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Anisotropic particle in viscous shear flow: Navier slip, reciprocal symmetry, and Jeffery orbit
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The hydrodynamic reciprocal theorem for Stokes flows is generalized to incorporate the Navier slip
boundary condition, which can be derived from Onsager’s variational principle of least energy dissipation.
The hydrodynamic reciprocal relations and the Jeffery orbit, both of which arise from the motion of a slippery
anisotropic particle in a simple viscous shear flow, are investigated theoretically and numerically using the
fluid particle dynamics method [Phys. Rev. Lett. 85, 1338 (2000)]. For a slippery elliptical particle in a linear
shear flow, the hydrodynamic reciprocal relations between the rotational torque and the shear stress are studied
and related to the Jeffery orbit, showing that the boundary slip can effectively enhance the anisotropy of the
particle. Physically, by replacing the no-slip boundary condition with the Navier slip condition at the particle
surface, the cross coupling between the rotational torque and the shear stress is enhanced, as manifested through
a dimensionless parameter in both of the hydrodynamic reciprocal relations and the Jeffery orbit. In addition,
simulations for a circular particle patterned with portions of no-slip and Navier slip are carried out, showing that
the particle possesses an effective anisotropy and follows the Jeffery orbit as well. This effective anisotropy can
be tuned by changing the ratio of no-slip portion to slip potion. The connection of the present work to nematic
liquid crystals’ constitutive relations is discussed.
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I. INTRODUCTION

Suspensions of solid particles of microscale or nanoscale
in liquids are ubiquitous in both nature and industries. The
presence of solid particles, especially anisotropic ones, in a
viscous fluid can result in fascinating rheological properties
of the suspension [1–4]. Studies concerning the motion of
an ellipsoidal particle in a viscous flow were initiated by
Jeffery [5], who applied the no-slip boundary condition at
particle surface and studied the particle revolution driven
by a simple shear flow in the Stokes regime. The ellip-
soidal particle was found to undergo a periodic revolu-
tion called the Jeffery orbit, which is controlled by the
anisotropy (aspect ratio) of the particle. The analytical solution
for the Jeffery orbit was derived by Jeffery himself and
soon experimentally verified by Taylor [6]. Bretherton [7]
demonstrated the general validity of the Jeffery orbit for
particles of rotational symmetry, e.g., cylinders and fibers,
followed by numerous experimental observations [8–10]
and numerical simulations [11]. In addition, there have
been investigations on the Jeffery orbit that involve wall
effect [12–14], inertial effect [15–19], Poiseuille flow [20–22],
axisymmetric random flow [23], and the coupling with heat
flux [24]. Moreover, even under conditions that are not as
ideal as in the original study, the Jeffery orbit dynamics can
still be used to describe how the particle orientation responds
to the fluid velocity gradient, covering the dynamics of
nematic liquid crystals [25–30], and elastic particles [31–33],
vesicles [34–36], and active particles [37] and nonflagellated E.
coli in shear flows [38]. Recently, the study of microswimmer
aggregation in various flows has attracted much attention
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because it is a fundamental element in microbial ecology [39],
pathophoresis [40], and biofilm formation [41], and so on. For
elongated microswimmers, their flow-driven motion always
involves the Jeffery orbit [42]. Recent studies have revealed
how their aggregations are affected by different flow types and
their motilities in response to possible external stimuli [43–46],
i.e., gyrotaxis, chemotaxis, phototaxis, and so on. All these
studies demonstrate that the Jeffery orbit dynamics is a
fundamental aspect of the motion of anisotropic objects in
viscous flows. The Jeffery orbit was also used in the study
of the viscosity of the ellipsoidal particle suspension, which
was simplified to be dilute and free of Brownian motion and
hydrodynamic interactions [5].

It is important to note that at the length scale of the dispersed
particles (typically micrometer or nanometer), viscous force
is typically dominant in comparison with inertial force, as
characterized by the small Reynolds number [47,48]. The
dominance of viscous force means that the hydrodynamic
interactions are transformed almost instantaneously, resulting
in certain constraints upon the motion of the concerned
objects [1,49,50]. One of the benefits is that for a rigid-body
motion in a viscous flow, some results can be obtained without
directly solving it but by invoking the known results of some
other motion [51]. These are the so-called hydrodynamic
reciprocal relations [1,49,52], also known as the Lorentz
reciprocal theorem [53]. These relations can be regarded as
a specific form of Onsager’s reciprocal relations [54,55] in
hydrodynamics and have been fruitfully employed in various
studies, such as particle hydrodynamic interactions [56],
propulsion of microorganisms by surface distortions [57],
thermocapillary migration [58], Marangoni propulsion [59],
electrophoresis [60], and flow over patterned surfaces [61].

In fluid dynamics, the Navier-Stokes equation has been
constantly used together with the no-slip boundary condition.
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Though widely applied at the fluid-solid interface [47], the
latter is actually a limit or a good approximation valid at
macroscopic level and cannot be derived from fundamental
principles [62,63]. Deviation from the no-slip condition has
been reported in many studies, such as gas flows [64],
non-Newtonian flows [63], moving contact lines [65], flows at
micro- or nanoscale [66,67], and flows at high shear rate [68].
The Navier slip boundary condition was proposed to account
for a tangential velocity of the fluid relative to the solid at
the fluid-solid interface [69]. Recently, it has been shown that
this slip condition can be derived from the principle of least
energy dissipation [70]. Therefore, when boundary slip is taken
into consideration, those celebrated classical results, obtained
with the use of no-slip condition, have to be modified. To the
best of our knowledge, there has been no report on the study
of the Jeffery orbit with boundary slip though an interesting
discussion was put forward [71]. As the Stokes equation and
the Navier slip condition can both be derived from the principle
of least energy dissipation, we expect that the hydrodynamic
reciprocal relations can be preserved when the Navier slip
condition is introduced to replace the no-slip condition. This
understanding underpins the present work.

As to the numerical simulations for hydrodynamics at small
scales, the Navier-Stokes equation is still valid as a continuum
description [47], based on which numerous numerical methods
have been developed for colloidal simulations [72–75]. As a
powerful method for colloidal simulations, the fluid particle
dynamics (FPD) method has been proposed by Tanaka and
Araki [76,77]. This method employs a diffuse fluid-solid
interface in order to avoid the explicit implementation of fluid-
particle boundary condition. Instead, it approximates a solid
particle as a highly viscous fluid such that the Navier-Stokes
equation is solved in the whole space and the large particle
number is no longer problematic. In the present work, we
apply the Navier slip condition at particle surface. This is to be
realized by inserting a thin layer of fluid with reduced viscosity
between the solid particle and the surrounding liquid. This
treatment can be readily incorporated into the FPD method,
resulting in an effective slip length, which measures the extent
of boundary slip [78,79].

