon fractions ranging from 0.01 to 1, and different
temperatures well above TFermi.
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I. INTRODUCTION

Fluctuations in a plasma’s charge and current densities give
rise to local electromagnetic fields. Equilibrium averages of
these fields over macroscopic volumes and/or long times are
negligible, but on atomic scales local field strengths can be
sufficient to affect various elementary processes. The most
important and best studied of these phenomena is Stark
broadening of spectral lines, caused by the stochastic electric
microfield F (r,t) experienced by individual, radiating atoms
and ions in a plasma [1,2]. The characteristic strength of these
localized fields varies roughly as (density)2/3, so a thorough
understanding of electric microfields remains essential for
the quantitative spectroscopy of dense plasmas [3]. Magnetic
microfields B(r,t), having strengths under thermal conditions
of order B/F ∼

√
T/mec2, where T is the plasma temperature

in energy units, tend not to be important unless a plasma is
driven to a highly nonequilibrium state [4,5].

During the past few decades, evolving experimental ca-
pabilities have enabled studies of matter of increasingly
complex composition and under ever more extreme condi-
tions. Of particular importance are novel high-power laser
facilities such as the National Ignition Facility (NIF) [6] and
the Orion Laser [7], as well as x-ray free-electron lasers
like the Linac Coherent Light Source (LCLS) which feature
an unprecedented peak brightness that is a factor of more
than 109 larger than third-generation synchrotrons [8]. In
the field of plasma modeling, noteworthy additions to the
computational capabilities for spectroscopy research include
the APEX microfield method [9,10], and classical molecular
dynamics (MD) simulations of nonideal plasmas [11]. The
former is now a well-established prescription [12], while the
latter is still a developing research area. Recent surveys and
conference proceedings [13–15] highlight several interesting
MD investigations relevant to microfields (e.g., [16–19]).
However, the limited scope and modest computational size
typical of these simulations limit their ability to reveal trends
involving different plasma conditions, or to obtain reliable

information about statistically improbable parameter regimes.
Ongoing developments in simulation science make such
constraints no longer inevitable.

For this work we have used a version of the massively
parallel classical MD code ddcMD which, when executed
on large computer platforms, can efficiently track millions
of particles for millions of time steps [20,21]. As the cen-
terpiece of Lawrence Livermore’s Cimarron Project, ddcMD

already has been used in several comprehensive studies of
high-energy-density plasma phenomena [21–26]. This paper
describes our first investigation of electric microfields, using
simulations that have 1.5 × 105 to 2.1 × 106 particles, and
time steps �t � 10−19 s. After the plasma had been equili-
brated, the microfields were recorded periodically to calculate
time-correlation functions. Time-averaged microfields were
calculated by accumulating the microfields at every time step
inside the simulation code.

We focus on solid density, fully ionized C-H mixtures.
One key motivation for investigating such mixtures is the
continued use of line radiation from high-Z “dopants” to
diagnose conditions in dense, laser-produced targets [27–29].
A second is to develop the foundation for a forthcoming study
of the APEX model, as it is applied to multielement plasmas
[10,12].

A classical system of ions and electrons interacting through
Coulomb forces tends to collapse. To avoid this unphysical
behavior, Monte Carlo calculations of dense plasma properties
have been based on ion-only schemes—the one-component
plasma (OCP) model [30] of unscreened ions embedded in
a uniform electron fluid, or a model of ions interacting via
Yukawa potentials that represent the static electron screening
of a polarized electron fluid [31]. The ion-only approach
also was used in some early MD studies of microfields in
high-density plasmas (e.g., [32,33]). A major advance was
the introduction of so-called quantum statistical potentials
(QSPs) to classical MD simulations of high-temperature
plasmas containing both electrons and ions. These potentials,
which “regularize” the Coulomb interaction at short range,
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originally were devised to mimic quantum effects in the cal-
culation of stationary, configurational properties of classical
Coulomb systems (as discussed by, e.g., [34]), but Hansen
and collaborators [35–37] extended the use of QSPs to the
time-dependent domain. The main advantage thereby gained
is that one can study consequences of correlations among all
the charges in a system—something not possible in ion-only
approaches—and, with MD, to follow the time evolution of
these effects.

Although virtually all classical electron-ion MD simu-
lations now use some version of QSPs, concerns persist
about unintended and perhaps unphysical consequences of
doing so (see, e.g., [21–26]). Therefore, in Sec. II we
focus on this frequently ignored issue and investigate the
sensitivity of particle and microfield probability distributions,
and microfield autocorrelation functions, to various QSPs. We
found that for the physical regimes considered in this paper,
the choice of QSP does not affect the short-time-averaged
microfield distribution that is relevant for atomic processes in
a plasma. Of course, quantum molecular dynamics (QMD)
methods avoid the need for QSPs by describing the electrons
via (quantum) density functional methods [34]. However,
in QMD only the ions actually are treated dynamically,
using a Born-Oppenheimer scheme that—time step by time
step—determines just the stationary (equilibrium) electron
density for the extant configuration of ions. Because QMD time
steps are set by ion motions, this more rigorous approach is
incapable of investigating the faster dynamical electron effects
of relevance here.

