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Particles in turbulence live complicated lives. It is nonetheless sometimes possible to find order in this
complexity. It was proposed in Falkovich et al. [Phys. Rev. Lett. 110, 214502 (2013)] that pairs of Lagrangian
tracers at small scales, in an incompressible isotropic turbulent flow, have a statistical conservation law. More
specifically, in a d-dimensional flow the distance R(¢) between two neutrally buoyant particles, raised to the power
—d and averaged over velocity realizations, remains at all times equal to the initial, fixed, separation raised to the
same power. In this work we present evidence from direct numerical simulations of two- and three-dimensional
turbulence for this conservation. In both cases the conservation is lost when particles exit the linear flow
regime. In two dimensions we show that, as an extension of the conservation law, an Evans-Cohen-Morriss
or Gallavotti-Cohen type fluctuation relation exists. We also analyze data from a 3D laboratory experiment
[Liberzon et al., Physica D 241, 208 (2012)], finding that although it probes small scales they are not in the
smooth regime. Thus instead of {R~3), we look for a similar, power-law-in-separation conservation law. We show
that the existence of an initially slowly varying function of this form can be predicted but that it does not turn
into a conservation law. We suggest that the conservation of (R~?), demonstrated here, can be used as a check of
isotropy, incompressibility, and flow dimensionality in numerical and laboratory experiments that focus on small

scales.
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I. INTRODUCTION

The word turbulence is often used as a synonym for turmoil
and disorder. Inherently, particles in a turbulent flow perform
an irregular, complicated motion. It could therefore come as a
surprise that a quantity depending on the separation between
such particles could remain constant during their movement.
Of course, due to the chaotic nature of the flow, one can expect
only a statistical conservation of this type, recovered after
averaging over velocity realizations. The subject of the present
paper is the verification, on the basis of both numerical and
experimental data of Lagrangian tracers, of the conservation
law first predicted in [1].

Lagrangian conservation laws in turbulence have been
studied previously and have provided much insight into the
breaking of scale invariance in such flows (see [2] for areview).
However, analytical expressions for them could be derived
only for short correlated velocity fields (i.e., the Kraichnan
model), and although they were deduced (numerically) and
observed in a Navier-Stokes turbulent flow [3], they were
asymptotic laws, holding only when the initial separation
between particles is forgotten.

In [1] (R(¢)~?) was introduced as an all time conservation
law for a d-dimensional flow, where R(¢) = |R(#)] is the time ¢
magnitude of the relative separation between a pair of particles
starting at a fixed distance Ry. The conservation is expected
for an isotropic flow and for separations where the velocity
difference u scales linearly with the distance: u o« R, which
we will refer to here as a linear flow. Previously it was believed
that it is only an asymptotic in time conservation law and
thus would be difficult to observe [2] (see also [4] for a
historic review). The result in [1] opens up the possibility
to observe it and subsequently use it as a check of isotropy
and/or incompressibility, as well as flow dimensionality, in
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experiments probing very small scales. Physically relevant
situations for these observations are phenomena occurring
around or below the Kolmogorov scale, such as, for example,
tracer dynamics in cloud physics and Lagrangian statistics in
the direct cascade of two-dimensional turbulence.

The invariance of (R(f)~%) under the time evolution can
be traced back to a geometrical property of an incompressible
linear flow [5]. For such a flow, for each velocity realization,
the volume of an infinitesimal d-dimensional hyper-spherical
sector, with radius R and differential solid angle d €2y, att = 0,
is equal to its transformation under the flow at time # [5]:

REdQy = R (1)dQ;. (1)

Note that it is due to the linearity of the transformation that a
spherical sector is transformed to another spherical sector. The
conservation law directly follows: for a pair of particles in the
flow, starting with the separation vector Ry,

(RO f (RO dQo _ /dsz,

— =1 2
Ry Ry Sa Sa @

with S, the volume of the d — 1-dimensional unit sphere and
dQQo parametrizing the direction of Ry. The first equality is
a consequence of the assumption that the flow is statistically
isotropic, the average over velocity realizations for a scalar
quantity thus being independent of the direction of Ry.
In the second equality the average and the integration are
interchanged and Eq. (1) is used.

