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Unified description of linear screening in dense plasmas
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Electron screening of ions is among the most fundamental properties of plasmas, determining the effective ionic
interactions that impact all properties of a plasma. With the development of new experimental facilities that probe
high-energy-density physics regimes ranging from warm dense matter to hot dense matter, a unified framework
for describing dense plasma screening has become essential. Such a unified framework is presented here based on
finite-temperature orbital-free density functional theory, including gradient corrections and exchange-correlation
effects. We find a new analytic pair potential for the ion-ion interaction that incorporates moderate electronic
coupling, quantum degeneracy, gradient corrections to the free energy, and finite temperatures. This potential can
be used in large-scale “classical” molecular dynamics simulations, as well as in simpler theoretical models (e.g.,
integral equations and Monte Carlo), with no additional computational complexity. The new potential theoretically
connects limits of Debye-Hückel–Yukawa, Lindhard, Thomas-Fermi, and Bohmian quantum hydrodynamics
descriptions. Based on this new potential, we predict ionic static structure factors that can be validated using
x-ray Thomson scattering data.
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I. INTRODUCTION

Accurate modeling of dense plasmas often requires very-
large-scale molecular dynamics (MD) simulations. Reaching
the mesoscopic scales of nonequilibrium transport can necessi-
tate millions to billions of particles [1]. To achieve these scales
while still maintaining a predictive capability, pair potentials
that are simple in form (preferably analytic), rigorously
derived, and wide-ranging are of immense utility; they are
also of use in integral equations, such as the hypernetted chain
equations, and in Monte Carlo simulations. Moreover, as MD
simulations have as their primary input a potential (or force),
it is essential that a deeper understanding is formulated of the
physical underpinnings of the plethora of available potentials,
which can be derived from Debye-Hückel–Yukawa, Lindhard,
Thomas-Fermi, Bohmian hydrodynamic theories, etc. [2–4].
This is of particular interest today as new high-energy-density
facilities, such as the National Ignition Facility (NIF) and
the Linac Coherent Light Source (LCLS), begin generating
high-quality data across large regions of parameter space [5,6].
In particular, while plasma screening is well understood at
very high temperatures, we desire a description that spans
into the warm dense matter (WDM) regime where condensed
matter behavior appears; WDM occurs in giant planets, fast
ignition experiments, and other laboratory experiments [7].
Insights into plasma screening across orders of magnitude
in temperature and density also reconcile issues arising in
quantum hydrodynamics (QHD) [8], including recent contro-
versies regarding novel quantum potentials obtained from the
Bohmian formulation [9–14].

In this paper, we focus primarily on linear screening.
When the screening is describable in terms of a dielectric
response of the form ε(k) = 1 + (λsk)−2, one obtains the
celebrated Yukawa potential (also known as the Debye-Hückel
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or screened Coulomb potential):

φ(r) = Ze

r
e−r/λs , (1)

where Ze is the impurity charge and λs is the screening
length. Since the pioneering work of Debye and Hückel [15],
the Yukawa form has been applied widely to electrolytes,
colloids, and dilute plasmas [3,4]. In a hot, dilute system,
the screening length associated with the electrons is given
by λD =

√
kBTe/(4πe2n) [Debye-Hückel (DH) screening],

whereas in a dense plasma, it is given more generally by λ−2
TF =

4πe2(∂n/∂μ) [Thomas-Fermi (TF) screening] to account for
degeneracy effects. Here n is the mean electron density, e is
the elementary charge, kB is the Boltzmann constant, Te is
the electron temperature, and μ is the chemical potential. We
generalize the Debye-Hückel–Yukawa model to incorporate
gradient corrections and quantum exchange-correlation effects
in the free energy that extend the Yukawa form toward
moderate electron coupling.

The paper is organized as follows. In Sec. II, we derive
an analytic generalization of the Yukawa potential to include
finite-temperature gradient corrections in the free energy and
exchange-correlation effects. An analysis of the potential and
numerical results are then presented in Sec. III. In Sec. IV,
we compare our model to similar potentials used in the field
within the framework of quantum hydrodynamics. Finally,
conclusions are presented in Sec. V.

