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We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence
in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that
the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum
in both inverse- and forward-cascade régimes; (c) reduce small-scale intermittency; (d) suppress regions of
high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier
experimental studies and propose new experiments.
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I. INTRODUCTION

Polymer additives have remarkable effects on turbulent
flows: in wall-bounded flows they lead to drag reduction [1,2];
in homogeneous, isotropic turbulence they give rise to dissi-
pation reduction, a modification of the energy spectrum, and
a suppression of small-scale structures [3–13]. These effects
have been studied principally in three-dimensional (3D) flows;
their two-dimensional (2D) analogs have been studied only
over the past decade in experiments [14–16] on and direct
numerical simulations (DNSs) [17–20] of fluid films with
polymer additives. It is important to investigate the differences
between 2D and 3D fluid turbulence with polymers because
the statistical properties of fluid turbulence in 2D and 3D are
qualitatively different [21]: the inviscid, unforced 2D Navier-
Stokes (NS) equation admits more conserved quantities than
its 3D counterpart; one consequence of this is that, from
the forcing scales, there is a flow of energy towards large
length scales (an inverse cascade) and of enstrophy towards
small scales (a forward cascade). We have, therefore, carried
out an extensive and high-resolution DNS study of homo-
geneous, isotropic turbulence in the incompressible, 2D NS
equation with air-drag-induced friction and polymer additives,
described by the finitely extensible nonlinear elastic Peterlin
(FENE-P) model for the polymer-conformation tensor. We
find that the inverse-cascade part of the energy spectrum in
2D fluid turbulence is suppressed by the addition of polymers.
We show, for the first time, that the effect of polymers on the
forward-cascade part of the fluid energy spectrum in 2D is
(a) a slight reduction at intermediate wave numbers and (b) a
significant enhancement in the large-wave-number range, as in
three dimensions; the high resolution of our simulation is es-
sential for resolving these spectral features unambiguously. In
addition, we find dissipation-reduction-type phenomena [7,8]:
polymers reduce the total fluid energy and energy- and
mean square vorticity- or enstrophy-dissipation rates, suppress
small-scale intermittency, and decrease high-intensity vortical
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and strain-dominated régimes. Our probability distribution
functions (PDFs) for σ 2 and ω2, the squares of the strain rate,
and the vorticity, respectively, agree qualitatively with those
in experiments [16]. We also present PDFs of the Okubo-
Weiss parameter � = (ω2 − σ 2)/8, whose sign determines
whether the flow in a given region is vortical or strain
dominated [22,23], and PDFs of the polymer extension; and
we show explicitly that polymers stretch preferentially in
strain-dominated regions.

The remainder of this paper is organized as follows. In
Sec. II we define the equations we use for polymer additives
in a fluid and we describe the numerical methods we use to
study these equations. Section III is devoted to the results of
our study and Sec. IV contains a discussion of our principal
results.

II. MODEL AND NUMERICAL METHODS

The 2D incompressible NS and FENE-P equations can be
written in terms of the stream function ψ and the vorticity
ω = ∇ × u(x,t), where u ≡ (−∂yψ,∂xψ) is the fluid velocity
at point x and time t , as follows:

Dtω = ν∇2ω + μ

τP

∇ × ∇ · [f (rP )C] − αω + Fω; (1)

∇2ψ = ω; (2)

DtC = C · (∇u) + (∇u)T · C − f (rP )C − I
τP

. (3)

Here Dt ≡ ∂t + u · ∇, the uniform solvent density ρ = 1, α

is the coefficient of friction, ν the kinematic viscosity of the
fluid, μ the viscosity parameter for the solute (FENE-P), and
τP the polymer relaxation time. To mimic experiments [16],
we use a Kolmogorov-type forcing, Fω ≡ kinjF0 cos(kinjy),
with amplitude F0; the energy-injection wave vector is kinj

(the length scale linj ≡ 2π/kinj); the superscript T denotes a
transpose, Cβγ ≡ 〈RβRγ 〉 are the elements of the polymer-
conformation tensor (angular brackets indicate the average
over polymer configurations), I is the identity tensor, f (rP ) ≡
(L2 − 2)/(L2 − r2