Recasting the conservation law in the form (e="V) = 1 with
W = In(R¢/R{Y) brings to mind the Jarzynski equality [6,7],
in which W is related to entropy production in an out of
equilibrium system. This hints at the possible presence of an
Evans-Cohen-Morriss [8] or Gallavotti-Cohen [9] type fluctu-
ation relation. Below we demonstrate that such an extension
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of the conservation law is indeed possible for symplectic
flows. In particular, since a (linearized) two-dimensional
incompressible flow is already symplectic, the existence of
a fluctuation relation is guaranteed and no further assumption,
such as time reversibility, is required. Resemblance to the
Jarzynski equality also provides a different perspective on the
latter—it can be thought of as a statistical conservation law.

In the following we provide a direct confirmation of
conservation of (R(t)~?) in an isotropic fully developed
turbulent flow. We first present the results from a direct
numerical simulation of a two-dimensional (2D) flow, with
large scale forcing and friction. For scales much smaller
than the forcing, in the direct cascade, the flow is linear and
the theory applies. We show that as long as the separation
between particles remains in this regime, (R(#)~2) remains
constant as well. In addition, we find the symmetry relation
((R(t)/Ro)?) = ((R(t)/Ro)?) with § = —q — 2 as a general-
ization of the conservation of (R(#)~?). At long times this
yields a Gallavotti-Cohen type fluctuation relation as discussed
above.

Next we consider data from a direct numerical simulation
of three-dimensional turbulence and study particles with initial
separations in the dissipative range, where approximately
(u?) o« R%. We observe the conservation of (R(¢)~3) ending
in a regime where (R(t)~?) no longer converges. At those
times the separations distribution at small scales is induced by
the dynamics in the inertial range rather than the dissipative
range of scales.

Finally, we turn to data of 3D turbulence from a laboratory
experiment. Initial particle separations are taken at scales
comparable with the Kolmogorv scale of the flow. We find
that, in distinction from the numerical simulation, the scaling
of the velocity is far from the approximation (u?) o< R? for
such separations. Also, deviations from an isotropic flow are
observed. Thus, we check instead if an analog of (R73), in
the form of a power law, exists for the scales available in the
experiment. We show that a slowly varying function of this
form can be predicted using the statistics of the pairs relative
velocity and acceleration at t = 0. However, it does not appear
to be a true conservation law.

II. CONSERVATION IN TWO DIMENSIONS—DNS
RESULTS

The motion of Lagrangian tracers is numerically integrated
in the direct cascade of two-dimensional turbulence with
friction, in a square box with side length L = 2. The flow is
generated by a large scale, §-correlated, random forcing at a
wave number corresponding to the box scale which injects
enstrophy at a rate 6;. The parameters of the simulation
are taken from [10]. The linear friction is sufficiently strong
to generate a velocity field with energy spectrum exponent
close to 4.5 and a power-law decaying enstrophy flux, i.e.,
no logarithmic corrections to the leading order scaling are
to be expected [11,12]. The viscous enstrophy dissipation
rate 6,, together with the kinematic viscosity v, define the
smallest dissipative scale n =~ w12 176 [12] which is used
as a reference scale. Time is made dimensionless with the
vorticity characteristic time 7, = (2Z)~!/? (Z represents the
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FIG. 1. Second order longitudinal structure function of velocity
in the 2D direct cascade simulation. The line represents the behavior
(u}(R)) x R%.

mean enstrophy) and consequently the reference velocity is
Uy, =n/t,.

Figure 1 shows the longitudinal structure function of the
velocity, where we denote by u; = u- R the longitudinal
velocity difference at scale R. A scaling consistent with a
linear flow behavior is observed for R < 107.

In stationary conditions, N, = 16384 particle pairs are
introduced into the flow with homogeneous distribution and
initial separation Ry and their trajectories are evolved in time.
The moments of separation (R(#)?) are computed by averaging
over N, and Ny, = 100 independent runs.

In Fig. 2 we present the time evolution of (R4(¢)) for g =
—2.2, -2, — 1.8, — 1. While the moment forqg = —2.2 (¢ =
—1.8) grows (decays), doing so exponentially for ¢ > 21,
the moment with ¢ = —2 = —d is conserved up to a time
t ~ 107,. At this time the average particle separation reaches
R ~ 10n where (u,z) in Fig. 1 deviates from a linear flow.
We observe that the exponential growth of (R) is inhibited at
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FIG. 2. Time evolution of different moments of relative separa-
tion R(¢) as a function of time in the 2D simulations (R, = 1.17).
Different point styles represent g = —1.0,¢ = —1.8, ¢ = —2.0, and
q = —2.2 (from bottom to top).
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FIG. 3. (Color online) L(g) obtained from fitting (R(¢)?) with
R{e"@" in the time interval 2 < t/7, < 10 for the 2D simulations
(Ro = 1.1n). In order to show the symmetry with respectto g = —1,
both L(g) (red circles) and L(—2 — g) (blue squares) are plotted.

approximately the same time (not shown). On the other hand,
as can be seen in Fig. 2, the exponential decrease of (R™1,
which is less sensitive to pairs with large separations, lasts
throughout the observation time.