In Sec. III we turn our attention to different prescriptions for
extracting the quasistationary, “slow” microfield distribution
from the more rapidly evolving distribution of total field
strengths. Because only the slow component contributes to
the quasistatic Stark splitting of atomic states, this separation
must be carried out before electron-ion MD results can make
direct contact with traditional line broadening methods. We
found that, within limits that we identify, the slow microfield
depends only weakly on the averaging time, which is a great
benefit for modeling atomic processes influenced by dense
plasma microfields. For simplicity, the computations of these
two sections are restricted to pure carbon plasmas.

In Sec. IV, we present and discuss simulation results for
microfield distributions in several carbon-hydrogen plasmas of
varying composition and temperature. Here, each ion species α

has a specified charge, mass, and number of particles, denoted
by {Zα,Mα,Nα}, and mean density nα = Nα/�, where �

is the system volume. The mean electron density, ne =
Ne/� = ∑

ZαNα/� = (
∑

Zαξα)Nion/� = Z̄nion, is fixed
by charge neutrality, with ξα = Nα/Nion being the α species’
relative concentration. The present simulations have frac-
tional carbon abundances of 0.01 � ξC � 1, and a range
of temperatures well above the degeneracy limit given by
TFermi = �

2(3π2ne)2/3/2me.
Finally, in Sec. V, we collect our principal findings.

II. MICROFIELD SENSITIVITY TO QSPs

For a homogeneous and isotropic system, ensemble-
averaged local densities nκ (r) of various species κ = (e,{α})
surrounding a given charge of species μ are functions only

of the scalar distance r , and can be specified in terms of
pair distribution functions, viz., gμκ (r) = nκ (r)/nκ . These
distributions represent the configurational averages of the
separations of just the μ- and κ-particle pairs [38], viz.,

gμκ (r) = �

NμNκ

〈
Nμ∑
i=1

Nκ∑
j=1

′δ(r + rμi − rκj )

〉
, (1)

and knowledge of them enables one to compute corrections to
ideal gas results for a system’s thermodynamic functions. In
Eq. (1) rμi denotes the location of the ith particle of species μ,
and the prime on the second sum means that the term j = i is
to be omitted if κ = μ. The averaging process itself involves
pair interaction energies {uee(r),ueα(r),etc.} of all species; for
point charges these energies are pairwise additive. Further,
in the thermodynamic limit one has gμκ (r) = gκμ(r), and for
all practical purposes this equality is reproduced by our large
simulations.

The distribution W (F[r1]) of vector fields that a given
particle “1” experiences likewise depends on a configurational
average involving other particle positions, and because of
homogeneity and isotropy its relation to the distribution P (F )
of scalar field strengths is

P (F ) = 4πF 2W (F[r1]) = 4πF 2

˝
δ

⎛
⎝∑

i �=1

fi1 − F[r1]

⎞
⎠
˛
,

(2)

where the summation represents contributions fi1 to the
total field F[r1] of all other particles, for a particular set
of separations {ri1 = |r1 − ri |}. There is enough similarity
of form between Eqs. (1) and (2) to suggest that the
sensitivity of the {gμκ} to different QSPs will be indicative
of how much QSPs influence various species’ microfield
distributions.

To demonstrate this connection, we used the hypernetted
chain (HNC) approximation [38] with different QSPs to
compute the three pair distributions in fully ionized carbon
plasmas; many studies have established good agreement
between such HNC results and the distributions extracted from
MD. Our reference potentials are those adopted by Hansen and
collaborators [38]:

uS
ee(r) = T (ln2) exp

{−(4πr2)/
[
(ln2)	2

ee

]}
, (3)

uDB
κμ (r) = (ZκZμe2/r)[1 − exp(−2πr/	κμ)], (4)

where 	κμ = √
2π�2/MκμT is the thermal de Broglie wave-

length of a particle whose mass Mκμ is the reduced mass of
the pair (κ,μ). These expressions originally were developed
to incorporate separate quantum phenomena in a classical
Boltzmann factor that approximates the two-body Slater sum
in a system’s configuration integral: Superscript S identifies
that part of the QSP representing the effect of (anti)symmetry
on the (e,e) interaction in an unpolarized gas [39,40], and
superscript DB, the part representing regularization of the
Coulomb term by diffractive smearing, in the form derived
by Dunn and Broyles [41].
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The given form of uS is fairly standard (with simulations
either including it, or not), but there are two other diffractive
QSPs frequently used in classical MD. One, the potential of
Kelbg [42],

uK
κμ(r) = (ZκZμe2/r)

[
1 − exp

(−4πr2/	2
κμ

) + (2πr/	κμ)

