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Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma
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The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-
acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate
electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and
appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg–de Vries (KdV)
equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal
and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and
numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied.
Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional
to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high
density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding
the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
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I. INTRODUCTION

In recent years, there has been enormous interest in the
study of new aspects of collective interactions in dense
quantum plasmas [1–4]. Quantum plasma physics has a very
high particle number density and a low particle temperature, in
comparison with classical plasmas where the plasma particle
number density is relatively low and the plasma temperature
is rather high. Recent evidence suggests that dense quantum
plasmas would be used to establish a suitable frame for
investigating many astrophysical phenomena in interstellar
compact objects. Actually, there are many interstellar compact
objects where matters exist in extreme conditions [5–10]
not found in terrestrial environments. One of the extreme
conditions found in these objects is a high density of degenerate
matter. These compact objects are relics of stars which have
ceased burning thermonuclear fuel and therefore no longer
generate thermal pressure. These interstellar compact objects
have significantly contracted, and, as a result, the density of
their interiors becomes high enough to provide nonthermal
pressure via degenerate fermion/electron pressure and particle-
particle interactions. One of the examples of these kinds of
stars (i.e., interstellar compact objects) is a white dwarf, which
is supported by the pressure of degenerate electrons.

It is established that white dwarf stars have low luminosity
and high surface emissivity, with masses typically less than
one solar mass and radii typically less than 106 solar radius.
The average bulk densities of white dwarf stars are typically
1030 cm3. The number density of the degenerate electrons can
be order of 1030 cm3 or more in compact objects such as white
dwarfs, which is very high [11]. Therefore, one of the most
interesting quantum phenomena is the structure of white dwarf
stars, which couple the degeneracy of electrons due to the Pauli
exclusion principle and Heisenberg’s uncertainty principle to
the stability of the white dwarf star on macroscopic scales via
the balance between the gravitational pull and the degeneracy
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pressure of the electrons. Mathematically, it is well established
that the equation of state for degenerate electrons in such
interstellar compact objects was deduced by Chandrasekhar
[5–7] for two cases, Pe ∼ n

5/3
e for the nonrelativistic case

and Pe ∼ n
4/3
e for the ultrarelativistic case, where Pe is the

degenerate electron pressure and ne is the degenerate electron
number density. In other words, when the Fermi energy of the
electrons becomes comparable to or higher than the electron
rest energy, the equation of state changes to Pe ∼ n

4/3
e , which

makes the white dwarf star gravitationally unstable for masses
larger than about 1.4 solar masses [5–7]. It is well known
that the observation of white dwarf stars is mainly due to
their electromagnetic radiation, which unravels their physical
properties and dynamics [8]. To date, there have been about
200 observations of pulsating white dwarf stars, which fall in
the range from 2 to 35 min and can be attributed to nonradial
gravity oscillation modes. The observations and theory of these
pulsations are employed to investigate the rotation period,
mass, as well as equation of state of these stars [12,13].
In addition to the gravity waves, the theory also predicts
the existence of acoustic oscillation modes where the ions
provide the inertia and mainly the electron degeneracy pressure
provides the restoring force. Typical oscillation periods of
globally propagating acoustic modes are set by the time for
the wave to travel across the star and lie in the range of a few
seconds, two orders of magnitude shorter than gravity mode
oscillations. These modes were predicted early on [14], but
have yet to be observed. The lack of observations, however,
does not necessarily imply the absence of acoustic mode
oscillations, but may be associated with the motion below
the detection limit [15]. The possibility of the formation
of finite amplitude acoustic waves is also suggested in the
case of extreme events such as supernova explosions and
pulsating white dwarf stars [11]. Therefore, our objective
here is to develop a nonlinear theory of nonlinear periodic
ion-acoustic waves (i.e., ion-acoustic cnoidal waves), in a
dense magnetoplasma with relativistic degenerate electrons.

