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Giant cross-magnetic-field steps due to binary collisions between pair particles
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Giant cross-magnetic-field steps can occur as a result of positron-electron collisions. Within a constant magnetic
field (e.g., 1 T), a collision between a positron and an electron can result in a correlated drift across the magnetic
field for a continuous range of impact parameters. Within this range, drift distances orders of magnitude larger
than that associated with like-charge collisions were observed by computer simulation. Outside of this range, the
collisional behavior is similar to that for collisions between particles with the same charge. A theoretical analysis
of the phenomenon using center-of-mass and relative coordinates provides insights regarding the occurrence of
giant cross-magnetic-field steps.
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I. INTRODUCTION

There are various phenomena that are manifestations of
the interaction of just two charged particles located within a
magnetic field. Examples include magnetized binary Coulomb
collisions, which are ubiquitous occurrences within plasmas
comprised of free charged particles, quasibound states of
antihydrogen [1], magnetobound states of pair particles [2],
guiding center drift atoms [3], magnetized positronium [4–6],
and protonium within a magnetic field [7]. Consider a classical
point charge within a uniform magnetic field that experiences
a helical path about the guiding center of its motion. Suppose
two such charged particles, which are initially sufficiently far
from one another to be unaffected by each other, temporarily
approach each other close enough for their trajectories to
be affected. As a result of the collision, each particle’s
guiding center can shift to a new location across the magnetic
field. Such guiding center steps are typically smaller than
the cyclotron radii associated with the helical paths of the
particles prior to their interaction. In the work presented here,
a phenomenon that is describable as giant cross-magnetic-field
steps is studied. Giant cross-magnetic-field steps can occur
in low-energy binary collisions between pair particles, that
is, between a particle and its antimatter counterpart. Giant
cross-magnetic-field steps are associated with guiding center
steps that are much larger than the cyclotron radii associated
with the helical paths of the particles prior to their interaction.
Here, computer simulations and analytical theory are used
for studying the cross-magnetic-field drift phenomenon. Prior
related research developed a description of the formation
cross section for the two-particle correlated states, which
were referred to as magnetobound states [2]. The particle
energies and magnetic field strength used for the simulations
of giant cross-magnetic-field steps are similar to those used
for producing trappable antihydrogen. Collaborations such as
ALPHA [8–11], ATRAP [12–14], ASACUSA [15,16], AEgIS
[17], and GBAR [18] are developing and improving methods
for producing, trapping in some cases, and studying antihy-
drogen. Despite the difficulties that would be encountered in
confining electron-positron plasmas in the laboratory, efforts
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are underway that may observe some of the unique stability
properties that these plasmas are predicted to have [19].

Section II of this paper describes the equations of motion
and explains the method used in the simulation to evaluate drift
distances for electron-positron collisions. The mean square
of the step size is evaluated using a Monte Carlo method.
Section III gives a theoretical description of the phenomenon
using center-of-mass and relative coordinates. Concluding
remarks are in Sec. IV.

II. DRIFT DISTANCE EVALUATIONS

The collision of a positron and an electron is treated
classically, considering the electric interaction under the
influence of a uniform magnetic field. According to Coulomb’s
law, the electric force exerted on particle 1 (positron) by 2
(electron) is given by Fon1by2 = kcq1q2r12/r

3
12, where kc is the

Coulomb force constant, q1 and q2 are the charges, r12 = |r12|
is the relative distance, and r12 = r1 − r2 is the vector position
of particle 1 relative to particle 2. In SI units, kc = 1/(4πε0),
where ε0 is the permittivity of free space. The electric force
exerted on particle 2 by 1 is given by Fon2by1 = kcq1q2r21/r

3
21,

where r21 = −r12. The magnetic force on each particle is given
by F = kLq(v × B). Here, kL is the Lorentz force constant
(kL = 1 in SI units), q is the charge, v is the velocity of the
particle, and B(=Bk̂) is a uniform magnetic field parallel to
the unit vector k̂. The force on particle 1 by the magnetic
field is Fon1byB = kLq1B(v1y î − v1x ĵ), where (î,ĵ,k̂) are the
unit vectors of a Cartesian coordinate system, and v1x , v1y ,
v1z are velocity components of particle 1. For particle 2,
Fon2byB = kLq2B(v2y î − v2x ĵ), where v2x , v2y , v2z are velocity
components of particle 2.