II. MODEL FORMULATION

In this section, we proceed in small steps to illustrate
the relative contributions to the overall screening theory.
We begin by reviewing the basic TF screening model
and its formulation as an orbital-free density functional
theory (OF-DFT) to yield a screened potential valid over
the entire temperature range. In Sec. II A, we then add a
finite-temperature gradient correction to the kinetic energy
and find that a qualitatively new functional form emerges
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under certain conditions. Finally, in Sec. II B, we include the
exchange-correlation (XC) contribution at long wavelengths
and obtain XC corrections while retaining an analytic form
useful across wide ranges of coupling and degeneracy.

To allow us to focus on linear screening properties, we
incorporate the strongly interacting localized states into an
effective nuclear charge Z∗e and examine the properties of
the weakly interacting “free” states [7]. We use atomic units
(i.e., e = me = � = 4πε0 = 1) for the remainder of this work.
Consider the grand potential [16] for the free electrons n(r)
in the presence of an external potential produced by the ionic
cores, which we write as

� = T [n] + 1

2

∫∫
dr′dr

n(r)n(r′)
|r − r′|

+
∫

dr [vext(r) − μ] n(r) + Fxc[n], (2)

where T [n] is the kinetic energy functional, the second
term is the Hartree (classical) electron-electron interaction,
vext(r) is an external potential arising from the ionic cores,
μ is the chemical potential, which ensures charge neutrality,
and Fxc[n] is the XC contribution. To obtain an analytic
result, we employ an “orbital-free” approach in which several
approximations are made for the kinetic energy term; we
return to the issue of the XC contribution in Sec. II B. In the
long-wavelength limit, the kinetic energy contribution takes
the local-density (or TF) form [16] of

T ≈ TTF[n] =
√

2

π2β5/2

∫
dr

[
ηI1/2(η) − 2

3
I3/2(η)

]
, (3)

with

n(r) =
√

2

π2β3/2
I1/2[η(r)], (4)

where the Fermi-Dirac integral of order p is defined asIp(η) ≡∫ ∞
0 dx xp/(1 + ex−η), and β = 1/Te is the inverse thermal

energy of the free electrons (here kB has been absorbed into
the temperature, so that it is expressed in energy units). Upon
minimizing the functional (2) with respect to n, by setting
δ�/δn = 0, we obtain the Euler-Lagrange equation

vext(r) = μ − 1

β
η(r) −

∫
dr′ n(r′)

|r − r′| . (5)

If we next introduce the perturbations vext ∼ δvext and n ∼
n0 + δn, where n0 is the mean free electron density, we obtain
the susceptibility (in Fourier space)

χ (k) = δn(k)

δvext(k)
= −1

c0 + vee(k)
, (6)

with

c0 = (π2
√

2β)/I−1/2(η0), (7)

where vee(k) = 4π/k2, k = |k|, and η0 = η(n0) from rela-
tion (4). Taking the external potential to be from a collection
of point ions yields the relation

δn(k) = −vee(k)χ (k)
∑

n

Z∗eik·Rn , (8)

where the ions are located at positions Rn. Using the approxi-
mation n ≈ n0 + δn and the Poisson equation ∇2� = −4πρ,
we can solve for the total electric potential as

�(r) =
∑

n

φn(r − Rn), φn(r) = Z∗

r
e−r/λTF , (9)

where r = |r|, and the TF screening length can be expressed
explicitly as

λ2
TF = c0

4π
= π

√
2β

4I−1/2(η0)
. (10)

This well-known result is the dense plasma Yukawa screening
potential with λTF(n0,Te) as the TF screening length (in the
high-temperature limit, this naturally reduces to the Debye
length).

Up to this point, the effective ion-ion potential (9) incor-
porates linear, electron screening in the absence of gradient
corrections to the free energy or XC effects, where the screen-
ing length is obtained from relations (4) and (10). Accurate
Padé approximants to the relevant Fermi integrals and their
derivatives and inversions can be found in Refs. [17,18].
Note that while the Yukawa potential captures a great deal
of the screening physics over the full temperature range with
a simple analytic form, it will exhibit several major failures
in the predicted electron screening cloud that are associated
with TF theory. Of note are the following: (i) the electron
density is singular at the ionic core, (ii) the density decays too
rapidly far from an ion, and (iii) the density will always decay
monotonically (see for example Chap. 6 in Ref. [19]). All three
of of these pathologies are addressed in the next section.