The purpose of the present work is to investigate the effects
of boundary slip on the orientational motion of an anisotropic
particle in a simple shear flow. A fluid-particle system is
studied where an anisotropic particle is immersed in a viscous
fluid confined between two shearing walls. We first generalize
the hydrodynamic reciprocal relations to replace the no-slip
condition with the Navier slip condition. We then apply these
relations to the fluid-particle system with a slippery elliptical
particle. The coefficient for the cross coupling between the
rotational torque and the shear stress is identified and related
to the particle’s effective anisotropy. The Jeffery orbit of
this particle is also studied, in which the same coefficient
appears. We carry out numerical simulations using the FPD
method. The dependence of the cross-coupling coefficient on
the slip length at particle surface is measured, showing that
the boundary slip can enhance the effective anisotropy of the
particle and hence the cross coupling between the rotational
torque and the shear stress. We further consider the Jeffery orbit
of a circular patchy particle which possesses the symmetry of
an ellipse via surface patterning of no-slip and slip patches.

Numerical results show that its effective anisotropy depends
on the pattern geometry and the slip length. Finally, there is
a brief discussion on the connection of the present work to
nematic liquid crystals’ constitutive relations.

The paper is organized as follows. In Sec. II, Onsager’s
variational principle and reciprocal relations are reviewed.
The Stokes equation and the Navier slip boundary condition
are shown to be derivable from Onsager’s principle. Then
the hydrodynamic reciprocal relations are generalized by
replacing the no-slip condition with the Navier slip condition.
In Sec. III, the FPD method is presented, with extension
for applying the Navier slip condition. In Sec. IV, the fluid-
particle system with a slippery elliptical particle is investigated
for the hydrodynamic reciprocal relations and Jeffery orbit.
The Jeffery orbit of a circular patchy particle is studied as
well. In Sec. V, the fluid-particle system is shown to be
analogous to a unit of nematic liquid crystal regarding the
cross coupling between the rotational torque and the shear
stress. The paper is concluded in Sec. VI with a few remarks.
The numerical implementation of the FPD method is outlined
in the Appendix.

II. ONSAGER’S VARIATIONAL PRINCIPLE AND
HYDRODYNAMIC RECIPROCAL RELATIONS

A. Onsager’s variational principle and reciprocal symmetry

Consider a closed system not far from equilibrium. The
fluctuations of a set of coarse-grained variables α ≡ {αi} are
measured relative to their most probable (equilibrium) values
{αi = 0}. The entropy of the system S, which reaches its
maximum Se at equilibrium, can be expressed in the quadratic
form

S = Se + �S(α) = Se − 1
2βijαiαj , (1)

where βij form a symmetric and positive definite matrix.
Here the Einstein summation convention is used. The prob-
ability density at state α is related to �S(α) via f (α) =
f0 exp[�S(α)/kB], with kB being the Boltzmann constant.
When the system deviates from equilibrium, spontaneous
irreversible processes arise in response to the thermodynamic
force Xi conjugate to αi :

Xi ≡ ∂�S

∂αi

= −βijαj , (2)

which is linear in α due to the quadratic form of �S(α) in
Eq. (1).

For small deviation from equilibrium, the system is in the
linear response regime, where the state α evolves according to
the kinetic equations

α̇i = LijXj (3)

or, equivalently,

Xi = Rij α̇j , (4)

where the kinetic coefficients Lij form a symmetric and
positive definite matrix and so do the coefficients Rij , with
LijRjk = δik . Off-diagonal entries Lij and Rij are referred to
as cross-coupling coefficients between different irreversible
processes labeled by i and j . Under the condition that
the variables α are even, i.e., their signs remain invariant
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under time-reversal operation, Onsager derived the reciprocal
relations

Lij = Lji, (5)

and, consequently, Rij = Rji , from the microscopic reversibil-
ity [54,55]. It is worth emphasizing that his derivation does not
require detailed knowledge of the irreversible processes. Some
experimental verifications have been reported by Miller [80].

Based on Onsager’s reciprocal relations (5), the kinetic
equations (4) can be used to formulate a variational principle
governing the irreversible processes. This variational principle
states that, for a closed system, the state evolution equations
can be obtained by maximizing the action function (or
functional),

Ṡ(α,α̇) − �S(α̇,α̇), (6)

with respect to the rates {α̇i}. Here Ṡ = Xiα̇i is the rate of
change of the entropy, and the dissipation function �S(α̇,α̇) =
Rij α̇i α̇j /2 is half the rate of entropy production. For an open
system, however, there is an additional term Ṡ∗, which is the
rate of entropy given by the system to the environment, added
to the action (6), leading to

O = Ṡ + Ṡ∗ − �S(α̇,α̇), (7)

which is called the Onsager-Machlup action [54,55,81]. Note
that Ṡ + Ṡ∗ is still linear in {α̇i}. Onsager’s variational principle
states that for an open system, the state evolution equations
can be obtained by maximizing the Onsager-Machlup action
O with respect to the rates {α̇i}. This principle serves as a
general framework for describing irreversible processes in the
linear response regime.

Onsager’s variational principle is an extension of Rayleigh’s
principle of least energy dissipation [82], and, naturally, it
reduces to the latter for isothermal systems. In an isothermal
system, the rate of entropy given by the system to the
environment can be expressed as Ṡ∗ = −Q̇/T = −U̇/T ,
where T is the system temperature, Q̇ is the rate of heat
transfer from the environment to the system, and U̇ is the
rate of change of the system energy, with Q̇ = U̇ according
to the first law of thermodynamics. Note that T is constant
here. The maximization of the Onsager-Machlup action (7) is
equivalent to the minimization of the so-called Rayleighian,

R = Ḟ (α,α̇) + �F (α̇,α̇), (8)

with respect to the rates {α̇i}. Here Ḟ ≡ U̇ − T Ṡ = −T (Ṡ +
Ṡ∗) is the rate of change of the Helmholtz free energy of the
system, and the dissipation function �F (α̇,α̇) ≡ T �S(α̇,α̇) is
half the rate of free-energy dissipation. As Ḟ is linear while
�F is quadratic in the rates {α̇i}, the principle of least energy
dissipation leads to Ḟ = −2�F . For isothermal systems, the
Rayleighian can be written as

R = ∂F

∂αi

α̇i + 1

2
ζij α̇i α̇j , (9)

where the first term in the right-hand side is Ḟ and the second
term is �F (α̇,α̇), which is in a quadratic form with the friction
coefficients ζij forming a symmetric and positive-definite
matrix. Minimization of R with respect to the rates gives the

kinetic equations

− ∂F

∂αi

= ζij α̇j , (10)

which can be interpreted as a balance between the reversible
force −∂F/∂αi and the dissipative force linear in the rates.

It is worth emphasizing that although the variational
principle is equivalent to the kinetic equations combined
with the reciprocal relations, the former possesses a notable
advantage [83]: The variational form allows flexibility in the
choice of state variables. Once these variables are chosen, the
conjugate forces are generated automatically via calculus of
variations.

B. Stokes equation and Navier slip boundary condition
from the variational principle

The variational principle is now fully employed to inves-
tigate the Stokes flows with boundary slip. Below is a brief
review, showing that the Stokes equation and the Navier slip
boundary condition can be derived from the principle of least
energy dissipation [70].