The classical motion of the particles is governed by New-
ton’s second law. For the positron, Fon1by2 + Fon1byB = m1a1,
where m1 is the mass of the positron and a1 is its acceleration.
For the electron, Fon2by1 + Fon2byB = m2a2, where m2 is the
mass of the electron and a2 is its acceleration. Therefore,
the acceleration of the positron is given by kcq1q2r12/r3

12 +
kLq1B(v1y î − v1x ĵ) = m1a1 and that of the electron is given
by kcq1q2r21/r3

21 + kLq2B(v2y î − v2x ĵ) = m2a2. The velocity
and position of each particle are functions of time. If
the position is written as ri(t) = xi(t)î + yi(t)ĵ + zi(t)k̂ and
the time derivative is written as ri

′(t)=x ′
i(t)î+y ′

i(t)ĵ + z′
i(t)k̂,
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then the equations of motion for the positron are

kcq1q2[x1(t) − x2(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
+ kLBq1y

′
1(t) = m1x

′′
1 (t), (1)

kcq1q2[y1(t) − y2(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
− kLBq1x

′
1(t) = m1y

′′
1 (t), (2)

kcq1q2[z1(t) − z2(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
= m1z

′′
1(t). (3)

The equations of motion for the electron are

kcq1q2[x2(t) − x1(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
+ kLBq2y

′
2(t) = m2x

′′
2 (t), (4)

kcq1q2[y2(t) − y1(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
− kLBq2x

′
2(t) = m2y

′′
2 (t), (5)

kcq1q2[z2(t) − z1(t)]

([x1(t) − x2(t)]2 + [y1(t) − y2(t)]2 + [z1(t) − z2(t)]2)3/2
= m2z

′′
2(t). (6)

The electron and positron are treated (but not simulated) as having traveled in opposite directions from two sources located at
infinite distances from each other and at infinite distances from the coordinate origin. At infinite separation, the electric potential
energy is defined to be zero. When the particles are separated by a finite distance at the start of a simulation, conservation of
energy requires

K1∞ + K2∞ = 1

2
m1

(
v2

x10 + v2
y10 + v2

z10

) + 1

2
m2

(
v2

x20 + v2
y20 + v2

z20

) + kcq1q2

r0
. (7)

Here, vx10,vy10,vz10 are the components of the initial velocity
of the positron, vx20,vy20,vz20 are the components of the
initial velocity of the electron, the kinetic energies for the
two particles at infinite separation are denoted K1∞ and K2∞,

respectively, and r0 is their initial distance of separation.
The initial conditions considered first represent oppositely

directed particle beams. A sketch of the initial conditions is
shown in Fig. 1. The positron and the electron are considered to
be initially positioned at Cartesian coordinates (x10,y10,z10) =
(b/2,0,ζb/2) and (x20,y20,z20) = (−b/2,0,−ζb/2), respec-
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b
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b
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FIG. 1. (Color online) Positron and electron at time t = 0.

tively, and r0 = b
√

1 + ζ 2. The following values are used:
vx10 = vy10 = vx20 = vy20 = 0, K1∞ = K2∞, vz10 = −vz20,
and m1 = m2. Hereafter, b is referred to as the impact
parameter, and ζb is the initial axial separation. Equation (7)
is written as

2K1∞ = m1v
2
z10 + kcq1q2

b
√

1 + ζ 2
. (8)

Rearrangement provides an expression for the nonzero com-
ponent of the initial velocity of the positron

vz10 = −
√

2K1∞
m1

− kcq1q2

m1b
√

1 + ζ 2
. (9)

Following a similar procedure for the electron gives

vz20 =
√

2K2∞
m2

− kcq1q2

m2b
√

1 + ζ 2
. (10)

A simulation is stopped at a time tmax, when the axial
separation becomes larger than the initial axial separation.
The condition for the simulation to stop is when the inequality

|z1(tmax) − z2(tmax)| > ζb (11)

is first satisfied. The parameter values used in the simulation
are B = 1 T, K∞ = K1∞ = K2∞ = 6κ , ζ = 50, where κ has
the numerical value of Boltzmann’s constant and the unit of
energy.

An output of the simulation is the cross-magnetic-field drift
distance experienced by each particle. For the positron, the
cross-magnetic-field drift distance is

�d =
√

[x1(tmax) − x10]2 + [y1(tmax) − y10]2. (12)
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FIG. 2. (Color online) Normalized cross-magnetic-field drift dis-
tance versus normalized impact parameter for B = 1 T and K∞ = 6κ .

The cyclotron radius is useful for normalizing lengths. The
cyclotron radius is defined for the present study as the radius
of a circular trajectory when one charged particle is under the
influence of the magnetic field and has a kinetic energy that
is only associated with motion perpendicular to the magnetic
field. The cyclotron radius is rc =

√
2K∞m/(k2

Lq2B2), where
m and K∞ are the mass and kinetic energy of the particle. For
B = 1 T and K∞ = 6κ the cyclotron radius is 7.67 × 10−8 m.