Nowadays, increasing interest in the study of nonlinear
periodic waves in plasmas as well as in other dispersive media
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has become important due to their application in diverse areas
of physics such as the nonlinear transport phenomenon. Before
giving an outline of this article, it is useful to define cnoidal
waves. Indeed, cnoidal waves based on Jacobian elliptical
functions, such as sn, cn, and dn waves, are exact solutions
in the form of periodic pulses. One of the most important
features of cnoidal waves is that, in the limit of strong
spatial localization, they transform into well-known solitons.
Frequently, nonlinear periodic wave signals appear beside
ion-acoustic soliton and double layer structures in auroral and
magnetospheric plasmas [16]. Experimentally, cnoidal waves
have been observed in water [17,18]. Moreover, cnoidal waves
have been applied as a fundamental basis function to develop
a new kind of nonlinear Fourier analysis to explain Adriatic
Sea waves [19]. On the other side, Kauschke and Schlüter
[20] explained single-mode drift wave spectra at the edge
of the tokamak plasma in their previous experiment [21] on
the basis of cnoidal waves. Kartashov et al. [22,23] reported,
respectively, that in contradistinction with the case of localized
solitons (where the spectrum of perturbations is discrete) for
cnoidal waves, one has a band of possible increments at each
energy flow, and, under the proper conditions of low- and
high-energy flows, the two-dimensional cnoidal waves appear
to be robust enough to be observable in experiments. Recently,
Yuan et al. [24] demonstrated that, due to the interaction
of the cnoidal wave with the solitary wave, phonons can
be radiated, which destroys the cnoidal wave and finally
results in a loss of stability of the solitary wave. However,
the basic features (amplitude and width) of cnoidal waves in
a dense relativistic degenerate magnetoplasma consisting of
relativistic degenerate electrons and nondegenerate cold ions
is still lacking. Therefore, the purpose of this article is to study
the effects of plasma number density, ion cyclotron frequency,
and direction cosines on the characteristics of cnoidal waves in
compact interstellar objects (e.g., white dwarfs). We present
our article in the following way. First, in Sec. II, the basic
equations governing our plasma system are presented. Then,
in Sec. III, the nonlinear modified Korteweg–de Vries (KdV)
equation is derived, with appropriate boundary conditions,
using the reductive perturbation technique. In Sec. IV, we
solve the nonlinear modified KdV equation and write down
exact analytic solutions for the cnoidal and solitary waves.
Furthermore, specific features and nontrivial limits of these
solutions are discussed. In Sec. V, the numerical plots of
nonlinear ion-acoustic cnoidal and solitary waves in a Sagdeev
potential and phase plane are presented. Moreover, the effects
of the plasma number density, the ion cyclotron frequency,
and the direction cosines on the basic features of ion-acoustic
cnoidal waves are described. Finally, in Sec. VI, we present
our main conclusions.

II. BASIC EQUATIONS

We consider the propagation of nonlinear ion-acoustic
cnoidal and solitary waves in a three-dimensional plasma
system, whose constituents are relativistic degenerate
inertialess electrons and nondegenerate inertial cold ions.
This degenerate plasma system is assumed to be immersed
in an external static magnetic field ( �B = B0êz, where êz is
a unit vector in the z direction). At equilibrium, the charge

neutrality condition requires that Zn
(0)
i = n(0)

e , where n
(0)
i and

n(0)
e are the unperturbed number densities of ions and electrons,

respectively. For simplicity, let us assume that Z = 1. The
dynamic of the nonlinear electrostatic waves propagating in
such a degenerate plasma system is governed by [11,25]

∂ni

∂t
+ ∇ · (ni �ui) = 0, (1)

∂ �ui

∂t
+ (�ui · ∇)�ui = −∇ϕ + �(�ui × êz), (2)

∇ϕ − 1

ne

Pe0

n
(0)
e Ef e

∇Perd = 0, (3)

and

∇2ϕ = ne − ni. (4)