A. Gradient-corrected potential

We now improve the TF result through systematic correc-
tions to the grand potential. As the primary weakness of the TF
functional is its treatment of a uniform electron gas, we include
the finite-temperature Kirzhnits gradient correction [20,21] to
the kinetic energy, which we write as

T ≈ TTF[n] + TK[n,∇n], (11)

TK = 3
√

2π2

8
λβ3/2

∫
dr

I ′
−1/2(η)

I2
−1/2(η)

|∇n|2, (12)

where η is calculated from relation (4). Note that, while
we are primarily interested in gradient corrections, we also
include a factor of λ to allow the model to span both the
true gradient-corrected TF limit (λ = 1/9) and the traditional
von Weizsäcker correction at Te = 0 (λ = 1); however, all
calculations presented in this work use the value λ = 1/9.
Now, repeating the above procedure, we obtain the gradient-
corrected susceptibility

χ (k) = −1

4πλ2
TF + πνλ4

TFk
2 + vee(k)

, (13)

with

ν = 3
√

8β

π
λI ′

−1/2(η0), (14)
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where the prime in Eq. (14) denotes differentiation with respect
to η0.

The parameter ν characterizes the strength of the gradient
correction in the free energy and will obviously depend on the
mean density and temperature of the free electrons. For ν < 1,
which occurs for large densities and/or temperatures, this form
readily admits the analytic potential

φn(r) = Z∗

2r
[(1 + α)e−r/λ− + (1 − α)e−r/λ+ ], (15)

where the various coefficients are calculated as

λ2
± = νλ2

TF

2 ± 2
√

1 − ν
, α = 1√

1 − ν
. (16)

As expected, the TF-Yukawa (TF-Y) result is returned as ν →
0, which is equivalent to the high-temperature (or density) limit
with α → 1, λ+ → 0, and λ− → λTF. Naturally, the traditional
DH limit is included in the high-temperature limit.

For the case ν > 1, we write α′ = 1/
√

ν − 1 (where α′ ∈
R) and obtain the oscillatory potential

φn(r) = Z∗

r
[cos(r/γ−) + α′ sin(r/γ−)]e−r/γ+ , (17)

where the length scales are given by

γ 2
± = νλ2

TF√
ν ± 1

. (18)

Equations (15) and (17) give the exact gradient-corrected
screening (EGS) potential to linear order in the absence of
XC effects.

While Eq. (15) is functionally similar to TF-Y, Eq. (17)
is qualitatively different, a result directly connected with
gradient corrections beyond TF. In the cool, dilute regime,
the gradient correction predicts that a weak attraction between
the ions is possible, a result consistent with the onset of Friedel
oscillations [22,23]. The functional forms of Eqs. (15) and (17)
will arise within any model that takes next-order gradient cor-
rections into account [24,25], as they merely add higher powers
of k2 to the denominator of Eq. (13), and here we have obtained
the specific coefficients in the warm to hot, dense limit.

In Fig. 1, we compare all three length scales: the two
new screening lengths, Eqs. (16) and (18), and the classical
Debye-Hückel length λD. The qualitative changes seen can be
understood as lines cutting through the phase diagram in Fig. 3
and crossing the curve λ+ = λ−, which will be discussed later.

Using Eq. (8), we can also calculate the electron densities
implied by the various pair potentials. For the traditional TF-Y
case, the density fluctuation around a given ion is given by

δn(r) = Z∗

4πλ2
TFr

e−r/λTF (19)

and has the well-known singularity at the ionic core. Using
the EGS potential for both monotonic and oscillatory cases,
respectively, the electronic density fluctuation around an ion is

δnmon(r) = Z∗α
4πλ2

TFr
[e−r/λ− − e−r/λ+ ], (20)

δnosc(r) = Z∗α′

2πλ2
TFr

e−r/γ+ sin(r/γ−). (21)

FIG. 1. (Color online) Screening lengths λ± and γ+ for EGS
(green, solid line) compared to λTF for TF-Y (blue, dotted line) and
λD for DH (blue, dashed line). The top panel shows the lengths
as a function of Te with the fixed mean electron density being
n0 = 1022 cm−3, while the bottom panel shows the lengths as a
function of n0 with the fixed temperature Te = 1 eV. The bifurcation
points on each EGS curve correspond to the monotonic-oscillatory
transition.