The equations of motion and initial velocity conditions
have been written in such a way as to also be applicable for
simulating a collision between two positrons. Each simulation
is run for both electron-positron and positron-positron binary
collisions. A monitoring of a constant of the motion, the
total energy, was done for some of the trajectories involving
long drifts. The relative deviations were typically within
the orders 10−4 to 10−3. The simulations were carried out
using MATHEMATICA. Figures 2 and 3 contrast drift distances
for electron-positron and positron-positron collisions. The
impact parameter was varied from 0 to 10rc in increments
of 0.1rc and then 0 to rc in increments of 0.01rc. For

FIG. 3. (Color online) Same as Fig. 2, except with 0 < b < rc.
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FIG. 4. (Color online) Electron and positron trajectories pro-
jected onto the y-z plane for b = 3.1rc, B = 1 T, and K∞ = 6κ .

electron-positron collisions, giant drift distances (as compared
to positron-positron collisions) occur at values of the impact
parameter ranging from 0.41rc to 5.5rc. Outside of this range,
the electron-positron drift distances drop to values closer
to the corresponding drift distances for positron-positron
collisions. Although the range of impact parameters within
which giant cross-magnetic-field steps occur is well defined,
the drift distances are sensitive to small changes in the impact
parameter. The chaotic behavior is evident in the Figs. 2 and 3.

Figures 4 and 5 contrast individual trajectories during a
collision. It is apparent that the electron and positron drift
together as a correlated pair across the magnetic field. Each
particle oscillates several times with variable amplitude across
the z = 0 plane. A drift distance of 40.6rc is observed for
the electron-positron collision shown in Fig. 4. The electron-
positron collision results in a drift distance that is two order
of magnitude larger than that for a positron-positron collision
(shown in Fig. 5) having the same impact parameter b = 3.1rc.

The mean square of the steps is evaluated as

〈(�d)2〉b =
∫ bmax

0
(�d)2 fb (b) db. (13)

0− 5 5
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−

−

−

0

y rc

e+

e+

FIG. 5. (Color online) Two positron trajectories projected onto
the y-z plane for b = 3.1rc, B = 1 T, and K∞ = 6κ .
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FIG. 6. (Color online) Normalized root-mean-square cross-
magnetic-field drift distance versus magnetic field strength with
K∞ = 6κ .

Here, fb (b) = 2b/b2
max is the probability density function for

the impact parameter, assuming that the initial guiding centers
are uncorrelated. The integral is evaluated using a Monte Carlo
method: 〈(�d)2〉b = (1/N)

∑N
i=1(�d)2. A uniform random

variate Ri is used to sample the impact parameter as bi =
bmax

√
Ri , where 0 � Ri � 1. For each set of parameters,

B and K∞ = K1∞ = K2∞, the generated trajectories have
impact parameters less than bmax, where bmax is the maximum
impact parameter at which giant cross-magnetic-field steps
occur in the simulations.

Figures 6 and 7 show the variation of the normalized root
mean square of the steps versus the magnetic field strength and
initial kinetic energy. For the evaluation, approximately 20 000
trajectories were simulated for a given set of parameters. For
Fig. 6, K∞ = 6κ and the magnetic field was varied from 1 to
4 T in units of 0.5 T. It is observed that the normalized root
mean square of the steps varies almost linearly with magnetic
field strength. Also, the normalized root mean square of the
steps decreases with the initial kinetic energy when the initial
kinetic energy is increased and the magnetic field is at 1 T
(Fig. 7).

Giant drifts also occur for more general initial
velocity orientations. Figure 8 shows the normalized
drift for B = 1 T, K∞ = K1∞ = K2∞ = 6κ , ζ = 50,
and b = 3.1rc when the particles are initially located
at (x10,y10,z10) = (b/2,0,ζb/2) and (x20,y20,z20) =
(−b/2,0,−ζb/2), respectively. Their initial velocities are
oriented making initial pitch angles θ1 with −k̂ and θ2 with k̂:
(vx10,vy10,vz10) = (−√

2K∞/m sin θ1,0,−√
2K∞/m cos θ1),

(vx20,vy20,vz20) = (
√

2K∞/m sin θ2,0,
√

2K∞/m cos θ2).
Here, m = m1 = m2, θ1 = 45◦, and θ2 varies from 0◦ to 90◦.
The results indicate the phenomenon reported here can occur
within electron-positron plasmas.