Here, the variables ni and ne are, respectively, the den-
sities of ions and electrons. �ui and ϕ are the ion flow
velocity and the electrostatic potential, respectively. ∇ =
(∂/∂x,∂/∂y,∂/∂z), where x, y, and z are the space coor-
dinates, and t is the time variable. The variables appear-
ing in Eqs. (1)–(4) have been appropriately normalized:
ni → ni/ n

(0)
i , ne → ne/ n(0)

e , ui(x,y,z) → ui(x,y,z)/CF , ϕ →
eϕ/Ef e, t → tωpi , and ∇ → ∇ λFi , where CF (=√

Ef e/mi)

is the ion-acoustic speed, ωpi(=
√

4πe2 n
(0)
i /mi ) is the ion

plasma frequency, and λFi(=
√

Ef e/4πe2 n
(0)
i ) is the Debye

radius. Moreover, � [=(eB0/mic)/ωpi] is the ion cyclotron
frequency, Ef e [=mec

2(γe − 1)] is the relativistic Fermi en-

ergy of the electron, where γe [=(1 + μ2
e)

1/2
] is the relativistic

factor with μe (=pFe/mec), which is the normalized relativis-
tic parameter and pFe the momentum on the Fermi surface
[12]. The relativistic degenerate pressure for electrons Perd is
given by [5,6,11]

Perd = πm4
ec

5

3h3

[
μe

(
2μ2

e − 3
)(

μ2
e + 1

)1/2 + 3 sinh−1(μe)
]
, (5)

Now, let us expand Eq. (5) around the unperturbed density
of electrons n(0)

e using the Taylor series expansion: We
obtain

Perd
∼= Pe0 + 2Ef e

3γe0
δne +

(
μ2

e0 + 2
)

9n
(0)
e γ 3

e0

δn2
e, (6)

where δne denotes the perturbed electron number densities,
and γe0 = (1 + μ2

e0)1/2 with μe0 (=pe0/mec) and pe0 = pFe =
(3n(0)

e h3/8π )1/3. Putting Eq. (6) into Eq. (3), one can express
the electron momentum equation as

ne

∂ϕ

∂z
= αe

∂δne

∂z
+ βe

∂δne
2

∂z
, (7)

where αe = 2
3γe0

and βe = (μ2
e0+2)
9γ 3

e0
. Furthermore, mi (me) is the

ion (electron) mass, e is the magnitude of the electric charge,
and c is the speed of the light in vacuum.
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III. DERIVATION OF THE NONLINEAR
MODIFIED KdV EQUATION

In order to investigate the propagation of nonlinear periodic
ion-acoustic and solitary waves in a dense relativistic degen-
erate magnetoplasma, we follow the reductive perturbation
technique, which leads to a scaling of the independent variables
through the stretched coordinates [26],

ξ = ε1/2(�xx + �yy + �zz − U0t), τ = ε3/2t, (8)

where ε is a smallness parameter measuring the weakness of
the nonlinearity, U0 is the phase velocity of the wave to be
determined later, and �x, �y , and �z are the direction cosines
of the wave vector �k along the x, y, and z axes, respectively,
so that �2

x + �2
y + �2

z = 1. Moreover, the physical perturbed
quantities are expanded about their equilibrium values in a
power series of ε as

ni,e = 1 + εn
(1)
i,e + ε2n

(2)
i,e + ε3n

(3)
i,e + · · · , (9)

ui(x,y) = ε3/2u
(1)
i(x,y) + ε2u

(2)
i(x,y) + · · · , (10)

ui(z) = εu
(1)
i(z) + ε2u

(2)
i(z) + ε3u

(3)
i(z) + · · · , (11)

ϕ = εϕ(1) + ε2ϕ(2) + ε3ϕ(3) + · · · . (12)

Substituting Eqs. (8)–(12) into the basic set of Eqs. (1)–(4)
and (7), and equating terms with the same powers of ε, we
obtain a set of equations for each order in ε. The set of
equations at the lowest order, i.e.,

− U0
∂n

(1)
i

∂ξ
+ �z

∂u
(1)
iz

∂ξ
= 0, (13a)

−�x

∂ϕ(1)