The exponential time dependence of (R4(¢)) observed in
Fig. 2 is expected to be a long time feature of any linear
flow with temporal correlations decaying fast enough [2,13].
Specifically, E(q,t) = In{(R(t)/Ro)?), the cumulant generat-
ing function of 8 = In (R(¢)/ Ry), should take at long times the
form E(q,t) = L(g)t. We remark that the finite-time Lyapunov
exponento = /¢ tends to the Lagrangian Lyapunov exponent
A in the long time limit [14].

We obtain L(g) shown in Fig. 3 by fitting (R(¢)?) =
R{e" )" for times 0.4 < At < 2. Evidently L(g) is perfectly
symmetric with respect to g = —d/2 = —1, i.e., L(g) =
L(—q — 2),implying in particular that L(—2) = 0 as expected.
This symmetry can be extended to the symmetry E(g,t) =
E(—q — 2,t) holding at any time #, as we demonstrate in the
bottom panel of Fig. 5 for = 0.27,. This is a general property
of a two-dimensional linear incompressible and isotropic flow.
In fact, this follows from the relation

RO\ R(t)\ 972
JOR) =) w0

which, as we will show, holds for every velocity realization.
Indeed, using the definition of E(g) one obtains E(gq,t) =
E(—q — 2,t) for an isotropic flow by taking the average of (3)
over velocity realizations, conditioned that the averages exist.

To demonstrate (3) we recall that for a linear flow with a
given velocity realization the following decomposition can be

used:
R(1)? . .
1(3—%) = Rj OT () A(H)O(1)Ry, 4)

where O(¢) is an orthogonal matrix and A is a diagonal matrix
with entries e”'") and e*”) [2,15]. For an incompressible flow
det A = 1 so that in two dimensions p; = —p, = p. Using (4)
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the integration over Ry can be written as
R(t q 2w
/ (#) asu= [ Oameords. G
0 0

where é = (cos(f), sin(f)) and a change of integration variable
absorbed the additional rotation O(t) in (4). On the other
hand, (1) implies

g2
/(@)qmo:/(ﬁ) e, ©)
Ry R(t)

and Ry/R(t) can be decomposed, similarly to (4), using the
flow backward in time,
R}

R(1) =R/ OT(—))A(=)O(—1)R,. (7)

The inversion of the linear transformation between R(7)
and R(0) implies A(—t) = A~'(¢) [15]. Then, A~!(t) is
related to A(#) by conjugation with a rotation matrix since
A = diag(e”,e™"). This property is actually a consequence of
the symplectic structure of a 2D incompressible flow—for a
symplectic flow the eigenvalues of A come in pairs of the
form e*# [14].! Therefore for any m, shifting the integration
variable similarly to (5),

& " _ > AT ~ m/2
/(R(t)) dQ,—/O [e" (O)A(r)e(0)]"'~do

which by comparison to (5) leads to

Ro mdsz = R 7mdsz 8
f(m) ,_f(%) o @

Finally, combining Eq. (8) with m = —g — 2 together with
Eq. (6) yields (3).

The symmetry of E(q) implies a symmetry of the proba-
bility density function (pdf) P(8(¢)), B = In (R(¢)/ Ry), which
can be obtained by first extending® the symmetry of E(g) to
complex ¢g and then retrieving the pdf by an inverse Laplace
transform of exp[ E(g)]. Using the symmetry and a change of
variables in the integration, one gets for any time ¢

P(B(1) =y)
P(B(1) = —y)

where J[In (R(¢)/Ro)] is the Jacobian of the transformation (1)
from time zero to time ¢, in two dimensions.

In the asymptotically long-time limit (9), which is numeri-
cally verified in Fig. 4, turns into an Evans-Cohen-Morriss [8]
or Gallavotti-Cohen [9] type fluctuation relation. Indeed, the

= = J(y), 9)

! As this is the basic symmetry leading to the relations (9) and (10),
these relations, with the replacement of 2 by 2N, would also hold for
a linear random or chaotic N-dimensional Hamiltonian flow that is
statistically isotropic, R denoting the separation between two points
in phase space.