× erfc(2
√

πr/	κμ)
]
, (5)

is obtained from a perturbative solution of the two-particle
Bloch equation. Numerically, uK is similar enough to uDB

[43] that we do not include it in the comparisons that follow.
The other, introduced and employed by Calisti, Talin, and
collaborators [44,45], is phenomenological and constructed to
improve the modeling of atomic ionization and recombination
energetics in MD simulations. For an ionic core of charge Ze

one defines a regularization length δZ such that Ze2/δZ equals
the energy of binding of an electron to that core, and then sets
the (e,Z) QSP to be

uCT
eZ (r) = (−Ze2/r)[1 − exp(−r/δZ)]. (6)

With this choice, there is no dependence on plasma param-
eters, and no regularization of the interaction between charges
of like sign. At high temperature δZ can be substantially larger
than 	eZ (the difference growing with increasing temperature),
in which case this modified Coulomb attraction is much weaker
than that specified by either Eq. (4) or (5).

Figure 1 displays HNC pair distribution functions in a
fully ionized carbon plasma (ξC = 1) for various QSP choices.
The conditions are T = 200 eV and approximately normal C
solid density, nC = 1023/cm3, so the typical distance between
carbon nuclei is (3/4πnC)1/3 = 2.53a0. The first panel (a)
shows all three distributions, gee(r),geC(r), and gCC(r), as
determined by our reference choice, “DB + S”, Eqs. (4) and
(3); each of the other panels shows one of these three pair
distributions, but computed from the coupled HNC equations
with different QSPs. Consider, first, the distribution of C+6

pairs. On the scale of these curves, diffractive softening of the
Coulomb interaction has no discernible effect on gCC(r), and
neither does the inclusion of the (e,e) symmetry interaction
uS . In contrast, the plotted (e,e) pair distributions show
sensitivity both to diffractive softening (DB vs CT) and to the
symmetry interaction (DB + S vs DB). The largest difference,
by far, involves the geC(r) curves corresponding to alternative
regularizations of the (e,C+6) interaction (CT). Under the
specified conditions, the difference between small-r screening
lengths is considerable, δC = 0.33a0 vs 	eC/2π = 0.15a0,
and the consequent, twice greater depth of uDB vis-à-vis uCT

leads to an order-of-magnitude electron density enhancement
near each nucleus.

Since temperature is the lone QSP variable for hot and
dense (but nondegenerate) systems, statements in the above
paragraph also apply, at least qualitatively, to the plasma
conditions and compositions we will study in Sec. IV. We
decided, therefore, that our P (F ) sensitivity studies could
be limited to just three QSP choices: CT, DB, and DB + S.
Comparisons involving the first two of these three highlight
differences arising just from alternative regularizations of the
Coulomb interactions; those involving the last two, just the
influence of quantum symmetry constraints on (e,e) pairs; and
those involving the first and third, the combined effects of
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FIG. 1. (Color online) HNC pair distribution functions in a
fully ionized carbon plasma at 200 eV and 1023 carbon atoms/cm3

for various QSP choices. (a) Reference choice “DB + S”, and
(b)–(d) gCC(r), geC(r), and gee(r) for different QSPs.

all plausible QSP differences—(1) regularization, or not, of
the (e,e) and (ion,ion) Coulomb interactions; (2) inclusion, or
not, of the (e,e) symmetry constraint; and (3) the alternative
approaches to regularizing the (e,ion) interaction.

In Fig. 2(a) we have plotted the distribution of scaled
microfields, P (β) = P (F/F0) = F0P (F ), experienced by
C+6 ions in a plasma with the same conditions as given above;
here and everywhere below, fields are measured in atomic
units, viz., β = F/F0, with F0 = e/a2

0 = 27.2 V/a0. These
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FIG. 2. (Color online) Effect of the QSP on the total field
probability distribution and autocorrelation function, for solid density
carbon plasma at T = 200 eV.

are the total field strengths computed by our MD code, with
contributions from all particles. The different regularizations
of the Coulomb interaction, as defined in Eqs. (4) and (6),
clearly have a large effect. In particular, the probability of
high fields at C+6 ions is much reduced by the weaker (e,C+6)
attraction afforded by uCT. On the other hand, the influence
of the (e,e) symmetry constraint on the total field distribution
at carbon ions is minimal. In Fig. 2(b) we see that in this
plasma the total field distribution at electrons is insensitive to
the different QSP choices we considered.