∂ξ
+ �u

(1)
iy = 0, (13b)

�y

∂ϕ(1)

∂ξ
+ �u

(1)
ix = 0, (14a)

−U0
∂u

(1)
i

∂ξ
+ �z

∂ϕ(1)

∂ξ
= 0, (14b)

n
(1)
i = n(1)

e , (15a)

−αe

∂n(1)
e

∂ξ
+ ∂ϕ(1)

∂ξ
= 0, (15b)

Moreover, after some algebraic manipulation, the following
relations are obtained:

U0 = �z

√
αe, (16a)

n(1)
i = �2

z

U 2
0

ϕ(1) + C1 (τ ) , (16b)

u
(1)
iz = �z

U0
ϕ(1) + C2 (τ ) , (17a)

n(1)
e = 1

αe

ϕ(1) + C3 (τ ) , (17b)

where C1(τ ), C2(τ ), and C3(τ ) are integration constants
which are independent of ξ and may depend on the variable τ .

Now taking next higher-order equations,

−U0
∂n

(2)
i

∂ξ
+ ∂n

(1)
i

∂τ
+ �z

∂
(
n

(1)
i u

(1)
iz

)
∂ξ

+ �x

∂u
(2)
ix

∂ξ
+ �y

∂u
(2)
iy

∂ξ
+ �z

∂u
(2)
iz

∂ξ
= 0, (18)

∂u
(1)
iz

∂τ
− U0

∂u
(2)
iz

∂ξ
+ �z

∂
(
n

(1)
i u

(1)
iz

)
∂ξ

+�zu
(1)
iz

∂u
(1)
iz

∂ξ
+ �z

∂ϕ(2)

∂ξ
= 0, (19)

u
(2)
iy = −U0

�

∂u
(1)
ix

∂ξ
, (20a)

u
(2)
ix = U0

�

∂u
(1)
iy

∂ξ
, (20b)

n(1)
e

∂ϕ(1)

∂ξ
+ ∂ϕ(2)

∂ξ
− αe

∂n(2)
e

∂ξ
− βe

∂n(1)
e

2

∂ξ
= 0, (21)

∂2ϕ(1)

∂ξ 2
= n(2)

e − n
(2)
i . (22)

Furthermore, after some algebraic steps, with the aid of
Eqs. (16) and (17), we obtain

∂n
(2)
i

∂ξ
= 2�3

z

U 2
0

∂ϕ(1)

∂τ
+ 3�4

z

U 4
0

ϕ(1) ∂ϕ(1)

∂ξ
+ �2

z

U 2
0

(C1(τ )

+ 2C2(τ ))
∂ϕ(1)

∂ξ
+

(
1 − �2

z

)
�2

∂3ϕ(1)

∂ξ 3
+ �2

z

U 2
0

∂ϕ(2)

∂ξ

+ 1

U0

∂C1 (τ )

∂τ
+ �z

U0

∂C2 (τ )

∂τ
. (23)

In the derivation of Eq. (23), the periodic boundary condition
implies that

∂C1 (τ )

∂τ
= ∂C2 (τ )

∂τ
= 0. (24)

Therefore, C1 and C2 are independent of ξ and τ . It should
be mentioned here that, from Eq. (15a), C1 is equal to C3.
Thus, C1, C2, and C3 are just constants. Accordingly, we can

express ∂n
(2)
i

∂ξ
and ∂n

(2)
e

∂ξ
as

∂n
(2)
i

∂ξ
= 2�3

z

U 2
0

∂ϕ(1)

∂τ
+ 3�4

z

U 4
0

ϕ(1) ∂ϕ(1)

∂ξ
+ �2

z

U 2
0

(C1 + 2C2)
∂ϕ(1)

∂ξ

+
(
1 − �2

z

)
�2

∂3ϕ(1)

∂ξ 3
+ �2

z

U 2
0

∂ϕ(2)

∂ξ
, (25)

∂n(2)
e

∂ξ
= 1

α3
e

(αe − 2βe) ϕ(1) ∂ϕ(1)