Consider an incompressible Newtonian fluid in a region 	

with a solid boundary ∂	, and neglect the inertial effect. The
incompressibility condition reads �∇ · �v = 0, and the boundary
is impermeable at which the normal velocity vn|∂	 = 0. Here
the rate is the velocity field �v(�r) and the free energy is constant
in time. The dissipation in the bulk region is due to the viscosity
η, and the corresponding dissipation function is [47]

�v =
∫

	

dV
1

4
η(∂ivj + ∂jvi)

2. (11)

If boundary slip occurs at the fluid-solid interface, then the
corresponding dissipation function is given by

�s =
∫

∂	

dS
1

2
β(�vslip)2, (12)

where β is the slip coefficient, and �vslip is the slip velocity,
defined as the tangential velocity of the fluid relative to the
solid at the fluid-solid interface. Here the solid boundary is
still and hence �vslip = �v. The Rayleighian of the system is
given by

R = �v + �s

=
∫

	

dV
1

4
η(∂ivj + ∂jvi)

2 +
∫

∂	

dS
1

2
β �v2. (13)

Combining the principle of least energy dissipation with the
incompressibility condition, we have δ[R − ∫

	
dV π∂ivi] = 0

for any �v(�r) → �v(�r) + δ�v(�r), with π being the Lagrange
multiplier. The Euler-Lagrange equations are the Stokes
equation

−�∇π + �∇ · [η( �∇�v + �∇�vT )] = 0 (14)

in the bulk region and the Navier boundary condition

n̂ · ↔
σ vis · ↔

τ + β �vslip = 0 (15)

at the solid boundary, where
↔
σ vis ≡ η( �∇�v + �∇�vT ) is the

viscous stress tensor and
↔
τ ≡ ↔

I − n̂n̂ with n̂ being the
outward pointing (from fluid into solid) unit vector normal
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to ∂	. Note that the Lagrange multiplier π is the pressure.

The total stress is
↔
σ ≡ −π

↔
I + ↔

σ vis.

C. Lorentz reciprocal theorem

Prior to Onsager’s general work, there existed a few specific
reciprocal relations studied by Lord Kelvin and Helmholtz. In
fluid dynamics, the hydrodynamic reciprocal relations, known
as the Lorentz reciprocal theorem [49], are also regarded as a
special form of Onsager’s reciprocal relations [84]. Consider
an incompressible Stokes flow in a region 	 with a solid
boundary ∂	. The velocity field �v(�r) is governed by the Stokes
equation (14), with the no-slip boundary condition at ∂	.
Suppose that in the same system, two velocity fields �v(1) and
�v(2) are both the solutions to Eq. (14), with their corresponding
stress fields denoted by

↔
σ (1) and

↔
σ (2), respectively. The Lorentz

reciprocal theorem states that∫
∂	

dSn̂ · ↔
σ (1) · �v(2) =

∫
∂	

dSn̂ · ↔
σ (2) · �v(1), (16)

where n̂ is the outward pointing (from fluid into solid) unit
vector normal to ∂	. The proof is as follows. The left-hand
side of Eq. (16) can be expressed as∫

∂	

dSn̂ · ↔
σ (1) · �v(2)

=
∫

	

dV �∇ · [
↔
σ (1) · �v(2)]

=
∫

	

dV [ �∇ · ↔
σ (1) · �v(2) + ↔

σ (1) : �∇�v(2)]

=
∫

	

dV

{
−p(1)δij ∂iv

(2)
j + η

2

[
∂iv

(1)
j + ∂jv

(1)
i

]

×[
∂iv

(2)
j + ∂jv

(2)
i

]}

=
∫

	

dV
η

2

[
∂iv

(1)
j + ∂jv

(1)
i

][
∂iv

(2)
j + ∂jv

(2)
i

]
, (17)

where the Stokes equation, �∇ · �v = 0, and the symmetry of
↔
σ are used. It is readily seen that the right-hand side of of
Eq. (16) leads to the same expression. Furthermore, the Lorentz
reciprocal theorem (16) can be expressed as

F
(1)
k ẋ

(2)
k = F

(2)
k ẋ

(1)
k , (18)

where ẋk are the generalized velocities of the solid objects and
Fk are the generalized dissipative forces conjugate to ẋk [85].
Note that the no-slip boundary condition is applied to move
from �v of the fluid to ẋk of the solid. Due to the linearity of the
Stokes flows, we have the linear dependence of the forces on
the rates:

Fk = ζkl ẋl , (19)

where the friction coefficients ζkl form a positive definite
matrix. It follows from Eq. (18) that the Lorentz reciprocal
theorem can be expressed as

ζkl = ζlk, (20)

meaning that the matrix formed by the friction coefficients ζkl

is symmetric.

In the above discussion, the Lorentz reciprocal theorem
expressed in Eqs. (18) and (20) is derived from the Stokes
equation and the no-slip boundary condition. We have already
shown that the Stokes equation (14) and the Navier boundary
condition (15) can be simultaneously obtained from the prin-
ciple of least energy dissipation. It is therefore expected that
the hydrodynamic reciprocal relations can be generalized to
describe the Stokes flows with the Navier boundary condition.

Consider the same system with the Navier boundary
condition. The velocity of the solid boundary ∂	 is denoted
by �W . From the Navier boundary condition (15), we readily
obtain∫

∂	

dSn̂ · ↔
σ (1) · �vslip(2) =

∫
∂	

dSn̂ · ↔
σ (2) · �vslip(1). (21)

Meanwhile, Eq. (16) still holds. Note that �W = �v − �vslip

on ∂	. By combining Eqs. (16) and (21), we obtain the
generalized form of the hydrodynamic reciprocal relations,

∫
∂	

dSn̂ · ↔
σ (1) · �W (2) =

∫
∂	

dSn̂ · ↔
σ (2) · �W (1). (22)

Note that the no-slip limit is obtained as β → ∞ with �W = �v
on ∂	. With the Lorentz reciprocal theorem generalized from
Eq. (16) to (22), it can be further expressed as Eq. (18), which
results in the symmetry in Eq. (20). We emphasize that in
the presence of boundary slip, we need Eq. (22) in order to
arrive at Eqs. (18) and (20). It is remarkable that the reciprocal
symmetry is preserved in the Stokes flows with the Navier slip
condition.

To use Eq. (20) for the present study, we consider the solid
boundary ∂	 consisting of the surfaces of N rigid bodies ∂	i

(i = 1, . . . ,N), each in a motion described by the translational
velocity �V i and the angular velocity �ωi . The solid velocity at
�r on ∂	i can be expressed as

�W (�r) = �V i + �ωi × δ�ri, (23)

where δ�ri is measured relative to the center of mass of the i-th
rigid body. Then we have∫

∂	

dSn̂ · ↔
σ (1) · �W (2)

=
N∑

i=1

[ ∫
∂	i

dSn̂ · ↔
σ (1)

]
· �V i(2)

+
N∑

i=1

{∫
∂	i

dSδ�ri × [n̂ · ↔
σ (1)]

}
· �ωi(2),

where
∫
∂	i dSn̂ · ↔

σ is the total force by the i-th rigid body

on the fluid and
∫
∂	i dSδ�ri × (n̂ · ↔

σ ) is the total torque by
the i-th rigid body on the fluid. This leads to a specific
form of Eq. (18), in which �V i and �ωi (i = 1, . . . ,N) are the
generalized velocities of the rigid bodies ẋk and

∫
∂	i dSn̂ · ↔

σ

and
∫
∂	i dSδ�ri × (n̂ · ↔

σ ) are their conjugate generalized forces
Fk .