2This can be done since the considerations above did not depend on
q being real, only on convergence of the integrals. It seems reasonable
that if they converge for real g they would also converge for its
complex values.
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FIG. 4. Verification of the symmetry relation (9), B =

In(R(t)/Ryp), in the 2D simulations. The solid straight line corre-
sponds to the analytical prediction.

function L(q) is the Legendre transform of the long-time large
deviation function G (o) so that the symmetry in L(q) implies

G(—0)=G(0o)+ 20 (10)

which can also be deduced directly from (9). This relation re-
sembles the Evans-Cohen-Morriss—Gallavotti-Cohen relation,
and even more so the relation found in [16], but is different
from them. Note that we do not assume a time reversible
velocity ensemble and work with an incompressible flow
(implying zero entropy production in the context of dynamical
systems). The two dimensionality of the flow plays a crucial
role in the derivation.

In Fig. 5 we show E(q,t) for short times, ¢t < 87, as a
function of ¢, comparing two distinct initial separations. For
Ry = 1.1n all curves cross zero at ¢ = —2, up to time ¢t =
81,, while for Ry = 50n, which is at the border of the linear
scaling range, the initial crossing is shifted above —2, and
the intersection point changes with time (see middle panel).
The appearance of the initial crossing above —2 in the latter
can be explained using a Taylor expansion of ((R(#)/Ry)?)
around 7 = 0; see Egs. (11), (15), and (14) in the analysis of
the experimental results, as well as [1].

III. CONSERVATION IN THREE DIMENSIONS—DNS
RESULTS

Lagrangian tracers are introduced into a numerical simula-
tion of three-dimensional turbulence in a cubic box at Re; =
107. The tracers are placed in the flow when it has reached a
steady state and their trajectories are numerically integrated.
Turbulence is generated by a large scale, §-correlated random
forcing. Small scales are well resolved in the simulation (for
which kyaxn = 1.3). More than 130 000 pairs were integrated
for times up to about 107, for 300 realizations each, while
more than 30000 pairs were integrated for 150 realizations
for longer times. The two datasets are overlapping for shorter
times so that consistency of the statistics could be checked.

In Fig. 6 we show the second order longitudinal velocity
structure function. Up to separations of about 71 the scaling
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FIG. 5. (Color online) In{(R(¢)/Ry)?) as a function of ¢ for two
different initial separations Ry, = 1.15 (upper plot) and Ry = 507
(middle plot). Different curves represent different times. Lower plot:
E(q,t) (red circles) and E(—2 — q,t) (blue squares) for t = 0.27,
and Ry = 1.17. Data from 2D simulations.

exponent of (ulz(R)) is close to 2, although deviations are also
observed earlier.

In Fig. 7, In((R(t)/Rp)?) as a function of g is presented
for three different initial separations and for various times.
A clear crossing of zero at ¢ = —3 can be observed up to
time ¢ = 87, for Ry = 1.7n. For Ry = 6.77, which lies at the
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FIG. 6. (Color online) Second order longitudinal velocity struc-
ture function for the 3D numerical simulation. The two lines represent
the smooth R? and rough R*/? behaviors.

transition from the dissipative range, the initial crossing is
shifted above —3 (see intermediate panel) a trend which is
much more pronounced for Ry = 705 at the inertial range.
This is the same trend that appeared in the 2D simulation
and can be explained in a similar way. Evidently, this shifted
crossing point cannot also correspond to a conservation law,
as it is time dependent, for both separations.

Although theoretically ((R(t)/Ro)~3) is an all time conser-
vation law, in reality after some time pairs reach separations
where a linear flow approximation no longer works; see also
Fig. 2 and its discussion for the 2D flow. We study the exit
from the conservation regime of ((R(t)/Ry)~3) for Ry = 1.7
in Fig. 8. After t ~ 8 — 101, wild fluctuations, as well as a
decrease in value, appear for ((R(t)/Ro)?) with ¢ < —2. This
behavior can be explained by the formation of a power-law
dependence on separation in the separation’s pdf at small R,
see Fig. 9, together with a shift of the average separation to
larger values. Such a dependence has been shown to develop
for initial separations both in the inertial range and in the
dissipative one in [17]. In Fig. 9(a) P(R/Ry) is shown for
different times for the 3D simulations. Indeed the left tail
shows a power law dependence R“, with « decreasing until
reaching @ ~ 2 attimes 10 < ¢/t < 20. This explains why the
moment (R~3) starts diverging somewhere in this interval. For
larger times we observe a further decrease in « (not shown),
compatible with the values observed in [17]. This power
law behavior may be due to the contribution of trajectories
which left the viscous subrange and returned to R < Ry.
Indeed, P(R/Ry) is expected (at long enough times) to have a
log-normal shape near its maximum, as long as the separation
remains in the viscous range [2]. In our 3D simulations,
P(R/Ry) never displays a log-normal shape, probably as a
consequence of the limited extension of the viscous range. On
the contrary, the pdf’s of separations are clearly log-normal in
the 2D case Fig. 9(b). Although the statistics are not sufficient
to distinguish the development of a power law dependence in
the left tail in the 2D data, the large fluctuations in Fig. 2 point
towards a behavior analogous to the 3D case.
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FIG. 7. In{(R(t)/Ry)?) as a function of ¢ for different initial
separations Ry = 1.7n (upper plot), Ry = 6.76n (middle plot), Ry =
70n (lower plot). The different curves represent different times. Data
from 3D simulations.