∂ξ
+ C1

α2
e

(αe − 2βe)
∂ϕ(1)

∂ξ

+ 1

αe

∂ϕ(2)

∂ξ
. (26)
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After differentiating Eq. (22) and using Eqs. (25) and (26),
we have the nonlinear modified KdV equation for describing
the nonlinear dynamics of ion-acoustic cnoidal and solitary
waves in the presence of nondegenerate inertial cold ions and
the relativistic degenerate inertialess electrons in magnetized
plasmas as follows:

∂ϕ(1)

∂τ
+ Aϕ(1) ∂ϕ(1)

∂ξ
+ B

∂3ϕ(1)

∂ξ 3
+ C

∂ϕ(1)

∂ξ
= 0, (27)

where

A = U0

α2
e

(αe + βe) , B = U0αe

2

(
1 +

(
1 − �2

z

)
�2

)
,

C = U0

αe

(
U0C1

�z

+ βeC2

)
.

IV. CNOIDAL WAVE-SOLITON SOLUTION
OF THE NONLINEAR MODIFIED

KdV EQUATION

Now, let us find the explicit stationary solutions of Eq. (27):
We introduce ζ = ξ − U1τ , where U1 is the velocity of the
nonlinear structure moving with the frame. By transforming
Eq. (27) into the ζ coordinate, after some algebraic steps, we
will obtain the energy conservation law as follows:

1

2

(
∂�

∂ ζ

)2

+ V (�) = 0, (28a)

where the Sagdeev potential V (�) is given by

V (�) = A

6B
�3 − U

2B
�2 + ρ0� − 1

2
E2

0 , (28b)

where 1
2E2

0 is the integration constant having the meaning of
the total energy of oscillations, U = U1 − C, and ϕ(1) = �.
In addition, ρ0 and E0 are the charge density and the electric
field when the potential � vanishes. Therefore, one can define
E2

0 by using the following initial conditions �(0) = φ0 and
d�(0)/dζ = 0:

E2
0 = A

3B
φ3

0 − U

B
φ2

0 + 2ρ0φ0. (29)

Substituting Eq. (29) into Eq. (28), after some algebraic
manipulations, we have(

∂�

∂ ζ

)2

= A

3B
(φ0 − �)(� − φ1)(� − φ2), (30)

where φ1,2 = 3
2 [U

A
− φ0

3 ±
√

1
3 (�1 − φ0)(φ0 − �2)] and

�1,2 = U
A

± 2
√

U 2

A2 − 2ρ0
B
A

.
The last relations indicate that the inequality �2 � φ0 �

�1, or �1 � φ0 � �2, should be satisfied. Moreover, the
following relation can be obtained from Eqs. (28) and (30):

U = A

3
(φ0 + φ1 + φ2) . (31)

The periodic wave solution of Eq. (28) is given by [27,28]

�(ζ ) = φ1 + ψcn cn2(Dζ,m), (32)

where cn is the Jacobian elliptic function, whereas the
parameters m (0 < m < 1) and D are defined as

m2 = (φ0 − φ1)

(φ0 − φ2)
, (33)

D =
√

A

12B
(φ0 − φ2). (34)

Physically, the elliptic parameter m (the modulus) may be
viewed as a fair indicator of the nonlinearity with the linear
limit being m → 0 and the extreme nonlinear limit being
m → 1. The conditions for the existence of a cnoidal solution
of Eq. (32) require that φ0 > φ1 � φ2 and φ1 � � � φ0.
Furthermore, the amplitude ψcn, the wavelength λ, and the
frequency ν of the cnoidal wave are defined as

ψcn = (φ0 − φ1), (35)

λ = 4

√
3B

A(φ0 − φ2)
K(m), (36)

ν = V/λ, (37)

where K(m) is the first kind of complete elliptic integral and
V (=U0 + U1) is the velocity of the cnoidal waves in the
laboratory frame.