We point out that the Lorentz reciprocal theorem is valid
only when the slip length ls = η/β is a material constant,
which makes the Navier boundary condition linear [86]. In
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fact, nonlinear slip boundary conditions have been reported
in the literature [68,87–89], where the slip length ls depends
on the shear rate at the solid boundary γ̇ when the latter is
large enough. For example, the rate-dependent slip length
ls = l0

s (1 − γ̇ /γ̇c)−1/2 has been reported [87], where l0
s is the

constant slip length at low γ̇ , and γ̇c is the critical shear rate at
which ls diverges. For γ̇ 	 γ̇c, ls is almost a constant (
l0

s ),
and the Navier boundary condition is recovered. However,
when the nonlinear effect occurs at high γ̇ , Eq. (21) no longer
holds, and, consequently, the Lorentz reciprocal theorem
expressed in Eq. (22), (18), or (20) breaks down.

III. NUMERICAL METHOD

The FPD method is employed in our numerical simulations.
Proposed by Tanaka and Araki [76] for colloidal suspension
simulations, this method has been further developed to treat
numerous problems of liquid-solid mixtures [77]. It has been
shown to be an efficient and powerful method for simulations
of solid particle dynamics in fluids because of the accurate
inclusion of hydrodynamic interactions, the absence of explicit
implementation of the boundary conditions at fluid-solid
interface, and the insensitivity of the computational complexity
to the particle number. In this section, there is a brief review
of the FPD method followed by an extension to include the
boundary slip at fluid-solid interface.

A. Fluid particle dynamics method

The FPD method can be regarded as a hybrid method. Two
sets of variables are employed: (i) the on-lattice variables
including the velocity field �v(�r), the pressure field p(�r),
the composition field φ(�r), and the viscosity field η(�r) and
(ii) the off-lattice variables including the particle’s center-of-
mass position �Rp, the particle’s orientation �dp, the particle’s
center-of-mass velocity �Vp, and the particle’s angular velocity
�ωp. On the one hand, a particle is represented by �Rp and �dp,
and, on the other hand, it is also represented by the composition
field given by

φ(�r) = 1

2

{
tanh

[
d(�r)

ξ

]
+ 1

}
, (24)

where ξ is a small length scale characterizing the fluid-solid
interfacial thickness and d(�r) is the signed distance to the fluid-
solid interface, which is positive inside and negative outside the
solid particle. This results in φ = 1 in the solid region and φ =
0 in the fluid region, with the fluid-solid interface defined as the
locus of φ = 0.5. In colloidal suspension simulations, the long-
range and many-body hydrodynamic interactions are of critical
importance. The FPD method treats the solid particles as a
highly viscous incompressible fluid in which the velocity field
becomes very close to that of a rigid body [76,77]. Momentum
transfer between the fluid and the solid particles is realized by
solving the Navier-Stokes equation,

ρ
D�v
Dt

= −�∇π + �∇ · [η( �∇�v + �∇�vT )] + �f , (25)

where the fluid and solid are assumed to be of the same
density ρ, the viscosity η depends on φ with η(φ) = ηs as
the “solid” viscosity for φ = 1 and η(φ) = ηl as the liquid

viscosity for φ = 0, and �f is the external force density. From
the velocity field in the particle region, the average velocity
and vorticity are measured to give �Vp and �ωp, respectively. The
implementation details can be found in the Appendix. Tanaka
and Araki used η(φ) as a linear function of φ to achieve the
no-slip condition at fluid-solid interface [77].

There are two dimensionless numbers crucial to the validity
of the FPD method: the viscosity ratio rη ≡ ηs/ηl and the
relative interfacial thickness rξ ≡ ξ/a, with a being a char-
acteristic length for the particle. In general, better simulation
results are obtained for larger rη and smaller rξ [76,77]. In the
numerical simulations reported here, rη = 50 and rξ < 0.1 are
used.

In our simulations, the particle may be expected to undergo
a motion with prescribed translational velocity �V ∗ and angular
velocity �ω∗. This is to be realized by employing a simple
interpolation approach. The rigid-body velocity distribution in
the particle region reads

�vr (�r) = �V ∗ + �ω∗ × (�r − �Rp). (26)

To update the velocity distribution from �vn to �vn+1, we let �vn+1

be an interpolation [90,91] between �vr and the intermediate
velocity field �vn

i which is solved from the Navier-Stokes
equation (25) with �vn as the initial condition, i.e.,

�vn+1(�r) = �[φ(�r)]�vr (�r) + {1 − �[φ(�r)]}�vn
i (�r), (27)

in which �(φ) is a Heaviside function with � = 1 for φ � φc

and 0 otherwise. With the understanding that φc should be close
to φs = 1, φc = 0.95 is used in our simulations. Numerical
tests show that for φc values close to 1, numerical results
converge.

B. Boundary slip at fluid-solid interface

It has been shown that using a monotonic function η(φ)
across the fluid-solid interfacial region will reproduce the
no-slip boundary condition [77]. However, at the micro-
or nanoscale, boundary slip occurs in many circumstances.
Here we introduce a slippery fluid-solid interface to the FPD
method. It has been demonstrated that a thin layer of fluid
(“lubricant”) with lower viscosity between the fluid and the
solid can effectively generate a slip across the fluid-solid
interface [78,79]. Consider a thin layer of lubricant with a very
small viscosity ηi and a width comparable to the interfacial
thickness ξ . Let ηl denote the fluid viscosity and ls denote
the slip length in the Navier boundary condition which is to
be realized across the fluid-solid interface. The continuity of
the shear stress across the interface means ηlγ̇ ∼ ηi�v/ξ ,
where γ̇ is the shear rate at the solid boundary and �v is
the change of tangential velocity across the interfacial region.
With the understanding that �v acts as the slip velocity, we
have the slip coefficient β ∼ ηi/ξ , which gives the slip length
ls = ηl/β ∼ (ηl/ηi)ξ . This leads to the scaling relation [79]

ls

ξ
∼ ηl

ηi

, (28)

which shows that a small interfacial viscosity ηi (being much
smaller than ηl) can result in a large slip length (�ξ ).
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In our simulations, we use

η(φ) =
{

16(ηl − ηi)(φ − 0.25)3 − 3(ηl − ηi)(φ − 0.25) + 0.5(ηl + ηi) if φ � 0.5,

16(ηi − ηs)(φ − 0.75)3 − 3(ηi − ηs)(φ − 0.75) + 0.5(ηi + ηs) if φ > 0.5,
(29)

with η(0) = ηl , η(0.5) = ηi , and η(1) = ηs for the thin layer of
lubricant between the fluid and the solid. Expected to follow
the scaling relation (28), the quantitative relation between ls
and ηi has to be numerically measured. For this purpose, we
generate a tangential flow of the fluid over the solid surface,
with the lubricant layer in the interfacial region. The velocity
profile is measured, from which the slip length ls is obtained
through an extrapolation. By varying ηi , we can obtain ls as a
function of ηi , which is shown in Fig. 1. For ls � 3ξ , a linear
fitting gives

ls

ξ
= 0.412 + 0.783

ηl

ηi

, (30)

which agrees with the relation (28) well. For ls 
 ξ , however,
the scaling relation (28) no longer holds. In fact, due to the
diffuse nature of the interface, the smallest slip length that can
be accurately determined should be of the order of magnitude
of ξ . Finally, it is worth pointing out that a specific form
of interpolation for η(φ) results in a specific realization of
slip: the parameters s0 and s1 in ls/ξ = s0 + s1ηl/ηi may be
varied by changing the viscosity function η(φ). But the scaling
relation (28) is always satisfied.