P ) is the FENE-P potential, and rP ≡√
Tr(C) and L are, respectively, the length and the maximal
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TABLE I. Parameters for our DNS runs R1–R10 with the friction coefficient α = 0.01. N2 is the number of collocation points; δt , the time
step; Einj, the energy-injection rate; ν, the kinematic viscosity; and c, the concentration parameter. The Taylor-microscale Reynolds number
is Reλ ≡ urmsλ/ν, where λ = (

∫
E(k)dk/

∫
k2E(k)dk)1/2 and the Weissenberg number is Wi ≡ τP

√
εf /ν, where εf is the energy dissipation

rate per unit mass for the fluid. The dissipation scale is ηd ≡ (ν3/ε)1/4 and kmax = N/3.

N L τP δt × 104 Einj ν × 104 Wi c Reλ kmaxηd

R1 512 6 2 10.0 0.008 10.0 4.71 0.1 107, 85 3.4, 3.6
R2 1024 100 1, 2, 4 1.0 0.005 5.0 2.26, 4.52, 9.04 0.1 221, 121, 53, 38 5.1, 5.3, 5.4, 5.5
R3 2048 100 1 1.0 0.003 5.0 1.81 0.4 147, 60 14.1, 14.8
R4 2048 100 1 1.0 0.0015 5.0 1.35 0.2 86, 54 13.2, 13.6
R5 4096 100 1 1.0 0.005 5.0 2.21 0.2 233, 91 20.2, 20.9
R6 4096 100 1 1.0 0.002 5.0 1.53 0.2, 0.4 108, 62, 45 24.8, 25.8, 26.1
R7 4096 10 1 1.0 0.002 5.0 1.53 0.4 108, 90 24.8, 26.2
R8 4096 100 1 0.5 0.005 1.0 2.91 0.1, 0.4 1451, 1367, 1311 8.0, 8.3, 8.5
R9 4096 10 1 0.5 0.005 1.0 2.91 0.1 1451, 1407 8.0, 8.2
R10 16384 100 1 0.5 0.002 5.0 1.56 0.2 106, 61 96.4, 102.7

possible extension of the polymers; and c ≡ μ/(ν + μ) is a
dimensionless measure of the polymer concentration [24].

We use periodic boundary conditions, a square simulation
domain with side L = 2π and N2 collocation points, a
fourth-order Runge-Kutta scheme, with time step δt , for time
marching, an explicit, fourth-order, central-finite-difference
scheme in space, and the Kurganov-Tadmor shock-capturing
scheme [25] for the advection term in Eq. (3); the Kurganov-
Tadmor scheme (Eq. (7) in Ref. [8]) resolves sharp gradients
in Cβγ and thus minimizes dispersion errors, which increase
with L and τP . We solve Eq. (2) in Fourier space by using the
FFTW library [26]. We choose δt � 10−3 to 5 × 10−5 so that
rP does not become larger than L (Table I). We preserve the
symmetric-positive-definite (SPD) nature of C by adapting
to two dimensions the Cholesky-decomposition scheme from
Refs. [7,8,24]: We define J ≡ f (rP )C, so Eq. (3) becomes

DtJ = J · (∇u) + (∇u)T · J − s(J − I) + qJ , (4)

where s = (L2 − 2 + j 2)/(τP L2), q = [d/(L2 − 2) −
(L2 − 2 + j 2)(j 2 − 2)/(τP L2(L2 − 2))], j 2 ≡ Tr(J ), and
d = Tr[J · (∇u) + (∇u)T · J ]. Given that C and hence J
are SPD matrices, we can write J = LLT , where L is a
lower-triangular matrix with elements �ij , such that �ij = 0
for j > i; Eq. (4) now yields (1 � i � 2 and �ij ≡ ∂iuj )

Dt�11 = �11�11 + �21�21 + 1

2

[
(q − s)�11 + s

�11

]
,

Dt�21 = �12�11 + �21
�2

22

�11
+ �22�21

+ 1

2

[
(q − s)�21 − s

�21

�2
11

]
, (5)

Dt�22 = −�21
�21�22

�11
+ �22�22

+ 1

2

[
(q − s)�22 − s

�22

(
1 + �2

21

�2
11

)]
.

Equation (5) preserves the SPD nature of C if �ii > 0, which
we enforce [7,8] by considering the evolution of ln(�ii) instead
of �ii .