Complementary, time-dependent microfield information is
contained in the field’s autocorrelation function [19,46,47],

A(t) = 〈F(t) · F(0)〉/〈F(0) · F(0)〉. (7)

Dominant features of A(t) can be expected near the time scale
of collective motions by electrons, te = 1/ωe, where ωe is the
usual electron plasma frequency, and near the corresponding

ion time scale, tion = 1/ωion, where for a mixture

ωion =
(∑

α

ω2
α

)1/2

= ωe

[∑
α

(
ξαZ2

αme

/
Z̄Mα

)]1/2

. (8)

In Fig. 2(c) we show this normalized quantity A(t) for
fields at C+6, determined by data from separate, but otherwise
equivalent, simulations with the three different QSP choices.
At all times, the autocorrelations found with and without the
(e,e) symmetry interaction (DB + S and DB) are essentially
the same. That the CT curve exhibits somewhat slower
decorrelation at early times can be explained as follows:
Relative to that of CT, the DB Coulomb regularization yields
more electrons close to each nucleus, as indicated by the curves
for geC(r). Not only are these additional nearby electrons
producing stronger total fields F, as shown in Fig. 2(a), but
also their individual contributions to F are changing faster
because of their enhanced proximity. Taken together, these
facts lead to quicker decorrelation in the DB cases. However,
for all three QSPs the prompt electron decorrelation is
complete within the time scale te = 0.023 fs. Following that,
there is a time interval of order many te during which the total
field’s autocorrelation function exhibits a plateau and changes
very little. Only much later, when t ≈ tC = 1/ωC = 1.4 fs
and ionic decorrelation is complete, is there a merging of
curves representing different regularizations of the (e,ion)
Coulomb interaction (DB or CT). Similar comments apply
to autocorrelations we obtained from MD simulations of the
C-H plasma mixtures described in Sec. IV.

III. EXTRACTION OF THE SLOW MICROFIELD
COMPONENT

The distribution of strengths of the total microfield due
to each of a plasma’s constituent species is straightforward
to determine from an MD simulation. However, as noted
in the introductory remarks, this is not the quantity relevant
to traditional line-broadening calculations. Such work treats
rapidly changing Stark perturbations as collisions that alter
the wave train of a radiating ion, and slowly changing Stark
perturbations as the cause of a quasistatic splitting of the
radiator’s levels (see again, [1,2]). The fast and slow microfield
division—into what often is referred to as its high-frequency
and low-frequency components—unfortunately is not just a
matter of identifying the electrons’ and the ions’ contributions
to the distribution of the total field F = Fe + Fion at an ion
of interest. As emphasized by Baranger and Mozer [48],
some part of the electrons’ microfield must be subtracted
from the high-frequency component and included with the
low-frequency one, because each perturbing ion carries with
it a quasistatic shielding cloud composed of an ever-changing
group of electrons. The Coulomb coupling parameter �eZ =
Ze2/aZT , with the ion sphere radius aZ being defined by
4πaZ

3ne/3 = Z, is a measure of the efficacy of this shielding
and, therefore, of the importance of the subtraction process.
Although the complicating effects of any bound electronic
states (whose existence is necessary to spectroscopy) are not
considered in the simulations, we note that these states seldom
occur for ions when conditions are such that �eZ exceeds
unity [49].
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In a version of the one-component plasma (OCP) model,
mobile electrons are completely uncoupled from a uniform
background charge density representing the ions, and hence
�eZ = 0. In this model, the computed microfield is that of the
electrons only and perforce it approximates the high-frequency
component. The Holtsmark distribution represents the OCP’s
limiting case of uncorrelated electrons. On the other hand, if
every “particle” in a system corresponds to an ion shielded
by a fixed electron screening cloud, the computed microfield
approximates just the low-frequency component. The weak
coupling (small �eZ) Yukawa screening models of Baranger
and Mozer [48], Hooper [50], and APEX [9,10,12] are in this
category.

Dufty [51] used time-dependent properties of a plasma’s
charge density fluctuations to formally separate the electrons’
dynamic, “collisional” effects from the static, (ion) “Stark”
effects on a spectral line profile, but as yet there are no explicit
calculations based on his final expressions. More recently,
Nersisyan et al. [52] published the PMFEX microfield method.
It allows one to drop the constraint of fixed, Yukawa screening
and to calculate equilibrium contributions to the total mi-
crofield from both electron and ions, using potentials of mean
force, uMF

κμ (r) = −T ln[gκμ(r)]. However, as it stands, this
approach is not useful for spectroscopy because there is no way
to carry out the requisite short-time averaging of the total field.

Multicomponent MD simulations do not involve such
issues, and therefore offer the ability to test directly the
accuracy and limitations of various microfield models.

Within the past decade, Calisti and colleagues [19,44]
have carried out MD simulations to obtain time-dependent
microfields in hydrogen plasmas, using a straightforward
definition of the slow and fast fields that a radiator is
experiencing at time t . We adopted their concept, but use an
integral that involves only past times, t ′ � t ,

F[τ ]
slow(t) = 1

τ

∫ t

t−τ

F(t ′)dt ′, and F[τ ]
fast(t) = F(t) − F[τ ]

slow(t).