From these relations, we can immediately see that the EGS
potential correctly predicts a finite cusp at an ionic center for ei-
ther case, where the monotonic case is shown in Fig. 2. At large
distances from the center, it can also be shown that the electron
density predicted by the EGS potential will always decay faster
than a density resulting from the linearized TF theory. Finally,
we observe that the oscillatory potential (ν > 1) yields Friedel-
like oscillations in the corresponding density fluctuation.
Hence, the inclusion of the gradient correction (12) to obtain
Eqs. (15) and (17) is not only a quantitative improvement over
the full range of temperatures but also improves three qualita-
tive features lacking in a TF-based model: (i) a finite cusp in
the electron screening cloud at an ionic core, (ii) a more rapid
decay in the density far from an ion, and (iii) the possibility of
Friedel oscillations. Note that while the correct cusp condition
is not satisfied for either λ = 1 or λ = 1/9, λ could be varied
to an intermediate value to recover this property.

B. Exchange-correlation effects

The new analytic interionic potentials of Eqs. (15) and (17)
were obtained so far in the absence of an XC functional. To
address this issue, we must examine how the presence of XC
effects alter the coefficients of Eq. (13) and therefore require
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FIG. 2. (Color online) Comparison of free electron density devi-
ations from the mean, n0, about a point impurity at the origin for
TF-Y (blue, dashed) and EGS (green, solid), where n0 = 1022 cm−3

and Te = 5 eV. The inset is the same plot on a semilog scale. Note
that EGS correctly predicts δn(0) to be a finite cusp, and as r → ∞,
it predicts a lower electron density. These effects arise due to the fact
that the Kirzhnits correction (12) penalizes not only gradients but also
low densities.

the long-wavelength expansion of the full response function.
We can establish the exact connection between the suscepti-
bility and the local field correction (LFC) G(k) given by

χ (k) = χ0(k)

1 − vee(k)χ0(k) [1 − G(k)]
, (22)

where χ0(k) is the usual static Lindhard response function

χ0(k) = −4
∫

dp
(2π )3

[
f0(p + k) − f0(p)

|p + k|2 − |p|2
]

, (23)

with

f0(p) ≡ [1 + eβ(|p|2/2−μ)]−1, (24)

and the LFC can be written in terms of the XC function
through the relation

G(k) = − 1

vee(k)

δ2Fxc[n]

δn(k′)δn(k′′)
, k = |k′ − k′′|. (25)

The expansion of the inverse Lindhard function can readily
be shown to be

χ−1
0 (k) ≈ −4πλ2

TF − πνλ4
TFk

2, (26)

and hence the EGS potential can also be viewed as the
long-wavelength limit of the Lindhard response theory.
Similarly, in this limit, the LFC is formally known to be

G(k) ≈ γ0k
2 =

(
1 − κ0

κ

)
πk2

4kF

, (27)

where the Fermi wave number is kF = (3π2ne)1/3, and κ and
κ0 are the isothermal compressibilities for interacting and non-
interacting electron gases, respectively [26]. Together, these
results yield an exact, long-wavelength susceptibility of the

form

χLFC(k) = −1

4π
(
λ2

TF − γ0
) + πνλ4

TFk
2 + vee(k)

. (28)

Note that this has the same functional form as Eq. (13)
but with a correction due to the compressibility relation
arising from the LFC. The compressibility corrections yield
a more accurate potential (up to moderate coupling) but
do not change the form. As we can see, the leading-order
term (27) enters only into the TF component of the expansion;
however, higher-order corrections to G(k) can themselves
induce oscillations even in the absence of quantum gradient
corrections [27,28]. The coefficients of the EGS potential are
hence modified to incorporate this moderate coupling effect as

λ2
± → νλ2

TF

2b ± 2
√

b2 − ν
, α → b√

b − ν
, (29)

for the monotonic case, and

γ 2
± → νλ2

TF√
ν ± b

, α′ → b√
ν − b

, (30)

for the oscillatory case, where b = 1 − γ0λ
−2
TF .