3 4 5 6
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d 2
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FIG. 7. (Color online) Normalized root-mean-square cross-
magnetic-field drift distance versus particle kinetic energy with
B = 1 T.
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FIG. 8. (Color online) Normalized cross-magnetic-field drift dis-
tance versus initial pitch angle.

III. RELATIVE AND CENTER-OF-MASS MOTION

The motion of the center of mass (CM) across the magnetic
field in electron-positron collisions is possible due to the
coupling between the relative and CM motion. There exists
no closed solution, and the presence of the magnetic field
opens the possibility of chaotic dynamics [20–22]. In relative
coordinates r = r1 − r2 = xi + yj + zk and CM coordinates
R = (r1 + r2)/2 = Xi + Y j + Zk, the equations of motion
can be written as

MR′′ = kLer′ × B, (14)

μr′′ = kLeR′ × B − kce
2r

r3
. (15)

Here, e is the positron charge, M = 2m = 2m1 = 2m2 is
the total mass, μ = m/2 is the reduced mass, and r =√

x2 + y2 + z2. Equation (14) allows the definition of a
conserved quantity, the pseudomomentum (K). Since B is a
constant vector

MR′ − kLer × B = K. (16)

From Fig. 1, the positron and the electron are initially
positioned at r10 = (b/2,0,ζb/2) and r20 = (−b/2,0,−ζb/2),
respectively, and v10 = (0,0,−vz20) and v20 = (0,0,vz20) are
their initial velocities. These initial conditions in CM and
relative coordinates become R(0) = (0,0,0), R′(0) = (0,0,0),
r(0) = bî + ζbk̂ and r′(0) = −2vz20k̂. Thus, K = kLebB ĵ is
the pseudomomentum. Replacing the velocity of the CM given
by Eq. (16) in the equation for the relative motion Eq. (15) gives

μr′′ = kLe

M
(kLer × B + K) × B − kce

2r
r3

. (17)

The force associated with the relative motion in components
is

f =
[
k2
LB2e2(b − x)

4μ
− e2xkc

r3

]
î −

[
k2
LB2e2

4μ
+ e2kc

r3

]
y ĵ

− e2zkc

r3
k̂. (18)
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From Eq. (16), the velocity of the CM is

R′ = kLBey

M
î + kLBe(b − x)

M
ĵ. (19)

From the dependence of the y relative component of the force
in Eq. (18) and the initial conditions, y = 0 is found, and the
velocity of the CM reduces to

R′ = kLBe(b − x)

M
ĵ. (20)

From Eq. (20), the motion of the CM is

Y (t) = kLBe

M

[
bt −

∫ t

0
x(τ ) dτ

]
. (21)

An irregularity in the relative motion along the î dimension
[with (x �= b)] can cause a displacement of the CM in the ĵ
dimension. This component of the CM is associated with the
transverse drift motion of the electron and positron that results
in giant cross-magnetic-field steps.

The kinetic energy associated with the CM is

KCM = k2
LB2e2(b − x)2

4m
, (22)

and the rate of change of CM kinetic energy is

dKCM

dt
= −k2

LB2e2

2m
(b − x)x ′. (23)

If the variation of the x component of the relative position
changes harmonically about the impact parameter, the average
rate of change of the kinetic energy of the CM 〈K̇CM〉 is zero.
The dynamics of the CM will depend on the dynamics of the
transverse relative motion. In the x component of the force in
Eq. (18), there are two competing terms. The first term is a
harmonic term that tends to keep x near the impact parameter.

The second term is the Coulumbian term. When the particles
are far from each other, the Coulumbian term is small, the
harmonic term dominates, and the x component of the relative
position oscillates around b. However, when the Coulumbian
term grows larger, the relative motion along the î dimension
can become irregular causing the CM to move.

For positron-positron collisions, the equations of motion in
relative and CM coordinate are written as

mR′′ = kLeR′ × B, (24)

mr′′ = kLer′ × B + 2kee
2r

r3
. (25)

Since R(0) = (0,0,0), R′(0) = (0,0,0) and the equations of
motion for R and r are decoupled, the CM is stationary.

IV. CONCLUSION

In summary, computer simulations predict the existence
of a continuous range of binary collision impact parameters
within which colliding electron-positron pairs experience giant
cross-magnetic-field drift distances. Within this range, drift
distances orders of magnitude larger than that associated with
corresponding like-charge collisions are possible. In addition
a theoretical analysis was conducted that provides insights
regarding the behavior of the two-particle correlated states.
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