(9)

These authors argued that a good choice for the averaging
interval τ would yield only a weak correlation between the ion
component of F (which dominates Fslow) and the remaining,
electron component (which dominates Ffast), and they expected
τ to lie between the proton and the electron response times,
tH = 1/ωH and te = 1/ωe. Unfortunately, their simulations for
a system with �eH = 0.2 showed only a gradual and ongoing
decorrelation of Fe and Fion throughout that interval, and left
unanswered the question: What is the best choice of averaging
interval τ? (Of course, the correlation of these fields goes
to zero eventually because, over macroscopic times, thermal
microfields produce no net forces.)

To explore the averaging issue further, we first used
the reference QSPs (DB + S) to compute distributions of
F

[τ ]
slow experienced by C+6 ions in a solid density carbon

plasma, for a wide range of τ values and for three tem-
peratures, T = 83, 200, and 830 eV (corresponding to �eC =
0.78,0.32,0.08). These simulation results are displayed in the
panels of Fig. 3. Readily apparent at all temperatures is a
decrease in the mean strength of the slow field with increasing
interval τ , as more and more of the fluctuating (vector) field is
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FIG. 3. (Color) Slow microfield distributions at different temper-
atures T , for a range of averaging intervals τ .

averaged out. Also evident is the trend that, as T increases and
electrons become less localized near the ions, it takes longer
for strong fields, due mostly to electrons, to be diminished
by time averaging. It is possible for both of these results to
be anticipated on the basis of comments pertaining to Fig. 2.
But, what is unexpected is the F

[τ ]
slow “τ plateau”—the limited

range of τ values over which there is little change in the
F

[τ ]
slow distribution—suggesting completion of the Ffast and Fslow

separation. Here, this plateau occurs between about 0.2 and
0.6 fs, well within the interval (te,tC).

According to the autocorrelation data plotted in Fig. 4(a), at
each temperature the τ plateau of F

[τ ]
slow distributions is located

near the end of the temporal plateau exhibited by A(t). Our ef-
forts to improve on just a visual estimate of an optimal τ value,
in the sense that small deviations about this value result in mini-
mal overall changes to P (F [τ ]

slow/F0), led us to devise a “gradient
of the distribution” metric. For two distributions, constructed
from fields having τ values τ1 and τ2, the gradient is defined
as ‖P (F [τ1]

slow/F0) − P (F [τ2]
slow/F0)‖2/|log(τ1) − log(τ2)|, where

‖ · · · ‖2 indicates the L2 norm. The distribution gradient is
shown in Fig. 4(b). For smaller τ values, the microfield
distribution is changing rapidly, leading to large gradient
values. For larger τ values, the distributions change less and, in
this case, the gradient exhibits a minimum at τ values around
0.5–1.0 fs; this coincides with the end of the temporal plateau
exhibited by A(t).
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FIG. 4. (Color online) (a) Autocorrelation and (b) distribution
gradient in a carbon plasma as a function of time. These plots illustrate
the very large dynamic range that the microfield simulations need to
cover.

Without a substantial set of F
[τ ]
slow distributions, and/or

specific total field autocorrelation function information, some
estimate of the optimal averaging interval is needed if Fslow

is to be determined via Eq. (9). The general constraint te <

τ < tion is not sufficient to this end. The optimal interval also
must satisfy certain atomic criteria because bound states are
involved when F

[τ ]
slow is employed to determine Stark shifts for

spectroscopy [3]. Specifically,
(i) Let torb(Z,n) be the Bohr orbital period of an electron

bound to an ionic core of charge Z and having principal
quantum number n; then, torb(Z,n) < τ is needed to
ensure that this level retains stationary properties in
the presence of temporal Fslow variations [53].

(ii) Let �E = ��ω be the unperturbed energy of transition
between two extant levels in a plasma ion of spectro-
scopic interest (a “radiator”); then, τ�ω > 1 is needed
to ensure that the Stark effect these levels experience
due to Fslow is quasistatic.

Both inequalities can be quantified once the concept of
plasma continuum lowering is introduced. In brief, continuum
lowering (CL) represents the leading order of a plasma’s
“environmental impact” on the bound states of its embedded
ions—charges surrounding a radiator produce an electrostatic
potential that is roughly constant over atomic dimensions, and
this potential effectively reduces binding energies (i.e., lowers
the continuum). The simplest CL picture is one of pressure
ionization, whereby the only levels remaining have Bohr orbits
contained within the ion sphere [54]. This gives a density—but
not temperature—dependence to the uppermost bound level,
i.e., n2

max = (ZaZ/a0), and, hence, to the constraint involving
the orbital period,

τ > torb(Z,nmax) = (
2πn3

max

/
Z2

)
(a0/αc) = (2π

√
3)te. (10)

By setting the minimum frequency difference to be that
between levels nmax and nmax − 1, and then using the same
expression for the uppermost level in the presence of pressure
ionization, the second of the above constraints becomes

τ >
1

�ω[(Z,nmax),(Z,nmax − 1)]
≈ torb(Z,nmax)

2π
= te

√
3.

(11)
The similarity of these two results, and the fact that

more realistic CL theories tend to yield greater lowering of
the continuum (viz., smaller values of nmax) [24], together
indicate that τ > tatom = 10te represents a conservative con-
straint due to atomic phenomena.