IV. CONSERVATION IN THREE
DIMENSIONS—EXPERIMENTAL RESULTS

In the previous sections we have presented supporting
evidence from numerical simulations, both in two and three
dimensions, for the conservation of (R =) for an isotropic flow
at small enough scales. It is interesting to check if similar
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FIG. 8. ((R(t)/Ro)?) as a function of time for various g; the initial
separation is Ry = 1.7n. Different symbols represent g = —2.6, g =
—2.8,q = —3.0, and ¢ = —3.2 (from bottom to top). Data from 3D
simulations.

results can be obtained from laboratory experimental data
where the access to very small initial separation is limited
by both physical and statistical constraints. It is to this end
that we turn to data from the experimental setup described
in [18], where neutrally buoyant particles are tracked inside
a water tank of dimensions 32 x 32 x 50 cm®. The turbulent
flow, with Re; = 84 for our data set, is generated by eight
propellers at the tanks corners and particles are tracked in
space and time using four charge-coupled device cameras.
The cameras are focused on a small volume of 1 cm? to resolve
the smallest scales (the Kolmogorov scale is = 0.4 mm). At
such small scales, the flow is expected to be isotropic. We study
pairs of particles with initial separations of a few 5, for which
numerical and previous experimental studies of turbulent flows
found an approximately linear flow [19-24].

As isotropy and a linear dependence of velocity differences
on separation are the two assumptions entering the prediction
of the conservation of (R~3), the experimental setup described
above appears to be appropriate to test it. Unfortunately, a
direct check of these assumptions does not seem to support
their applicability.

In Fig. 10 we present (u?), using the relative velocity of
particles with separation Ry. Here and in the following ()
denotes an average over pairs in an ensemble with a given
initial separation.® When it is applied to functions of the
relative velocity or acceleration at a given scale it denotes
the average over the pairs with the corresponding initial
separation, taken at t = 0. As can be seen from the inset of
Fig. 10, if any scaling regime, (u?) o Réz, is to be assigned, it
would be with scaling exponent ¢, = 1.5 rather than & = 2.
It seems that in order to access the linear flow regime in this
system even smaller distances should be probed, which are not
experimentally accessible at the moment.

3We thank E. Afik for suggesting his method of pair selection for the
ensembles [25], which we use in this work. We further filter out pairs
of particles with a lifetime smaller than 0.5, to prevent contamination
of the time evolution by a change of the particle ensemble

PHYSICAL REVIEW E 91, 033018 (2015)

P(R(1)/Rg)

P(R(t)/Ry)

102

10° ¢ #

102 107

R()/R,

FIG. 9. P(R(t)/Ry) for the smallest available initial separations
in the 3D (a) and the 2D simulations (b) respectively. While the 3D
case shows the development of power law tails for small separations,
in the 2D case all pdf’s are close to log-normal curves, marked by
solid lines in (b)
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FIG. 10. Second order velocity structure function in the 3D
experiment as deduced from the initial relative velocity of pairs
of particles with initial separation Rj, normalized with the squared
Kolmogorov velocity u%. Inset: The local slope d In{u?)/d In R, as
a function of the separation. The dashed line represents the scaling
(u?) o R},
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For separations at the transition between inertial and
dissipative ranges, such as those apparently probed in this
experiment, there is currently no theoretical prediction regard-
ing the existence of a conservation law. Still, in the spirit of
the conservation law in the dissipative range, we can look
for g such that ((R(¢)/Ro)?) = 1. Notice that as a function
of g, ((R(t)/Rp)?) is convex and at each time ¢ it crosses 1
at ¢ = 0 and either has one more crossing point, denoted by
q*(t), or none. It would be possible to establish the existence
of a conservation law, with ¢ = g, if g* exists and is time
independent. To get an idea of what value ¢* can take we use
the Taylor expansion of (R?(¢)) around ¢ = 0 (no assumption
is made about the nature of the flow):