In the next section, we use the viscosity function (29) to
introduce slip at particle surface. We also use Eq. (30) to
directly obtain ls from ηi . Since this equation is numerically
obtained for flat solid surfaces, it is therefore expected to be
valid when the curvature radius of the particle surface is much
larger than the interfacial thickness ξ .

FIG. 1. ls/ξ plotted as a function of ηl/ηi . The symbols
represent the results from the FPD simulations with slippery
fluid-solid interface; the solid line is a linear fitting expressed
by Eq. (30) for ls/ξ � 3. The inset shows log10(η/ηl) plotted
as a function of φ for η(φ) in Eq. (29), with ηs/ηl = 50 and
ηi/ηl = 0.1.

IV. NUMERICAL SIMULATIONS AND RESULTS

A. Hydrodynamic reciprocal relations in a fluid-particle system

Consider a two-dimensional fluid-particle system as shown
in Fig. 2. An elliptical particle is immersed in a viscous fluid
confined between two solid walls parallel to the x axis. The
particle is positioned at the center between the two walls. The
two walls shear the viscous fluid with the speed W in the ±x

directions, and the particle rotates with an angular velocity ωẑ

in the xy plane. Here ẑ is the unit vector in the z direction.
We use n̂ to denote the outward pointing (from fluid into solid)
unit vector normal to the particle surface, a to denote the major
axis, and b to denote the minor axis of the ellipse, with the
aspect ratio of the particle defined by e ≡ b/a < 1.

Physically, the integrated stress S ≡ ∫
uw σyxdx is the

tangential force by the upper wall on the fluid (with “uw” in∫
uw denoting the upper wall), and T ≡ ∫

p
ẑ · [�r × (n̂ · ↔

σ )]dS

is the torque by the solid particle on the fluid (with “p” in
∫
p

denoting the particle). Considering the top-bottom symmetry,
we take the wall velocity variation 2W and the particle angular
velocity ω as the two rates, with S and T as their conjugate
forces. The rate of dissipation can be written as

D = 2WS + ωT . (31)

As the system is linear, we have the linear dependence of the
forces on the rates:[

S

T

]
=

[
α γS

γT β

] [
2W

ω

]
, (32)

where α, β, γS , and γT are the friction coefficients defined
in Eq. (19). The corresponding hydrodynamic reciprocal

W

n̂ = ŷ

W

n̂ = −ŷ

n̂

x̂

ŷ

ω

θ

FIG. 2. A schematic illustration for a two-dimensional fluid-
particle system.
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relation is

γS = γT . (33)

This symmetry has been proved in the previous section, and its
numerical verification can actually be used as a test of validity
for our simulations.

According to Eq. (32), γS can be measured using the relation
γS = SW=0/ω, in which W = 0 represents the case where the
two walls are fixed (with W = 0) and the particle rotates (with
an angular velocity ω). This is termed case 1. Similarly, γT can
be measured using the relation γT = Tω=0/(2W ), in which
ω = 0 represents the case where the particle is fixed (with
ω = 0) and the two walls move with the velocities ±Wx̂. This
is termed case 2.

The cross-coupling coefficients γS and γT depend on the
particle orientation θ (see Fig. 2). If the distance between the
two walls H is large compared to the particle dimensions,
then the flow far away from the particle can be regarded as
a simple shear flow with the shear rate given by γ̇ = 2W/H .
This simple shear flow can be decomposed into two parts [49]:
an isotropic rotation field with angular velocity −γ̇ /2 and an
anisotropic distortion field without volumetric change. The
latter consists of an elongation along 1/

√
2(x̂ + ŷ) direction

and a compression along 1/
√

2(−x̂ + ŷ) direction, both of rate
γ̇ /2.

Positioned at the center, the particle undergoes no transla-
tional motion. The torque exerted by the particle on the fluid
scales as

T ∝
(

ω + γ̇

2

)
− γ̇

2
p cos 2θ, (34)

in which p is a dimensionless parameter measuring the
anisotropy of the particle. This expression is obtained by
considering T as a sum of two distinct contributions [92].
The first contribution is from the angular velocity of the
particle relative to the fluid, given by ω − (−γ̇ /2). The
second contribution is from the mismatch between the particle
orientation and the principal axes of the distortion field, from
which cos 2θ arises. Note that the first contribution ω + γ̇ /2
is isotropic, whereas the second contribution −(γ̇ /2)p cos 2θ

is anisotropic (θ dependent) with the anisotropy measured by
p. According to Jeffery [5], the dimensionless parameter p is
given by

p = 1 − e2

1 + e2
(35)

for an elliptical particle with no-slip boundary condition, with
p → 0 for e → 1 (circular particle) and p → 1 for e → 0
(slender beam). To the best of our knowledge, there has been
no report of the effect of boundary slip on the dimensionless
parameter p.

For H � a, Eq. (34) can be used to give the angular
dependence of the cross-coupling coefficients

γS = γT ≡ T ω=0

2W
∝ 1 − p cos 2θ, (36)

with Tω=0 ∝ (1 − p cos 2θ )γ̇ /2 and γ̇ = 2W/H . It is worth
emphasizing that this expression holds for particles with
either no-slip or the Navier slip boundary condition. Below
we numerically demonstrate the effect of boundary slip on

−1 −0.5 0 0.5 1

−0.5

0

0.5

−1 −0.5 0 0.5 1

−0.5

0

0.5

FIG. 3. Snapshots of the velocity field (arrows) and the particle
(level curve of φ = 0.5), obtained for the numerical verification of
the hydrodynamic reciprocal relations. (a) Case 1 where the two walls
are fixed (with W = 0) and the elliptical particle rotates (with angular
velocity ω). (b) Case 2 where the particle is fixed (with ω = 0) and
the two walls move with the velocities ±Wx̂. The slip length is
ls = 5ξ . The fluid-particle system measures 2 × 2, the major axis of
the particle is a = 0.25, and the aspect ratio is e = 0.5. The fluid-solid
interfacial thickness is ξ = 0.01, the viscosity ratio is rη ≡ ηs/ηl =
50, the angular velocity in case 1 is ω = −1, and the wall speed in
case 2 is W = 2.

the dimensionless parameter p. Our results show that the
anisotropy can be enhanced by the boundary slip.