Unless other criteria are available we recommend the
geometric mean expression,

τ ∗ = √
tatomtion � 20te, (12)

for estimating of the optimal averaging interval. It always gives
a τ value in harmony with the above constraints, and its value
for the solid density carbon plasma, τ ∗ = 0.56 fs, agrees with
the results plotted in Fig. 4. It should be noted, though, that this
formula does not contain any temperature dependence, such
as is suggested by the curves in Fig. 4(b). And, it should be
recognized that use of the microfield F

[τ ]
slow, with any τ < tion,

excludes the so-called “ion dynamics” [13]—the broadening
effect of perturber ions’ motions on the cores of spectral line
shapes.

We also looked at two numerical schemes, based solely
on information available at a simulation’s current time step,
which might provide accurate distributions of Fslow. In one
of these, whose fields we label F

[e]
slow, we subtract from the F

at each C+6 ion the fields of all electrons currently within its
ion sphere; in some sense, these electrons are “in collision”
with the central C+6. In the other, whose fields we label F

[all]
slow,

we subtract from F the fields of all other charges currently
within that sphere. Field strength distributions for both of these
simple models are compared in Fig. 5 with that for F

[τ ]
slow,

with τ = 0.6 fs, for the 200 eV, solid density carbon plasma.
Included in this figure is the distribution for Fion, as well as the
first of several distributions we obtained from MD simulations
of equivalent ion-only systems involving Yukawa interactions,

uY
αγ (r) = (ZαZγ e2/r) exp(−ker), (13)

with screening due just to electrons: ke =
√

4πe2ne/T .
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FIG. 5. (Color online) Microfield distributions resulting from
different schemes to approximate the slow microfield.
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FIG. 6. (Color online) Slow microfield distributions at C+6 re-
sulting from different QSP interactions.

Several points are apparent from the plots in Fig. 5.
First, the important extent to which partial screening by
electrons reduces the total ionic field Fion is indicated by the
difference between that field’s distribution and those for the
various Fslow alternatives. Moreover, in this case the actual
(dynamic) electron screening is approximated very well by a
(static) Yukawa model. However, neither of the single-time
definitions, F [e]

slow and F
[all]
slow, is particularly accurate: the former

overestimates the likelihood of strong fields while the latter
underestimates it. Such behavior limits their use in plasma
line shape studies, since strong fields control the prominent
wings of Stark-broadened lines. Still, for certain purposes one
or the other of these simple pictures may suffice.

Lastly, the sensitivity of Fslow to different QSP choices was
checked. Figure 6 shows curves for P (F [τ ]

slow/F0) that result
when the different QSP interactions (DB + S, DB, or CT) are
used in the carbon plasma simulation. Here, in sharp contrast
to the curves of Fig. 2(a), we see very little difference among
distributions. This welcome news is due, we believe, to the
fact that Fslow is primarily a screened ionic field, and the
distribution of ions—as represented by ion-ion pair functions
gαγ (r)—is itself insensitive to the QSP alternatives.

IV. MICROFIELDS IN CARBON-HYDROGEN MIXTURES

We now shift focus to properties of microfields in plas-
mas with more than one ion species, in order to explore
composition-related issues and trends. Results described be-
low involve the single QSP choice, DB + S, and for the
most part low-frequency fields are F

[τ ]
slow, with the MD’s

autocorrelation functions being used to determine τ .
This large set of simulations involves fully ionized

carbon-hydrogen mixtures, with the C+6 number fraction
being ξC = 1

100 , 1
3 , 2

3 ,or 1, and the temperature being T =
83, 200, or 830 eV. In all cases, the total ion density is fixed,
nion = nH + nC = 1 × 1023 cm−3, so the pure carbon plasmas
discussed earlier represent a subset of these conditions. There
were at least 104 carbon ions in each of the simulations, and
unless noted otherwise our microfield data pertain to these
particles. For reference, some important plasma parameters
are collected in Table I; note that these simulations span a wide
range of (e,C+6) coupling strengths, 0.04 � �eC � 0.78.

Figure 7 shows distributions of the scaled total field,
P (β) = P (F/F0), experienced by the C+6 ions in C-H

TABLE I. Plasma parameters for the C-H mixtures discussed in
Sec. IV.