We have tested explicitly that the statistical properties we
measure do not depend on the resolutions we use for our
DNS. We check this by both increasing and decreasing this
resolution. Indeed, our DNS uses the highest resolution that
has been attempted so far for this problem (it uses 256 times
as many collocation points as in Ref. [18]). Furthermore,
the Kurganov-Tadmor shock-capturing scheme that we use
controls any dispersive errors, because of sharp gradients in the
polymer-conformation tensor, as in similar 3D studies [7,24].

We maintain a constant energy-injection rate Einj ≡ 〈Fu ·
u〉 with Fω = ∇ × Fu; the system attains a nonequilibrium,
statistically steady state after �2τe − 3τe, where the box-size
eddy-turnover time τe ≡ L/urms and urms is the root-mean-
square velocity.

In addition to ω(x,t), ψ(x,t), and C(x,t) we
obtain u(x,t), the fluid-energy spectrum E(k) ≡∑

k−1/2<k′�k+1/2 k′2〈|ψ̂(k′,t)|2〉t , where 〈〉t indicates
the time average over the statistically steady state,
the total kinetic energy E(t) ≡ 〈 1

2 |u(x,t)|2〉x, the
enstrophy �(t) ≡ 〈 1

2 |ω(x,t)|2〉x, and the palinstrophy
P(t) ≡ 〈 1

2 |∇ × ω(x,t)|2〉x, where 〈〉x denotes the spatial
average, the PDF of scaled polymer extensions P (rP /L),
the PDFs of ω2, σ 2, and � = (ω2 − σ 2)/8, where
σ 2 ≡ ∑

ij σij σij , and σij ≡ ∂iuj + ∂jui , the PDF of the
Cartesian components of u, and the joint PDF of � and
r2
P . We obtain the isotropic part of the order p, structure

function Sp(r) from longitudinal velocity increments as
described in Ref. [22]. We concentrate on S2(r) and the
hyperflatness F6(r) ≡ S6(r)/[S2(r)3]; the latter is a measure
of the intermittency at the scale r .

III. RESULTS

In Fig. 1(a) we show how E(t) (top panel), �(t) (middle
panel), and P(t) (bottom panel) fluctuate about their mean
values 〈E(t)〉t , 〈�(t)〉t , and 〈P(t)〉t for c = 0 (pure fluid) and
c = 0.4. Clearly, 〈E(t)〉t , 〈�(t)〉t , and 〈P(t)〉t decrease as c

increases. Thus, polymers increase the effective viscosity of
the solution; but this naı̈ve conclusion has to be refined, as
shown later, because the effective viscosity depends on the
length scale [6–8].

033013-2



TWO-DIMENSIONAL HOMOGENEOUS ISOTROPIC FLUID . . . PHYSICAL REVIEW E 91, 033013 (2015)

0.02

0.03

0.04

t / τ
e

E

2

2.5

t / τ
e

Ω

0 5 10 15 20 25

300

400

t / τ
e

P
(a)

10
0

10
1

10
2

10
3

10
−10

10
−5

k

E
(k

)

(b)

10
0

10
1

10
2

10
3−1

−0.5

0

0.5

1x 10
−3

k

Δν
(k

)

(c)

10
0

10
1

10
2

10
3−15

−10

−5

0

5x 10
−4

Π
(k

)

k

(d)

FIG. 1. (Color online) (a) Plots versus time t/τe of the total kinetic energy E of the fluid (top panel), the enstrophy � (middle panel), and
the palinstrophy P (bottom panel) for c = 0 [upper curve, (blue) circles, run R7] and c = 0.4 (lower, black curve, run R7). (b) Log-log (base
10) plots of the energy spectra E(k) versus k for c = 0.2 [(red) triangles, run R10] and c = 0 [(blue) circles, run R10]. (c) Polymer contribution
to the scale-dependent viscosity �ν(k) versus k for c = 0.2 [(red) line, run R10]; �ν(k) = 0 is shown as the dashed black line. (d) Energy flux
�(k) versus k for c = 0.2 [dashed (red) line, run R10] and c = 0 [solid (blue) line, run R10].