Now, let us describe the soliton solution for two limits. For
the first case, m → 1, ρ0 �= 0, and E0 �= 0, this case can be
achieved at φ0 ≈ �1 or φ0 ≈ �2. On doing this, we arrive at
the following relation:

φ1 ≈ φ2 = U

A
±

√(
U

A

)2

− 2ρ0
B

A
. (38)

Therefore, K(m) → ∞ and the Jacobi elliptic function cn δ

degenerates to the hyperbolic function sech δ, (i.e., cn δ →
sech δ) [29–31]. Consequently, the wavelength λ [i.e., Eq. (36)]
tends to infinity and the periodic solution [i.e., Eq. (32)]
becomes the soliton solution,

�(ζ ) = φ1 + (φ0 − φ1)sech2

(√
A

12B
(φ0 − φ1)ζ

)
. (39)

Clearly, Eq. (39) indicates that φ1 represents the poten-
tial at ζ → ±∞. On the other side, the second case
(m → 1 and ρ0 = E0 = 0) can be realized at φ1 = φ2 = 0.
In this case, ψcn = φ0 = 3U1/A = ψm, D = √

Aφ0/12B =√
U1/4B = 1/W , and cn δ → sech δ [29–31], then the cn-

odial wave solution [i.e., Eq. (32)] is reduced to the ion-
acoustic soliton solution

�(ζ ) = ψm sech2(ζ/W ), (40)

where ψm(=3U1/A) and W (=√
4B/U1) are the amplitude

and the width of the ion-acoustic solitary wave, respectively.

V. NUMERICAL RESULTS AND DISCUSSIONS

In the preceding section, we have introduced an analytical
description for the propagation of ion-acoustic cnoidal and
solitary waves in a dense relativistic degenerate magneto-
plasma consisting of relativistic degenerate electrons and
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nondegenerate cold ions using the solutions [Eq. (32) of
cnoidal waves, Eqs. (39) and (40) of solitary waves, of
the derived Eq. (27) “nonlinear modified KdV equation”].
However, before proceeding to the nonlinear analysis, it is
interesting to examine the polarity of the nonlinear structures.
As is evident from the nonlinear modified KdV equation, the
nonlinear coefficient A and the dispersion coefficient B are
always positive. Therefore, in our system under consideration,
only compressive (i.e., hump) structures of the nonlinear
periodic and solitary waves are formed. Here, we try to analyze
our results numerically. For illustration, parameters are chosen
that are representative of the relativistic plasmas found in
white dwarfs. Consider n(0)

e ≈ 1030–1031 cm3 and B0 ≈ 1010 G
[11]. Figure 1 represents the variation in the Sagdeev potential
V (�) with respect to potential � using Eq. (28). Clearly, the
solid (the dashed) curve in Fig. 1 demonstrates the Sagdeev
potential V (�) corresponding to the cnoidal wave (solitary
wave). In the case of a cnoidal wave (i.e., ρ0 �= 0 and E0 �= 0),
the three real zeros of the Sagdeev potential corresponding
to the cnoidal wave are φ0, φ1, and φ2. Furthermore, the
Sagdeev potential corresponding to the cnoidal wave does not
become zero at � = 0. In addition, physically, one can observe
that this Sagdeev potential is such that the pseudoparticle
oscillates periodically back and forth in the potential well
between points φ0 and φ1 and cannot reach point φ2 due to
the small potential barrier. Accordingly, the potential structure
corresponding to the cnoidal wave is repeated and the distance
between repetitions of the wave shape corresponds to one
wavelength. On the other hand, in the case of a soliton (i.e.,
ρ0 = E0 = 0), the Sagdeev potential V (�) becomes zero at
� = 0. To support the results displayed in Fig. 1, we have also
made a corresponding phase plane for the ion-acoustic cnoidal
wave (bounded solid curve) and the soliton described by a
separatrix (dashed curve). The numerical results are displayed
in Fig. 2, where we have plotted the phase plane for the fixed

-4

-2

2

4

6

8

10-8

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

88
V( ) 

4  

FIG. 1. (Color online) Variation in Sagdeev potential V (�) with
respect to the potential � using Eq. (28), for n(0)

e = 1 × 1031,
�z = 0.6, � = 0.0006, U = 0.15, and (|E0|,ρ0) = (0.000 07,

1 × 10−7) (solid curve) and (0,0) (dashed curve).