RO\ B <u12)qt2 .
<(R_0) >— I+ R—(%T[q —qg.O1+ 0@ A1)
with
2
gey=c— 2R, WO @R

tuf) (ui)
where u; = u - ﬁo, a=a- ﬁo, and a is the relative accelera-
tion. This implies that the conservation law described above
can exist only if g.(¢) is time independent, so that ¢g* = ¢, = c.
This is of course only a necessary but not a sufficient condition.

The time dependence of g, comes from the first order in
the Taylor expansion o (u;). It, as well as (a;), should be
zero for a statistically homogeneous or a statistically isotropic
flow. Obviously in an experiment (u;) can never be exactly
zero, but it can be small enough so that at the shortest times
measured the time dependent term in g, would be negligible
compared to the time independent part, ¢ in (12). In the inset
of Fig. 11 we present (1;) normalized by the rms relative
velocity. The strong bias towards positive (u;) for Ry < 2n
is probably the result of the filtration of pairs with lifetimes
smaller than 0.57,. Indeed, pairs with approaching particles
at small separations are harder to track and are therefore
frequently short lived as well as more prone to errors. A
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FIG. 11. (Color online) Average longitudinal relative velocity as
a function of initial separation for pairs of particles at + = 0. The
velocity is normalized by the initial rms longitudinal relative velocity.
Inset: left-hand side and right-hand side of Eq. (14) are displayed as
a function of R.
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similar problem might also be the cause of the positive bias
for Ry 2 37, where particles with a large relative velocity are
more common. Then, particles approaching each other with
a large speed reach small scales quickly and are lost more
easily. When the restriction on the lifetime of the pairs is lifted
a negative bias emerges. It therefore appears that using (u;)
for pairs of particles to determine the isotropy or homogeneity
of the flow is problematic. For our purposes, note that for an
observation of the conservation of (R¢(t)) to be possible the
value of (u;) must be as small as possible. Initial separations
Ry = 2.6n — 3n seem most appropriate.

For a d-dimensional incompressible flow that is statistically
isotropic a simpler formula for g, can be written. For such a
flow (see also [26])

1 d B
() — (u7) = Wd_Ro(Rg Huf)). (13)
which can be used to write
2 dl 2
o SPCLLL Lt B

dlnRg

(uf)
implying that in (12)
ge =c=2—d —(Ry) = =1 = 5(Ro). 15)

As a side note, we remark that if ¢, is constant, like in
the inertial range, the initially slowest changing function,
R(1)¢ = R(t)>~¢~%, is independent of R, [1]. More generally,
requiring only (u;) = 0, the Ry independent slowest varying
(among twice differentiable functions of R) function F(R), is
determined by demanding (d? F(R)/dt?) = 0, resulting in

R |: x —<”2T>
F(R)O(/ exp / svdz | dx. (16)
a o 2luf)

2

with a an arbitrary separation and uzT =u — “12 For a three-
dimensional isotropic flow this formula reduces with the help
of (13) to

R
F(R) / de. (17)

Here, however, we focus on the simpler functions F(R) = R%,
which, through ¢., are Ry dependent.

The isotropy assumption is checked using Eq. (14), as
suggested in [26], in the inset of Fig. 11 where we present
both the left-hand side of this equation and its right-hand side
as a function of initial separation. The difference between
the two is about 1.5 for most separations, implying that
isotropy is violated. It could also be that the flow is, in fact,
isotropic: although in theory measuring relative velocities for
pairs of particles at a given distance is the same as using two
fixed probes in the flow, in practice it might not be so (for
example due to correlations entering through the method of
pair selection).

In any case, we conclude that the prediction (15) should
not work for our data, as indeed it does not, and instead
use in the following the more general definition of ¢, (12).
In Fig. 12 we present the exponent g*(¢), as deduced from
the data, for five consecutive times and compare it to c. As
expected, ¢*(¢) appears approximately constant and equal to
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FIG. 12. The exponent g*(¢), deduced by matching (R()T") =
Rg*, plotted as a function of R, at different times. The dashed line
represents the prediction ¢*(t) = ¢, with ¢ from (12). Inset: The
negative of the contribution to ¢ due to (a;), Ro{a;)/ (u,z), plotted
as a function of R.

c for the separations where (i;) is smallest. Note that ¢ has a
non-negligible contribution coming from the deviation of (a;)
from zero. This contribution is displayed in the inset of Fig. 12.