Using the FPD method, we verify the hydrodynamic
reciprocal relation (33) and the angular dependence of the
cross-coupling coefficients in Eq. (36) for the fluid-particle
system illustrated in Fig. 2. The distance between the two
walls is H = 2, the major axis of the particle is a = 0.25,
and the aspect ratio is e = 0.5. A diffuse fluid-solid interface
with interfacial thickness ξ = 0.01 is used to account for the
fluid-particle coupling, with the boundary slip treated by the
approach introduced in Sec. III B. The slip length ls varies from
0.03 to 0.1. The no-slip condition is applied at the two walls.
In case 1, the particle rotates with constant angular velocity
ω = −1 and the walls are fixed. The integrated stress S(θ ) at
the upper wall is measured as a function of the instantaneous
particle orientation θ . In case 2, the two walls move in the ±x̂
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S

Sx̂

ŷ

θ
ω

W

Wx̂

ŷ

θ
T

FIG. 4. Orientational dependence of the generalized forces, ob-
tained for the numerical verification of the hydrodynamic reciprocal
relations. (a) The integrated stress S (by the upper wall on the fluid)
plotted as a function of the particle orientation θ in case 1. (b) The
torque T (by the particle on the fluid) plotted as a function of the
particle orientation θ in case 2. The symbols represent the results from
the FPD simulations; the solid lines are the fitting curves according
to Eq. (36). The insets in (a) and (b) illustrate case 1 and case 2,
respectively. All the parameter values listed in the caption to Fig. 3
are used here.

directions with constant speed W = 2 and the particle is fixed.
The torque T (θ ) is measured as a function of the particle
orientation θ . [Each data point is obtained in a steady-state
flow generated for a fixed value of θ .] For ls = 5ξ , Figs. 3(a)
and 3(b) show the snapshots of the velocity field (vectors)
and the particle (level curve of φ = 0.5) in case 1 and case 2.
Figures 4(a) and 4(b) show the corresponding results for S(θ )
in case 1 and T (θ ) in case 2, both in satisfactory agreement
with the angular dependence in Eq. (36). A retardation in the
response of S to θ is observed in Fig. 4(a) as a small phase
shift. This is attributed to the small but nonzero inertial effect.
For different slip lengths, the dimensionless parameters pS

and pT can be obtained by fitting S(θ ) and T (θ ), respectively,
using the angular dependence in Eq. (36). As shown in Fig. 5,
pS and pT satisfy the reciprocal symmetry fairly well (within
∼3%). It is seen that the anisotropy parameter p increases with

FIG. 5. The anisotropy parameter p plotted as a function of
the slip length ls at the particle surface. The major axis of the
elliptical particle is a = 0.25, and the aspect ratio is e = 0.5. The
fluid-solid interfacial thickness is ξ = 0.01, and the slip length ls
varies from 3ξ to 10ξ . Here pS (�) and pT (�) are obtained through
the numerical verification of the hydrodynamic reciprocal relations:
pS is determined by fitting S(θ ) and pT is determined by fitting T (θ )
according to Eq. (36). In addition, pJ (•) is obtained from the FPD
simulation of the Jeffery orbit: pJ is determined by fitting the angular
velocity ω(θ ) (shown in Fig. 6) according to Eq. (37). Note that in
the limit of no slip (ls = 0), the values of p agree with Jeffery’s result
p = 0.6 from Eq. (35) (within ∼3%).

the increasing slip length at the particle surface. This means
that the effective anisotropy of the particle can be enhanced
by the boundary slip, i.e., the effective anisotropy is jointly
determined by the geometric shape and the degree of boundary
slip. In Sec. V, the anisotropy parameter p will be discussed
in relation to the cross coupling in nematic liquid crystals.

B. Jeffery orbit

In Jeffery’s original work, the flow was assumed to be
inertialess and the far-field components of distortion and
rotation of the fluid were given. The torque by the fluid on
the particle was calculated for no-slip ellipsoidal particles, and
the equation of motion for the inertialess particle was obtained
from the condition that the torque on the particle must vanish at
every instant [5]. In our two-dimensional fluid-particle system,
this condition gives

ω = γ̇

2
(p cos 2θ − 1) (37)

for T expressed in Eq. (34). For no-slip elliptical particles,
Jeffery gave p = (1 − e2)/(1 + e2) and the solution

tan θ = e tan

(
γ̇ e

1 + e2
t + C

)
, (38)

with C being a constant, for Eq. (37). It is worth emphasizing
that Eq. (37) is applicable to slippery particles as well provided
that p is jointly determined by the geometric shape and the
degree of boundary slip. A periodic solution can be obtained
in the same form as in Eq. (38) but with an effective aspect
ratio eeff = √

(1 − p)/(1 + p) [7,20]. If p � 1, however, a
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−1 −0.5 0 0.5 1

−0.5

0
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FIG. 6. The FPD simulation results for the Jeffery orbit of a
slippery elliptical particle in a simple shear flow. The fluid-particle
system measures 2 × 2, the shear rate is γ̇ = 2W/H = 2, the major
axis of the particle is a = 0.25, and the aspect ratio is e = 0.5. The
fluid-solid interfacial thickness is ξ = 0.01, and the slip length is
ls = 5ξ . (a) A snapshot of the velocity field (arrows) and the particle
(level curve of φ = 0.5). (b) The angular velocity ω plotted as a
function of the particle orientation θ . The symbols represent the
simulation results; the solid line is the fitting curve according to
Eq. (37).

preferred orientation (shear alignment) is realized at cos 2θ =
1/p. To the best of our knowledge, there has been no report
on the study of the Jeffery orbit with boundary slip. Below
we numerically study the slippery Jeffery orbit to further
demonstrate the effect of boundary slip on the anisotropy
parameter p. We obtain results in quantitative agreement with
those for pS and pT in Sec. IV A.

We use the same parameters as in Sec. IV A. The slip
length ls varies from 0.03 to 0.1. The no-slip condition is
applied at the two walls. The two walls move in the ±x

directions with constant speed W = 2 (with 2W/H = 2) and
the particle rotates according to Eq. (37). For different slip
lengths, the angular velocity ω(θ ) is recorded as a function
of the instantaneous particle orientation θ . The anisotropy
parameter p and the shear rate γ̇ can be obtained by fitting
ω(θ ) using Eq. (37). For ls = 5ξ , Fig. 6(a) shows the snapshot
of the flow field (vectors) and the particle (level curve of

no slip

slip

a
ϕ

orientation

FIG. 7. A schematic illustration of a two-dimensional circular
patchy particle. The particle surface is patterned with four sections,
two with no-slip boundary condition and the other two with Navier
boundary condition. The four sections are arranged in such a way
that the patchy particle possesses the same symmetry as an ellipse.
The diameter connecting the centers of two no-slip sections is used
to denote the particle orientation. The particle radius is a, and 2ϕ is
the angular width of a no-slip section. The fraction covered by the
no-slip sections is c ≡ 2ϕ/π .

φ = 0.5). Figure 6(b) shows ω(θ ) in satisfactory agreement
with Eq. (37). For ls varying from 0.03 to 0.1, data fitting gives
γ̇ = 1.9681 ± 0.0002, which is very close to 2W/H = 2. The
anisotropy parameter p determined by fitting ω(θ ), denoted by
pJ , is plotted in Fig. 5 for comparison with pS and pT . It is
seen that the three values of p, determined from three distinct
cases, are very close (within ∼3%).