ξC = 1 ξC = 2
3 ξC = 1

3 ξC = 1
100

Z̄ 6.0 4.3 2.7 1.0
aC (a0) 2.5 2.8 3.3 4.5
te (fs) 0.023 0.027 0.034 0.055
�eC at 83 eV 0.78 0.70 0.60 0.44
�eC at 200 eV 0.32 0.29 0.25 0.18
�eC at 830 eV 0.08 0.07 0.06 0.04

plasmas having various conditions: In panel (a) are curves
for all four carbon fractions ξC at the single temperature
T = 83 eV, and in panel (b) are curves for the same fractions,
but at T = 830 eV. In the lower panels are distributions of
the scaled total field at carbon ions when the carbon fraction
is fixed at ξC = 1

3 [panel (c)], or at ξC = 1
100 [panel (d)],

but temperature varies. The upper panels reveal that at fixed
temperature, low or high, strong total fields, i.e., those for
which β = F/F0 > 1, are relatively improbable when carbon
is just a trace impurity, ξC = 1

100 ; higher carbon fractions do
yield greater probabilities of strong fields, but the increase
of those P (β) values is modest as ξC increases from 1

3 to
unity. The lower panels reveal that at either of the fixed carbon
fractions, ξC = 1

3 or ξC = 1
100 , stronger total fields are more

likely when the temperature is low. To understand these trends,
we note that holding T fixed while increasing ξC has the effect
of increasing electron-ion coupling, since in this case �eC =
const[1 + 5ξC]1/3. The same is true when ξC is held fixed
and the temperature is lowered, since now �eC = const/T . In
both cases the increased electron-ion coupling means that each
carbon ion has more close electrons, thus enabling a larger
total, electron plus ion, field to occur. Lower temperatures
also enhance the consequences of ion-ion repulsion, thereby
lessening ionic contributions to the total field.

As before, we find that the microfield distribution trends
are connected to the behavior of the pair distribution functions
{gκμ(r)} for the various plasma conditions and compositions.
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100%
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FIG. 7. (Color online) Distributions of the scaled total field F ex-
perienced by the C+6 ions in C-H plasmas having various conditions.
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FIG. 8. (Color online) HNC calculations of the C-H pair correlation functions: (a)–(c) for fixed T = 200 eV; (d)–(f) for fixed carbon
abundance ξC = 33%.

In the upper panels of Fig. 8 are plotted HNC results for
the three pair distributions involving C+6 ions, for all the
carbon fractions, and for T = 200 eV; in the lower panels
are the same pair functions, but at fixed fraction, ξC = 1

3 ,
and for the temperatures T = 200 and 830 eV. (HNC solutions
for lowest temperature, 83 eV, did not converge). Note that
the distribution of electrons about a carbon ion shows, as is
expected from the comments above, a stronger dependence on
T than on ξC. For the repulsive ion-ion cases, pair distribution
variations with T and with ξC are more comparable.

In the three panels of Fig. 9 we show distributions of the
instantaneous total fields experienced by all three species,
when carbon is a trace impurity (ξC = 1

100 ) and has little
effect on the results for electrons or protons. At the highest
temperature, T = 830 eV (top panel), the plasma is nearly
ideal and all three distributions, being dominated by e and
H+, are essentially the same. At the intermediate temperature,
T = 200 eV (center panel), there is a more substantial density
enhancement of electrons near the carbon ions, and this results
in a tendency of C+6 to experience total fields somewhat
stronger than those experienced by the electrons or protons; the
singly charged particles, however, still exhibit identical total
field distributions. At the lowest temperature (bottom panel),
the carbon disparity is enhanced further. These distribution
features certainly would not be unexpected for pure Coulomb
systems. But, our simulations employ QSPs (DB + S) that
affect the various pair interactions differently: Electron pairs
also are subject to the symmetry term, Eq. (3), while proton
pairs are not; plus, the Coulomb regularization, Eq. (4), is much
more influential when the pair interaction involves an electron.
With reference to Fig. 2, it is clear that any or all of these QSP
differences affect total field distributions in the C-H plasmas
much less than the alternative regularization (CT), Eq. (6),
does.
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FIG. 9. (Color online) Distributions of the total field experienced
by electrons (e), hydrogen ions (H), and carbon ions (C) at different
temperatures, in C-H plasma with carbon abundance ξC = 33%.
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FIG. 10. (Color online) Slow microfield distributions at C+6 for
different temperatures and carbon abundance fractions.

Figure 10 presents scaled distributions P (F [τ ]
slow/F0) for

several τ values, at three representative (T ,ξC) combinations
(see also Fig. 3 for pure carbon plasma results). As temperature
and the carbon fraction both increase in these successive
panels, there clearly is a reduction in the separation of
distributions (note the changing vertical axis scales). However,
even at the printed scale of these plots, each case shows
evidence of a plateau in the same interval as before, 0.2 <

τ (fs) < 0.6. Inspection of analogous results for all the other
simulated C-H conditions suggests that temperature is the more
important parameter here, and this impression is supported by
the “autocorrelation gradient” results plotted in Fig. 11; these
curves include those shown in Fig. 4(b). Also, we noticed that
the gradient plots exhibit relative minima at τ values somewhat
higher than one would infer from the corresponding sequences
of P (F [τ ]

slow/F0) distributions, but still close to the prediction of
Eq. (12).