While the compressibility is not known exactly, very
accurate predictions have been calculated. For example,
the parameter γ0 can be approximated by neglecting the
correlation contributions and using the fit from Refs. [7,29]
given by

γ0 ≈ 1
8β�[h(�) − 2�h′(�)], (31)

where the degeneracy parameter is defined as � ≡ Te/EF ,
with EF = k2

F /2, and h(�) is given by

h(�) = N (�)

D(�)
tanh(�−1), (32)

N (�) = 1 + 2.8343�2 − 0.2151�3 + 5.2759�4, (33)

D(�) = 1 + 3.9431�2 + 7.9138�4. (34)

III. RESULTS

A. Regimes of validity

The TF-Y model can be viewed as the first-order correction
to a purely Coulombic system. As Te is lowered from
infinity, the length scale λTF becomes finite and eventually
comparable to the characteristic length scale of the system
[the ion sphere radius, ai = (4πni/3)−1/3]. When ai ∼ λTF,
the approximation of bare Coulomb interactions is no longer
valid. This crossover is equivalent to the point at which the
number of particles within a Debye sphere has reached unity.

Now that we have the gradient-corrected potential, we can
apply the same reasoning to establish a regime of validity
for a TF-Y system. Within the framework of the EGS model,
λ− acts as the modified Debye-like screening length, and the
next-order length-scale to arise from the gradient correction
is λ+. The TF-Y model should then lose its validity when
λ+ ∼ λ−. In Fig. 3, we have shown both ai = λTF and λ+ = λ−
in the (ni,Te) parameter space; the latter curve being equivalent
to I ′

−1/2(η0) = 3π
√

Te/8 when G(k) = 0. We have chosen to
show this with Be and have used a TF fit to approximate Z∗ (see
Table IV of Ref. [30]). As the white line shows, Coulombic
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FIG. 3. (Color online) Phase space regions of screening model
validity for Be. Unscreened Coulombic interactions lose validity for
temperatures and densities below λTF = ai (white line), and similarly,
the Yukawa interaction loses validity below λ+ = λ− (black lines).
For the latter condition, we have shown the cases with (dashed, black
line) and without (solid, black line) local field corrections. Behind
these curves, a color plot of �ee is shown to demonstrate regions of
strong e-e coupling.

interactions lose validity to Yukawa interactions which in turn
lose validity to the EGS interaction as Te and ni decrease
(solid black line). We have also included the curve λ+ = λ−
with LFCs (dashed black line), which appears to enhance
the importance of the gradient corrections. Behind each of
these curves, we have additionally plotted a colormap of the
electron-electron (e-e) coupling strength, which is taken as

�ee = e2

aeTe

, ae =
(

3

4πn0

)1/3

. (35)

Here, the electron kinetic energy is approximated using

Te ≈ 2
∫

dp
(2π )3

(
p2

2

)
f0(p), (36)

where f0(p) is the Fermi-Dirac distribution defined in Eq. (24).
From the figure, it is clear that the gradient corrections are
larger in regions with stronger e-e coupling.

B. Correlation functions

Finally, we present ion-ion radial distribution functions,
gii(r), and the corresponding static structure factors calculated
from the relation

Sii(k) = 1 + nhii(k). (37)

Here, hii(k) is the Fourier transform of the total correlation
function defined by hii(r) ≡ gii(r) − 1. We compute these
correlation functions using the Ornstein-Zernike equation

hii(r) = cii(r) + n

∫
dr′hii(|r − r′|)cii(r

′) (38)

and the hypernetted-chain closure relation

gii(r) = exp {hii(r) − cii(r) − βZiφi(r)} , (39)

FIG. 4. (Color online) Radial distribution function (a) and static
structure factor (b) comparisons between TF-Y (blue, dashed line)
and EGS (green, solid line) models for Al. In each case, we have
set Z∗ = 3, ni = 6 × 1022 cm−3, and Te = 0.5 eV. The EGS potential
predicts a lower repulsion between ions than the TF-Y model due
to the reduced electron densities near the ionic centers; however, the
overall screening effects are enhanced from the diminished densities
in the far field.

where cii(r) is the direct correlation function (see for example
Chap. 10.3 in Ref. [31]). The calculations were performed for
Al with the ionization taken as the valence Z∗ = 3 at solid
density and Te = 0.5 eV as shown in Fig. 4. As expected, the
EGS potential predicts a lower repulsion between ions than the
TF-Y model due to the reduced electron densities near the ionic
centers; however, in this case, the overall screening effects are
enhanced from the diminished densities in the far field.