Finally, we estimate the quantitative effect of slip on
the effective aspect ratio eeff = √

(1 − p)/(1 + p). For a
particle with major axis a = 0.25, aspect ratio e = 0.5, and
slip length ls = 0.03, the measured effective anisotropy is
p = 0.666 54 (from an average of pS , pT , and pJ ), which
gives eeff = 0.447 32. Since the slip length is defined as an
extrapolation length into the solid, we propose that the effective
shape of the particle has the major and minor axes given
by a − αls and b − αls , in which α is a constant 
1. From
eeff = (b − αls)/(a − αls), we find α = 0.794, which is 
1,
as expected.

C. Jeffery orbit of a circular patchy particle

We have shown that the boundary slip can change the
effective anisotropy of an elliptical particle. Now we turn to
the joint effect of surface patching and boundary slip on the
effective anisotropy of a circular particle. We focus on the
dynamics of a two-dimensional circular patchy particle in a
simple shear flow. As shown in Fig. 7, the particle surface
is patterned with four sections, two with no-slip boundary
condition and the other two with Navier boundary condition.
The four sections are arranged in such a way that the patchy
particle possesses the same symmetry as an ellipse. The
diameter connecting the centers of two no-slip sections is used
to denote the particle orientation. The particle radius is a, and
2ϕ is the angular width of a no-slip section. We use c ≡ 2ϕ/π

to denote the fraction covered by the no-slip sections.
Consider that this patchy particle is subject to a simple shear

flow generated by two moving walls as in Fig. 2. As stated in
Sec. IV A, this simple shear flow can be decomposed into
an isotropic rotation field and an anisotropic distortion field.
Furthermore, the torque exerted by the particle on the fluid
is a sum of two contributions: The first is from the rotation
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FIG. 8. The FPD simulation results for the Jeffery orbit of a
circular patchy particle in a simple shear flow. The fluid-particle
system measures 2 × 2, the shear rate is γ̇ = 2W/H = 2, the particle
radius is a = 0.2, the fluid-solid interfacial thickness is ξ = 0.01, the
no-slip fraction is c = 0.5, and the slip length in the slip sections
is ls = 0.15. (a) A snapshot of the velocity field (arrows) and the
particle (level curve of φ = 0.5). (b) The angular velocity ω plotted
as a function of the particle orientation θ . The symbols represent
the simulation results; the solid line is the fitting curve according to
Eq. (37).

of the particle relative to the fluid and the second is from the
mismatch between the particle orientation and the principal
axes of the distortion field. As the patchy particle possesses
the same symmetry as an ellipse, the torque by the particle on
the fluid still scales as

T ∝
(

ω + γ̇

2

)
− γ̇

2
p cos 2θ,

which is identical to Eq. (34). The equation of motion for the
inertialess particle is given by T = 0, which leads to Eq. (37)
once again: The orientational motion of the circular patchy
particle follows the Jeffery orbit. Below we study the joint
effect of surface patching and boundary slip on the effective
anisotropy measured by p. Note that p vanishes at c = 0 and
c = 1 due to circular symmetry. It is therefore expected that for
a given slip length in the slippery sections, p will be maximized
at c somewhere between 0 and 1.

As shown in Fig. 2, the circular patchy particle (with an
orientation denoted by the diameter connecting the centers
of two no-slip sections) is placed at the center and subject

FIG. 9. The anisotropy parameter p of a circular patchy particle
from the FPD simulations, plotted as a function of the no-slip fraction
c, for different values of the slip length in the slip sections ls . The
particle radius is a = 0.2, and the fluid-solid interfacial thickness is
ξ = 0.01. Simulations are carried out for the no-slip fraction c = 1/6,
1/3, 1/2, 2/3, and 5/6, and the slip length in the slip sections ls = 0.10
(�), 0.15 (�), 0.20 (•), 0.25 (◦), and 0.30 (�).

to a simple shear flow generated by two moving walls. We
use H = 2 for the distance between the two walls, ξ = 0.01
for the interfacial thickness, a = 0.2 for the particle radius,
and W = 2 for the wall speed. Simulations are carried out for
different values of the no-slip fraction c and the slip length
ls . This is to verify whether the orientational motion satisfies
Eq. (37) and to measure the effects of c and ls on p. For
c = 0.5 and ls = 0.15, Fig. 8(a) shows the snapshot of the
flow field (vectors) and the particle (level curve of φ = 0.5),
and Fig. 8(b) shows the angular velocity ω(θ ) as a function
of the instantaneous particle orientation θ , which is in good
agreement with Eq. (37). With the anisotropy parameter p

determined by fitting ω(θ ), we plot in Fig. 9 the effects of c and
ls on p. It is seen that when the slip length ls is fixed, p shows a
nonmonotonic dependence on c, with a maximum at c ≈ 0.4.
When the no-slip fraction c is fixed, p always increases with
the increasing ls . However, this increase slows down for large
ls , implying a possible saturation of p at ls → ∞.

V. DISCUSSION: ANALOGY BETWEEN THE
FLUID-PARTICLE SYSTEM AND A UNIT OF NEMATIC

LIQUID CRYSTAL

An analogy can be readily made between the fluid-particle
system shown in Fig. 2 and a unit of nematic liquid crystal
(NLC). For incompressible isothermal NLCs described by
the Leslie-Ericksen theory [93–95], Parodi used the Onsager
reciprocal relations to derive a celebrated symmetry relation,
called the Parodi relation [96], for the phenomenological
coefficients in the constitutive equation for the stress tensor.
Employing the Parodi relation, we find that a reciprocal
relation similar to Eq. (36) can be derived for a unit of
NLC. This demonstrates an analogy between the fluid-particle
system in Fig. 2 and a unit of NLC. In fact, the connection
between the Leslie-Ericksen theory and the Jeffery orbit has
been long recognized [27]. The equation of Jeffery orbit has
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been frequently used in NLC studies for the coupling between
molecular rotation and fluid flow [25–30].

The Leslie-Ericksen theory gives the dissipative stress
tensor

↔
σ and the torque density by the director on the fluid

�� as

↔
σ = α1(�n�n :

↔
A)�n�n + α2�n �N + α3 �N �n + α4

↔
A

+α5�n(�n · ↔
A) + α6(�n · ↔

A)�n, (39)

�� = �n × (γ1 �N + γ2
↔
A · �n), (40)

where αi (i = 1, . . . ,6) are phenomenological parameters, �n is

the director,
↔
A ≡ 1

2 ( �∇�v + �∇�vT ) is the rate-of-strain tensor of
flow, and �N ≡ �̇n − �ν × �n = ( �ω − �ν) × �n is the velocity of the
director relative to the fluid, with �ω being the angular velocity
of the director and �ν ≡ 1

2
�∇ × �v being the angular velocity of

the fluid. In addition, γ1 and γ2 are given by γ1 = α3 − α2 and
γ2 = α6 − α5. Physically, the two contributions to �� in Eq. (40)
correspond to the two contributions to T in Eq. (34) [27].
Moreover, only five of the six αi (i = 1, . . . ,6) parameters are
independent because of the Parodi relation