In Fig. 2(a), we plot S2(r) versus r for c = 0 [(blue) circles,
run R7] and c = 0.2 [(green) asterisks, run R7]. The dashed
line, with slope 2, is a guide for the eye; this slope agrees

with the S2(r) ∼ r2 form that we expect, at small r , by Taylor
expansion. At large values of r , S2(r) deviates from this r2

behavior, more so for c = 0.2 than for c = 0, in accord with
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FIG. 2. (Color online) (a) Plots of the second-order velocity structure function S2(r) versus r for c = 0 [(blue) circles, run R7] and c = 0.2
[(green) asterisks, run R7]; the line with slope 2 is shown for comparison. (b) Plots of the hyperflatness F6(r) versus r for c = 0 [(blue) circles,
run R7] and c = 0.2 [(green) asterisks, run R7].
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FIG. 3. (Color online) (a) Log-log (base 10) plots of the energy spectra E(k) versus k for c = 0 [(blue) circles, run R6], c = 0.2 [(red)
triangles, run R6], and c = 0.4 (black squares, run R6); plots of E(k) versus c for Wi = 1.53 and k = 1 (bottom-left inset), Wi = 1.53 and
k = 30 (top-left inset), and Wi = 1.53 and k = 100 (top-right inset). (b) Log-log (base 10) plots of E(k) versus k for Wi = 2.26 [(blue)
circles, run R2], Wi = 4.52 [(red) triangles, run R2], and Wi = 9.04 (black squares, run R2); plots of E(k) versus τP for c = 0.4 and k = 1
(bottom-left inset) and c = 0.4 and k = 100 (top-right inset).

experiments [16]. Plots of F6(r) versus r [Fig. 2(b)], for c = 0
[(blue) circles] and c = 0.2 [(green) asterisks, run R8], show
that, upon the addition of polymers, small-scale intermittency
decreases as c increases.

In Fig. 3(a), we show how Ep(k) changes as we increase
c: at low and intermediate values of k (e.g., k = 1 and 30,
respectively), Ep(k) decreases as c increases, but for large
values of k (e.g., k = 100), it increases with c. Figure 3(b)
shows how Ep(k) changes as we increase τP with c held fixed
at 0.1. At low values of k (e.g., k = 1), Ep(k) decreases as τP

increases, but for large values of k (e.g., k = 100) it increases
with τP .

In Fig. 4(a) we show plots, for c = 0.1, of the spectra Ep(k)
for L = 100 [(red) triangles, run R8] and L = 10 [(green)
asterisks, run R9. For comparison we also plot Ef (k) for c =
0; as L increases, the difference between Ep(k) and Ef (k)
increases at large values of k. We see that the larger the value
of L the more pronounced is the rise of the large-k tail of

Ep(k) [cf. the plots in Fig. 4(a) with (red) triangles and (green)
asterisks for L = 100 and L = 10, respectively].

We can understand these trends qualitatively by noting that,
even at maximal extension, the size of a polymer is �η (the
dissipation scale). Thus, the polymers stretch at the expense
of the fluid energy, which cascades from intermediate length
scales to dissipative scales; this leads to a reduction in E(k)
at the values of k that correspond to these intermediate scales.
As the polymers relax, they feed energy to the fluid at deep-
dissipation, i.e., large-k, scales; this leads to an enhancement of
the tail of E(k) at large values of k. The reduction in energy in
the inverse-cascade, low-k regime can be understood by noting
that polymers enhance the overall, effective viscosity of the
fluid. Indeed, in the limit τP → 0, ν∇2u + μ

τP
∇ · f (rP )C →

(ν + μ)∇2u [27].
To understand quantitatively the effect of polymers on E(k),

in different regimes of k, we must compare the fluid-energy
spectra with and without polymers [Fig. 1(b)]. This leads
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FIG. 4. (Color online) (a) Log-log (base 10) plots, for c = 0.2 and Wi = 2.91, of E(k) versus k for L = 100 [(red) triangles, run R8] and
L = 10 [(green) asterisks, run R9]; E(k) for c = 0 [(blue) circles, run R8]. (b) Plots, for L = 100 [(red) triangles, run R8] and L = 10 [(green)
asterisks, run R9], of the scale-dependent correction to the viscosity �ν(k) versus k.
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FIG. 5. (Color online) Plots with comparisons of (a) the energy, (b) the energy spectra, and (c) the PDF of � from our DNS of the NS
equations with the scale-dependent viscosity νe(k) (black squares) and from the NS + FENE-P run, R7 [(green) asterisks]. [We calculate
νe(k) ≡ ν + �ν(k) by substituting our data from run R7 into Eq. (6).] For reference, we also show plots of all these quantities for the NS
equation with conventional, scale-independent viscosity [(blue) circles].