IV. COMPARISON TO QHD MODELS

Recently, a “novel attractive force” between ions based
on a QHD formulation has been derived by Shukla and
Eliasson (SE) [9–11]. Despite issues associated with linearized
formulations [12], which is our interest here, the Bohmian
formulation of QHD predicts an ion-ion potential similar to our
Eqs. (15) and (17), albeit from a very different starting point.
Unfortunately, the Bohmian formulation cannot be rigorously
extended to finite-temperature or include additional contribu-
tions in a self-consistent way. The underlying reason for this
limitation is that Bohmian QHD arises from a property of
single-particle dynamics, which yields the so-called quantum
force or potential.

We desire a QHD framework that makes a direct connection
to the free energy functional, so that we can incorporate the
results of this paper, when QHD is needed [32]. Following
the QHD formulation of Bloch [33], which was generalized

033104-5



L. G. STANTON AND M. S. MURILLO PHYSICAL REVIEW E 91, 033104 (2015)

by Ying [34] within the formalism of DFT, the equations of
motion for the quantum fluid are written as

∂n

∂t
+ ∇ · (nv) = 0, (40)

∂v
∂t

+ (v · ∇)v = −∇
(

δF
δn

)
, (41)

where the free energyF = � + μ
∫

dr n(r) with the grand po-
tential � defined in Eq. (2). In equilibrium, these equations ob-
viously yield the Euler-Lagrange equation (δ�/δn = 0) for the
density; thus all quantum force terms arise naturally and self-
consistently through the free energy for a finite-temperature
many-body system. The equilibrium linear response of
Blochian QHD is therefore consistent with our formulation.

We can now examine in detail the SE potential within the
context of a free energy. If we neglect the XC contribution
and evaluate our expression (13) at zero temperature and for
λ = 1, we do recover the Bohmian QHD prediction, revealing
that Bohmian QHD is equivalent to the TF model with the
von Weizsäcker correction. This limiting case is consistent
with the fact that von Weizsäcker [35] originally derived his
functional to describe one-electron systems (or, opposite-spin,
two-electron systems), and it is therefore not straightforward
to extend to finite-temperature many-body systems. Thus, our
potentials (15) and (17), being consistent with a QHD theory
of the forms (40) and (41) that includes the free energy, greatly
improves upon the SE potential. Perhaps most importantly, it
also reveals that the SE potential is not “novel” in the sense
that any correctly formulated linear screening potential should
have the properties we have discussed, like finite electron
densities or the possibility of oscillations, which lead to an
attractive potential.

V. CONCLUSION

In summary, we have connected disparate view-
points of linear screening in dense plasmas, including

Debye-Hückel–Yukawa, Lindhard, and Bohmian QHD mod-
els. By formulating the screening problem in terms of DFT
and response functions, we are able to systematically include
corrections that incorporate Coulomb coupling and quantum
degeneracy effects. We have shown that coupling corrections
can be included directly through the local field correction (or
equivalently the XC potential) in the long-wavelength limit
without changing the functional form of the Yukawa potential.
Furthermore, gradient corrections, which are either quantum
or short-wavelength coupling in nature, also yield an analytic,
ion-ion potential. This effective potential, which is represented
analytically in either Eq. (15) or (17) depending on the size of
the parameter ν in Eq. (14), improves the fidelity of the Yukawa
model, correctly predicts a finite cusp in the electron density
at ionic cores, and allows for the onset of Friedel oscillations
without compromising any computational complexity in the
model.

By comparing our results in the context of “Blochian”
QHD [34] (which naturally incorporates self-consistent many-
body physics, including exchange correlation, gradient cor-
rections, and finite temperatures) to those derived from the
“Bohmian” QHD (which is derived from a one-particle
picture), we find that an ion-ion potential from Blochian
QHD (equivalent to EGS) should be favored over SE and
any other Bohm-like formulation, and hence EGS supersedes
SE. An important next step beyond this work is to numerically
validate the predictions with nonlinear screening models and
experimental measurements of the structure factor.
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