-2

-1

1

2

10
- 4

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

- 44

4

FIG. 2. (Color online) Phase curves using Eqs. (28) and (30),
with n(0)

e = 1 × 1031, �z = 0.6, � = 0.0006, U = 0.15, and
(|E0|,ρ0) = (0.000 07,1 × 10−7) (solid curve) and (0,0) (dashed
curve).

values of the parameters as taken in Fig. 1. In the solid phase
plane (i.e., ρ0 �= 0 and E0 �= 0) of Fig. 2, one can note that the
phase curve is repeated on the same path and one complete
cycle corresponds to a wavelength in the physical space. This
means, physically, that whenever the pseudoparticle’s velocity
becomes zero [i.e., (d�/dζ = 0)], the potential force reflects it
back [since −dV (�)/d� �= 0], and then it oscillates between
two points φ0 and φ1. Therefore, the closed curve in the
phase plane implies that the trajectory is a periodic orbit. On
the other side, the dashed phase curve (i.e., ρ0 = E0 = 0) in
Fig. 2 emerges from the origin, circling anticlockwise around
the positive � axis, and again stops at the origin, entering
from the upper side. In the mechanical analogy, at � = 0, the
pseudoparticle starts with zero speed and gains some speed
along the positive � axis. After getting maximum speed, its
speed decreases and becomes zero at � = �max. Furthermore,
due to a potential force, the pseudoparticle bounces back
toward the origin, which acts on it, where −dV (�)/d� �= 0,
gains speed in the opposite direction (i.e., along the negative �

axis), and returns to rest at position � = 0. In physical space,
the electric potential � increases from zero (at ζ = −∞),
attains a maximum value at � = 0, and then decreases until
it becomes zero (at ζ = ∞). This potential structure does not
repeat and it represents an ion-acoustic soliton [26]. Figure 3
demonstrates the profiles of the cnoidal wave [i.e., Eq. (32)],
the solitary wave [using the solution of Eq. (39)], and the
soliton solution of Eq. (40). Furthermore, Fig. 3 illustrates
how the cnoidal wave shrinks, under certain conditions, to the
solitary wave. It should be mentioned here that the soliton
solution of Eq. (40) completely agrees with the recent work of
Rahman et al. [11].

Numerically, for example, let us consider n(0)
e = 1031 cm3,

B0 = 1010 G, and �z = 0.7: The characteristic plasma pa-
rameters become U0 (the phase velocity)= 0.4915, ψm (the
solitary wave amplitude) = 0.1772, and W (the width of the
ion-acoustic solitary wave) = 40 047, which are in agreement
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FIG. 3. (Color online) Variation in � with respect to ζ ,
n(0)

e = 1 × 1031, �z = 0.6, � = 0.0006, and (|E0|,ρ0) = (0.000 07,

1 × 10−7) (solid curve, ion-acoustic cnoidal wave), using Eq. (32),
(0.000 07, 1 × 10−7) (dotted curve, ion-acoustic solitary wave), using
Eq. (39), and (0,0) (dashed curve, ion-acoustic solitary wave), using
Eq. (40).

with the numerical values of Rahman et al. [11]. Here, we
will now investigate the effects of plasma number density n(0)

e ,
ion cyclotron frequency �, and direction cosines �z on the
basic properties of ion-acoustic cnoidal waves. The results
are displayed in Figs. 4–6. In Fig. 4, the effect of plasma
number density on the profile of the ion-acoustic cnoidal
waves against the space coordinate ζ is investigated. It is clear
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FIG. 4. (Color online) Variation of ion-acoustic cnoidal wave �

with respect to ζ, �z = 0.6, � = 0.0006, U = 0.15, (|E0|,ρ0) =
(0.000 07,1 × 10−7), n(0)

e = 1 × 1031 (solid curve), and n(0)
e = 8 ×

1030 (dashed curve).
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FIG. 5. (Color online) Variation of ion-acoustic cnoidal wave
� with respect to ζ, n(0)

e = 1 × 1031, � = 0.0006, U = 0.15,
(|E0|,ρ0) = (0.000 07,1 × 10−7), �z = 0.55 (solid curve), and
�z = 0.6 (dashed curve).