us naturally to define [6–8] the effective, scale-dependent
viscosity νe(k) ≡ ν + �ν(k), with

�ν(k) ≡ −μ
∑

k−1/2<k′�k+1/2

uk′ · (∇ · J )−k′

[τP k2Ep(k)]
(6)

and (∇ · J )k the Fourier transform of ∇ · J . Figure 1(c) shows
that �ν(k) > 0 for k < 30, where Ep(k) < Ef (k), whereas,
for large values of k, �ν(k) < 0, where Ep(k) > Ef (k), the
superscripts f and p stand, respectively, for the fluid without
and with polymers. To understand this dependence on L we
plot, in Fig. 4(b), the scale-dependent viscosity �ν for these
two representative values, namely, L = 100 [(red) triangles,
run R8] and L = 10 [(green) asterisks and run R9]. We find that
�ν is positive and higher for L = 100, at small values of k, than
its counterpart for L = 10; this explains why Ep(k) is smaller
for L = 100 than for L = 10 at small k. For large values of k,
�ν is more negative for L = 100 than for L = 10, so Ep(k) is
larger for L = 100 than for L = 10. Note that �ν(k) changes
its sign, from positive to negative, at a smaller value of k for
L = 100 than for L = 10; therefore, the large-k tail of Ep(k)
rises above that of Ef (k) at a smaller value of k for L = 100
than for L = 10. By using νe(k), which we obtain from our
NS + FENE-P run R7, we carry out a DNS of the NS equation,
with ν replaced by νe(k). In Fig. 5 we present plots of the
energy [Fig. 5(a)], energy spectra [Fig. 5(b)], and PDFs of �

[Figs. 5(c) and 8], to compare the results of this DNS with those
of run R7 (NS + FENE-P); the good agreement of these results
shows that the NS equation with the scale-dependent viscosity
νe(k) captures the essential effects of polymer additives on fluid
turbulence in run R7 (NS + FENE-P). The form of our effective
viscosity indicates that, at large length scales, in addition to the
friction, polymers also provide a dissipative mechanism. By
contrast, at small length scales, polymers inject energy back
into the fluid.

Figure 1(d) shows the suppression, by polymer
additives, of �(k) = ∫ ∞

k′ T (k′)dk′, where T (k) =∫
ûi(−k)Pij (k) ̂(u × ω)j (k)d� and Pij (k) = δij − kikj

k2 .
The suppression of the spectrum in the small-k régime, which
has also been seen in experiments [14] and low-resolution
DNS (Fig. 4.12 in Ref. [17]), signifies a reduction of the
inverse cascade. The enhancement of the spectrum in the

large-k regime leads to the reduction in � and P shown
in Fig. 1(a); to identify this enhancement unambiguously
requires run R10, which is by far the highest-resolution DNS
of Eqs. (1)–(3) (with 256 times more collocation points than
in, say, Ref. [18]).

We now plot the PDF P (rP /L) versus rP /L in Fig. 6 for
c = 0.1 and L = 100 [(red) triangles, run R8], c = 0.4 and
L = 100 (black squares, run R8), and c = 0.1 and L = 10
[(green) asterisks, run R9]. The extension of the polymers is
bounded between

√
2 � rP � L. The lower bound, rP = √

2,
corresponds to polymers in a coiled state; near the upper bound,
with rP ∼ L, the polymers are in a stretched state. In Fig. 6, we
show that P (rP /L) shows a distinct, power-law regime, with
exponents that depend on c,L, and Wi. As Wi increases, this
exponent can go from a negative value to a positive value, thus
signaling a coil-stretch transition.