We are now in a position to ask if for the separation where
initially g*(¢) = ¢, (R(¢)) is just a slowly varying function or a
true conservation law. In Fig. 13, for the separation Ry = 2.6n,
we compare ((R(t)/Rp)?) as a function of time for different
gs, including g = c. After a time shorter than 7, (R°(?))
noticeably decreases. During this time the average separation
between particles in a pair changes by less than 1%. It is thus
improbable that (R(¢)) is truly constant up to that time, but
rather that it changes slowly, meaning it is not a conserved

PHYSICAL REVIEW E 91, 033018 (2015)
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FIG. 13. The evolution in time of ((R(z)/Ry)?) for pairs with
initial separation of Ry = 2.67n. The dashed dotted curve represents
q =c=—1.32

quantity. We conclude that, at the scales accessible to this
experiment, a power law type of conservation law probably
does not exist but a slowly varying function of the separation
can be identified.

ACKNOWLEDGMENTS

A'F. is grateful to G. Falkovich and E. Afik for many useful
discussions and comments. She would also like to thank J.
Jucha for her valuable input on the experimental data and O.
Hirschberg for recognizing the fluctuation relations. A.F. was
supported by the Adams Fellowship Program of the Israel
Academy of Sciences and Humanities.

[1] G. Falkovich and A. Frishman, Phys. Rev. Lett. 110, 214502
(2013).
[2] G.Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys.
73,913 (2001).
[3] A. Celani and M. Vergassola, Phys. Rev. Lett. 86, 424 (2001).
[4] G. Falkovich, J. Plasma Phys. FirstView, 1 (2014).
[5] Y. B. Zel’Dovich, A. A. Ruzmaikin, S. A. Molchanov, and
D. D. Sokoloff, J. Fluid Mech. 144, 1 (1984).
[6] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[7] R. Chetrite and K. Gawegdzki, Commun. Math. Phys. 282, 469
(2008).
[8] D.J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett.
71, 2401 (1993).
[9] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694
(1995).
[10] G. Boffetta, A. Celani, S. Musacchio, and M. Vergassola, Phys.
Rev. E 66, 026304 (2002).
[11] D. Bernard, Europhys. Lett. 50, 333 (2000).
[12] G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427
(2012).
[13] E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 (1999).
[14] M. Cencini, F. Cecconi, and A. Vulpiani, Chaos: From Simple
Models to Complex Systems, Series on Advances in Statistical
Mechanics (World Scientific, Singapore, 2010).

[15] J. Cardy, G. Falkovich, K. Gawedzki, S. Nazarenko, and
O. Zaboronski, Non-equilibrium Statistical Mechanics and
Turbulence, London Mathematical Society Lecture Note
Series (Cambridge University Press, Cambridge, England,
2008).

[16] R. Chetrite, J.-Y. Delannoy, and K. Gawedzki, J. Stat. Phys. 126,
1165 (2007).

[17] R. Bitane, H. Homann, and J. Bec, J. Turbul. 14, 23 (2013).

[18] A. Liberzon, B. Liithi, M. Holzner, S. Ott, J. Berg, and
J. Mann, Physica D (Amsterdam, Neth.) 241, 208 (2012),
Special Issue on Small Scale Turbulence.

[19] T. Watanabe and T. Gotoh, J. Fluid Mech. 590, 117 (2007).

[20] G. P. Bewley, E.-W. Saw, and E. Bodenschatz, New J. Phys. 15,
083051 (2013).

[21] T. Zhou and R. A. Antonia, J. Fluid Mech. 406, 81 (2000).

[22] R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, Physica
D (Amsterdam, Neth.) 80, 385 (1995).

[23] T. Ishihara, T. Gotoh, and Y. Kaneda, Annu. Rev. Fluid Mech.
41, 165 (2009).

[24] D. Lohse and A. Miiller-Groeling, Phys. Rev. Lett. 74, 1747
(1995).

[25] E. Afik and V. Steinberg, arXiv:1502.02818v1.

[26] W. Van De Water and J. A. Herweijer, J. Fluid Mech. 387, 3
(1999).