that the amplitude and the width of the cnoidal wave grow
up due to the increase of plasma number density n(0)

e . This
behavior arises due to the fact that the restoring force of the
ion-acoustic cnoidal wave is provided by electron pressure, and
that increasing n(0)

e can be viewed as an equivalent process for
increasing electron pressure, which, in turn, makes the ampli-
tude of the ion-acoustic cnoidal wave higher. On the other
hand, the increase of n(0)

e causes the coefficient of the
dispersion term in the nonlinear modified KdV equation to
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FIG. 6. (Color online) Variation of ion-acoustic cnoidal wave �

with respect to ζ , n(0)
e = 1 × 1031, �z = 0.6, U = 0.15, (|E0|,ρ0) =

(0.000 07,1 × 10−7), � = 0.0006 (solid curve), and � = 0.000 58
(dashed curve).
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be smaller, and, as a result, the cnoidal wave becomes fatter. In
Fig. 5, the variation of the profile of the ion-acoustic cnoidal
wave with �z (the direction cosines of the wave vector �k along
the z axis) is examined. It is manifest that both the amplitude
and the width increase as �z decreases. It can be predicted that
as the cnoidal wave approaches the direction perpendicular to
the magnetic field, the amplitude and the width of the cnoidal
wave would become extremely large, and from this point, the
cnoidal wave disappears. Now, let us look at the effect of
ion cyclotron frequency � on the ion-acoustic cnoidal wave
which is exhibited in Fig. 6. It is seen that the amplitude and
the width of the cnoidal wave increase as � increases. It means
that for an increase of B0 (the external static magnetic field),
the coefficient of the dispersion term in the nonlinear modified
KdV equation is smaller, which in turn leads, respectively, to
the increase (decrease) of the numerical value of φ0(φ1), and
consequently, the amplitude and the width of the cnoidal wave
go up.

VI. CONCLUSION

This article considered a three-dimensional dense relativis-
tic degenerate magnetoplasma system composed of relativistic
degenerate electrons and nondegenerate cold ions. The nonlin-
ear propagation of the cnoidal and solitary waves is described
by a nonlinear modified KdV equation. The compressive
structures of the allowed ion-acoustic cnoidal and solitary
waves are formed. In the particular case of a soliton [11], this
is in agreement with what has been observed in the dense

relativistic degenerate magnetoplasma model [11], which
reveals compressive solitons only. Under nontrivial limits of
the cnoidal wave solution, we deduced exact analytic solutions
for the soliton solutions. Furthermore, the effects of plasma
number density, ion cyclotron frequency, and direction cosines
on the profile of ion-acoustic cnoidal waves are discussed
and graphically displayed. It is found that the amplitude and
the width of the cnoidal wave enhance (diminish) due to the
increase of plasma number density and ion cyclotron frequency
(the direction cosines of the wave vector �k along the z axis).
The present findings show significant modifications of the
basic properties of the cnoidal wave solutions (amplitude and
width) and reveal different features in comparison with a recent
study of solitary waves in the dense relativistic degenerate
case [11]. Moreover, the behavior of ion-acoustic cnoidal
waves is completely different from the behavior of ion-acoustic
solitary waves. It is hoped that ion-acoustic cnoidal waves can
be really observed in dense relativistic degenerate plasmas.
Moreover, the cnoidal wave and soliton solutions obtained
in this article may have applications in certain astrophysical
scenarios, especially dense plasmas in the atmosphere of
neutron stars and the interior of massive white dwarfs [32].
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