α2 + α3 = α6 − α5, (41)

which results from the Onsager reciprocal relations [96].
Consider an NLC system which is actually two-

dimensional. The director is denoted by a unit vector �n ≡
(cos θ, sin θ,0). If the velocity field is given by a simple shear
flow with ∂yvx = γ̇ and the angular velocity of the director is
ωẑ, then we have the following components:

σyx = α1 cos2 θ sin2 θγ̇ − α2 sin2 θ

(
ω + γ̇

2

)

+α3 cos2 θ

(
ω + γ̇

2

)
+ α4

γ̇

2
+ α5 sin2 θ

γ̇

2

+α6 cos2 θ
γ̇

2
,

σxy = α1 cos2 θ sin2 θγ̇ + α2 cos2 θ

(
ω + γ̇

2

)
(42)

−α3 sin2 θ

(
ω + γ̇

2

)
+ α4

γ̇

2
+ α5 cos2 θ

γ̇

2

+α6 sin2 θ
γ̇

2
,

�z = γ1

(
ω + γ̇

2

)
+ γ2 cos 2θ

γ̇

2
,

for the dissipative stress tensor and torque density according
to Eqs. (39) and (40), with σxy − σyx = −�z.

The rate of free-energy dissipation is given by

D =
∫∫

dxdy(σij ∂ivj+�zω) =
∫∫

dxdy(γ̇ σyx+�zω).

(43)
For the NLC system considered here, the two rates are the
shear rate γ̇ and the director angular velocity ω, with σyx

and �z being the corresponding conjugate dissipative forces.
A linear relation between the rates and the forces can be

expressed as [
σyx

�z

]
=

[
ξ11 ξ12

ξ21 ξ22

] [
γ̇

ω

]
,

with the reciprocal relation

ξ12 = ξ21. (44)

From Eq. (42) and the Parodi relation (41), we have

ξ12 = ξ21 = 1
2 (γ1 + γ2 cos 2θ ). (45)

Consider a rectangular unit of NLC in which the shear
rate ∂yvx = γ̇ and the angular velocity of the director ω

are homogeneous. The corresponding rate of free-energy
dissipation in Eq. (43) can be expressed as

D =
(∫

dyγ̇

) (∫
dxσyx

)
+ ω

∫∫
dydx�z. (46)

A comparison can be made with the fluid-particle system in
Fig. 2, for which the rate of dissipation is given by Eq. (31). It is
clear that

∫
dyγ̇ in the NLC unit corresponds to the rate 2W in

Eq. (31), the angular velocity of the director ω corresponds to
that of the particle,

∫
dxσyx in the NLC unit corresponds to the

integrated stress S, and
∫∫

dydx�z corresponds to the torque
by the particle on the fluid T . In this regard, the dissipation
rates (31) and (46) are identical. A comparison of the reciprocal
relations (45) and (36) leads to

p = −γ2

γ1
. (47)

For the one-particle system studied in the present work, we
have 0 < p < 1, which means that the particle undergoes pe-
riodic tumbling motion in viscous shear flow. It is interesting to
note that for many nematic liquid crystals, we have −γ2/γ1 >

1, which results in shear alignment. It might be possible to
achieve shear alignment in the one-particle system through a
combination of particle geometry and surface patching.

VI. CONCLUDING REMARKS

Based on Onsager’s variational principle, we have shown
that the Navier slip boundary condition preserves the hydro-
dynamic reciprocal relations. By incorporating the Navier
slip boundary condition into the FPD method, we have
investigated the effect of boundary slip on the motion of an
anisotropic particle in a simple shear flow. We have carried
out numerical simulations for a fluid-particle system with
a slippery elliptical particle. This system exhibits the cross
coupling between the rotational torque and the shear stress.
Theoretical analysis gives the angular dependence of the
cross-coupling coefficients and the dynamic equation of the
particle in a simple shear flow—the Jeffery orbit. The effective
anisotropy of the particle is measured by a dimensionless
parameter p, whose value can be numerically determined. We
have demonstrated that the anisotropy parameter p increases
with the increasing slip length at the particle surface. This
means the cross coupling between the rotational torque and
the shear stress is enhanced by the boundary slip. In addition,
we have carried out numerical simulations for a circular
patchy particle whose surface is patterned with sections of
no slip and Navier slip. Possessing the same symmetry as
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the elliptical particle, the circular patchy particle is effectively
anisotropic and undergoes the Jeffery orbit in a simple shear
flow. By numerically measuring the anisotropy parameter p,
we have demonstrated the joint effect of surface patching and
boundary slip on the effective anisotropy. Finally, there is a
brief discussion on the connection between the fluid-particle
system and the nematic liquid crystal.

Although our simulations are carried out in two dimensions,
we believe that the qualitative conclusion that the boundary slip
at particle surface will enhance the effective anisotropy of the
particle still holds in three dimensions. However, quantitative
verification requires numerical simulations that are currently
beyond our capability. Furthermore, the data analysis will be
more complicated because the three-dimensional Jeffery orbit
is beyond the simple description by Eq. (37).

Our results have demonstrated the effect of boundary slip
on the effective anisotropy of the solid particle in viscous
shear flow, which is reflected in the cross coupling between
the rotational torque and the shear stress, the hydrodynamic
reciprocal relations, and the Jeffery orbit. Physically, the
Jeffery orbit is directly employed in the kinetic models for
liquid crystal dynamics [25–30]. The results presented in this
work indicate that rheological properties can be modified
by engineering the surface of dispersed particles. We note
that our results are obtained for one single particle, whereas
hydrodynamic interactions are significant when dispersed
particles in colloids form certain structures [97–99]. By
engineering the surface of patchy particles, novel structures
may be expected [100–103]. Our results for patchy particles
indicate that novel dynamic properties may be expected as well
by engineering the particle surface.
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APPENDIX: THE FLUID PARTICLE DYNAMICS METHOD

Here we give a brief description of the FPD algorithm. For
simplicity, we consider one single particle. More details can
be found in Ref. [76]. The initial condition gives the initial
values of center-of-mass position �Rp and orientation �dp of the
particle as well as the velocity field �v(�r). The time evolution
from the n-th to the (n + 1)-th time instant is computed as
follows.

(1) Generate the composition field φn(�r) according to
Eq. (24) and then the viscosity distribution ηn(φ).

(2) Calculate the velocities �V n
p and �ωn

p of the particle using
�vn(�r) and a weight function w(�r) with w = 1 in the solid and
w = 0 in the fluid.

(3) Update the center-of-mass position and orientation of
the particle using �V n

p and �ωn
p.

(4) Solve the Navier-Stokes equation to update the velocity
field from �vn(�r) to �vn+1(�r).

Note that the choice of weight function w(�r) may slightly
influence the results. Because a larger viscosity ensures a
better approximation to the rigid body motion, the results
are expected to be more accurate if w(�r) = 1 is confined to
the region with sufficiently large viscosity. H. Tanaka and
T. Araki used w(�r) = φ(�r) [76], and we use the relative
viscosity [104]

w(�r) =
{

(η − ηl) / (ηs − ηl) if η � ηl

0 if η < ηl
,

where η < ηl occurs in the interfacial region when slip is
introduced.
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