We have emphasized that the microfield quantity of prime
interest for plasma spectroscopy is the distribution P (Fslow).
Results from MD simulations offer the ability not only to
evaluate other, less computationally demanding prescriptions
for obtaining this information, but also to produce such
distributions under conditions for which other methods may
be unreliable or inappropriate (e.g., only MD has the potential
to study systems out of thermal equilibrium). To this end,
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FIG. 11. (Color online) Distribution gradients in C-H plasma
mixtures as a function of the averaging time τ for (a) T = 83 eV, (b)
T = 200 eV, and (c) T = 830 eV.

Fig. 12 presents several comparison plots. Each panel contains
a set of low-frequency microfield distributions, at the location
of a C+6 ion, for specific (T ,ξC) conditions in dense C-
H plasma: The three left panels show distributions at the
fixed carbon fraction, ξC = 1

100 , and varying temperature,
T = 83, 200, or 830 eV; the three right panels, distributions
at ξC = 2

3 and the same three temperatures. At fixed ξC, the
difference between the Fion probability distribution and that
for either the dynamically screened field F

[τ ]
slow or the static,

Yukawa screened field FY is greater at lower temperatures.
And, at fixed temperature, these differences are greater when
the carbon fraction is higher. As in the discussion pertaining
to Fig. 7, both trends correlate with changes in the electron-
carbon coupling parameter �eC, whose smaller values (see
Table I) reflect weaker screening of C+6. Hence, in the plasma
with the lowest carbon abundance and the highest temperature,
differences among the distributions for all three of the above
microfield quantities are minimal.

The close agreement, in all these simulations, between
the distributions for FY and F

[τ ]
slow is perhaps surprising, and

raises two questions. (1) Why does a simple static screen-
ing approximation so accurately mimic the true dynamical
electron situation, over a wide range of conditions? (2) Why
are the differences between the posited ion-ion interaction
of the Yukawa scheme, Eq. (11), and the MD’s effective
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FIG. 12. (Color online) Scaled microfield distributions at
C+6 ions in C-H plasmas with various temperatures T and carbon
fractions ξC. Labels denote fields F = Fion, F

[τ ]
slow, and FY .

ion-ion interaction (the potential of mean force), uMF
αγ (r) =

−T lngαγ (r), unimportant for any of the conditions explored?
The answer to the first question, we believe, is that the time
scale to establish a given ion’s field F

[τ ]
slow is of order τ ∗,

and in the dense plasmas of interest here this time scale is
much larger than the time scale te = 1/ωe needed to establish
the ion’s quasistationary screening cloud. The answer to the
second question, we believe, involves the fact that the field
F

[τ ]
slow at an ion is produced mostly by distant charges (r > aZ),

as discussed in connection with Fig. 5. Therefore, for slow
microfields the very different small-r behaviors—divergent
Yukawa potential vs convergent potential of mean force—are
of little consequence. Further, when plasma coupling is weak,
the HNC theory yields potentials of mean force that have
Yukawa forms at long range [38].

As part of a forthcoming, MD-based study of the APEX
microfield method for multi-ionic systems, we now are per-
forming plasma simulations that involve higher-Z radiators,

more complicated mixtures, and more extreme conditions.
These data should prove useful also for guiding possible
extensions, to plasma mixtures, of existing schemes that pro-
duce fast numerical fits for single-species Yukawa microfield
distributions [31,55].

V. SUMMARY

In this paper we addressed, through numerous large MD
simulations, the issue of how QSP choices affect the probabil-
ity distributions of microfields that arise in a plasma mixture;
our specific cases involved dense and fully ionized C-H of
varying composition and temperature. We showed that trends
observed in the microfield distributions had counterparts in
related plasma pair distribution functions, and that these trends
could largely be understood in terms of differing values of the
electron-ion coupling parameter, �eZ = Ze2/aZT . Next, we
highlighted the question of how to compute the distribution of
quasistatic (low-frequency) fields at an ion, which is essential
for the standard treatment of Stark broadening of spectral
lines. The best definition, we contend, involves a running time
average of the total microfield at each ion over an interval
τ , whose magnitude we studied in some detail. We argued
that this interval is fairly narrowly constrained. Moreover, it
includes a small range of τ values—a τ plateau—for which
the resulting distribution P (F [τ ]

slow) changes very little, and is
not sensitive to the different QSPs we considered.

With this information in hand we then carried out a
suite of simulations to explore how changing a plasma
mixture’s composition and/or temperature affects microfield
distributions at the different charge species. In our discussion
of various trends exhibited by these mixture results, we
observed again the important role played by the electron-ion
coupling parameter. Also, for each mixture, the τ plateau in its
P (F [τ ]

slow) distributions was located. We noted some evidence
involving both the field distributions and their autocorrelation
functions that the range of optimal τ values is more sensitive to
temperature (at fixed composition) than it is to composition (at
fixed temperature); this point merits further attention. Lastly,
we reported excellent agreement between our electron-ion MD
simulations and our MD simulations involving just Yukawa-
screened ions, for several C-H mixtures and temperatures, and
discussed likely reasons why this is so.
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