033018-8


http://dx.doi.org/10.1103/PhysRevLett.110.214502
http://dx.doi.org/10.1103/PhysRevLett.110.214502
http://dx.doi.org/10.1103/PhysRevLett.110.214502
http://dx.doi.org/10.1103/PhysRevLett.110.214502
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/RevModPhys.73.913
http://dx.doi.org/10.1103/PhysRevLett.86.424
http://dx.doi.org/10.1103/PhysRevLett.86.424
http://dx.doi.org/10.1103/PhysRevLett.86.424
http://dx.doi.org/10.1103/PhysRevLett.86.424
http://dx.doi.org/10.1017/S0022377814001081
http://dx.doi.org/10.1017/S0022377814001081
http://dx.doi.org/10.1017/S0022377814001081
http://dx.doi.org/10.1017/S0022377814001081
http://dx.doi.org/10.1017/S0022112084001488
http://dx.doi.org/10.1017/S0022112084001488
http://dx.doi.org/10.1017/S0022112084001488
http://dx.doi.org/10.1017/S0022112084001488
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1007/s00220-008-0502-9
http://dx.doi.org/10.1007/s00220-008-0502-9
http://dx.doi.org/10.1007/s00220-008-0502-9
http://dx.doi.org/10.1007/s00220-008-0502-9
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.71.2401
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevE.66.026304
http://dx.doi.org/10.1103/PhysRevE.66.026304
http://dx.doi.org/10.1103/PhysRevE.66.026304
http://dx.doi.org/10.1103/PhysRevE.66.026304
http://dx.doi.org/10.1209/epl/i2000-00275-y
http://dx.doi.org/10.1209/epl/i2000-00275-y
http://dx.doi.org/10.1209/epl/i2000-00275-y
http://dx.doi.org/10.1209/epl/i2000-00275-y
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1146/annurev-fluid-120710-101240
http://dx.doi.org/10.1103/PhysRevE.60.4164
http://dx.doi.org/10.1103/PhysRevE.60.4164
http://dx.doi.org/10.1103/PhysRevE.60.4164
http://dx.doi.org/10.1103/PhysRevE.60.4164
http://dx.doi.org/10.1007/s10955-006-9225-5
http://dx.doi.org/10.1007/s10955-006-9225-5
http://dx.doi.org/10.1007/s10955-006-9225-5
http://dx.doi.org/10.1007/s10955-006-9225-5
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1080/14685248.2013.766747
http://dx.doi.org/10.1016/j.physd.2011.07.008
http://dx.doi.org/10.1016/j.physd.2011.07.008
http://dx.doi.org/10.1016/j.physd.2011.07.008
http://dx.doi.org/10.1016/j.physd.2011.07.008
http://dx.doi.org/10.1017/S0022112007008002
http://dx.doi.org/10.1017/S0022112007008002
http://dx.doi.org/10.1017/S0022112007008002
http://dx.doi.org/10.1017/S0022112007008002
http://dx.doi.org/10.1088/1367-2630/15/8/083051
http://dx.doi.org/10.1088/1367-2630/15/8/083051
http://dx.doi.org/10.1088/1367-2630/15/8/083051
http://dx.doi.org/10.1088/1367-2630/15/8/083051
http://dx.doi.org/10.1017/S0022112099007296
http://dx.doi.org/10.1017/S0022112099007296
http://dx.doi.org/10.1017/S0022112099007296
http://dx.doi.org/10.1017/S0022112099007296
http://dx.doi.org/10.1016/0167-2789(94)00190-2
http://dx.doi.org/10.1016/0167-2789(94)00190-2
http://dx.doi.org/10.1016/0167-2789(94)00190-2
http://dx.doi.org/10.1016/0167-2789(94)00190-2
http://dx.doi.org/10.1146/annurev.fluid.010908.165203
http://dx.doi.org/10.1146/annurev.fluid.010908.165203
http://dx.doi.org/10.1146/annurev.fluid.010908.165203
http://dx.doi.org/10.1146/annurev.fluid.010908.165203
http://dx.doi.org/10.1103/PhysRevLett.74.1747
http://dx.doi.org/10.1103/PhysRevLett.74.1747
http://dx.doi.org/10.1103/PhysRevLett.74.1747
http://dx.doi.org/10.1103/PhysRevLett.74.1747
http://arxiv.org/abs/arXiv:1502.02818v1
http://dx.doi.org/10.1017/S0022112099004814
http://dx.doi.org/10.1017/S0022112099004814
http://dx.doi.org/10.1017/S0022112099004814
http://dx.doi.org/10.1017/S0022112099004814