In Figs. 7(a)–7(c) we present PDFs of �, σ 2, and ω2,
respectively, for c = 0 [(blue) circles, run R7] and c = 0.2
[(red) triangles, run R7], to show that the addition of polymers

FIG. 6. (Color online) PDFs of the scaled polymer extensions
P (rP /L) versus rP /L for c = 0.1 and L = 100 [(red) triangles, run
R8], c = 0.4 (black squares, run R8), c = 0.1 and L = 10 [(green)
asterisks, run R9], and c = 0.1 and L = 6 [(brown) circles, run R1].
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FIG. 7. (Color online) Probability distribution functions (PDFs) of (a) the Okubo-Weiss parameter � for run R7, (b) σ 2 for run R7, and (c)
ω2. Inset: PDF of the velocity component ux for c = 0 [(blue) circles, run R7] with a fit (1/2) exp(−u2

x/12.5) [solid (blue) line] and for c = 0.2
[(green) asterisks, run R7] with a fit (1/2.65) exp(−u2

x/20) [solid (green) line]; note that the addition of polymers reduces the rms value of ux .

suppresses large values of �, σ 2, and ω2. If we make scaled
plots of PDFs such as P (�/�rms), they fall on top of each
other for different values of c; this also holds for P (σ 2/σ 2

rms)
and P (ω2/ω2

rms). The inset in Fig. 7(c) shows that the PDF of
any Cartesian component of u is very close to a Gaussian.

Figure 8(a) shows a conditional PDF of (rP /L) conditioned
on � for run R9; this illustrates that polymers stretch
predominantly in strain-dominated regions; this is evident very
strikingly in Fig. 8(b), which contains a superimposition of
contours of r2

P on a pseudocolor plot of � (for a video sequence
of such plots, see [28]).

IV. CONCLUSIONS

We have carried out an extensive and high-resolution DNS
of 2D, homogeneous, isotropic fluid turbulence with polymer
additives. We have used the incompressible, 2D NS equation
with air-drag-induced friction and polymer additives; the latter
have been modeled by using the FENE-P model for the
polymer-conformation tensor. We find that the inverse-cascade
part of the energy spectrum in 2D fluid turbulence is suppressed
by the addition of polymers. We demonstrate, for the first
time, that the effect of polymers on the forward-cascade
part of the fluid energy spectrum in two dimensions is

(a) a slight reduction at intermediate wave numbers and
(b) a significant enhancement in the large-wave-number
range, as in three dimensions; these features are resolved
unambiguously by our high-resolution DNS. In addition, we
find dissipation-reduction-type phenomena [7,8]: polymers
reduce the total fluid energy and energy- and mean-square-
vorticity- or enstrophy-dissipation rates. However, as we have
emphasized above, dissipation reduction is not the only notable
effect of polymer additives; our extensive, high-resolution
DNS of 2D fluid turbulence with polymer additives yields
a good qualitative agreement, in the low-k régime, with the
fluid-energy spectra in Ref. [14] and the S2(r) in Ref. [16].
In addition, our study obtains new results and insights that
will, we hope, stimulate new experiments, which should be
able to measure (a) the reduction of 〈E(t)〉t , 〈�(t)〉t , and
〈P(t)〉t [Fig. 1(a)]; (b) the modification of Ep(k) at large
k [Fig. 1(b)]; (c) the c, τP , and L dependences of Ep(k)
[Figs. 3(a), 3(b), and 4(a)]; (d) the PDFs of (rP /L), �, σ 2,
and ω2; (e) the stretching of polymers in strain-dominated
regions [Fig. 8(b)]; and (f) the suppression of F6(r) at
small r (Fig. 2).

Two-dimensional fluid turbulence with polymer additives
has been studied in channel flows, both in experiments [15]
and via DNS [20]; this DNS study uses the Oldroyd-B model,

10
−1

10
0

10
−2

10
−1

10
0

r
P
/L

P
(r

P
/L

)

 

 

Λ < 0
Λ > 0

(a) (b)

FIG. 8. (Color online) (a) Conditional PDF of (rP /L) conditioned on � for run R9; (b) pseudocolor plot of � superimposed on a contour
plot of r2

P for run R10.
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which does not have a maximal polymer extension length
and is, therefore, less realistic than the FENE-P model we
use. These studies obtain energy spectra and second-order
structure functions that are qualitatively similar to those we
obtain, except at small length scales, which are not resolved
in these channel-flow studies. This shows, therefore, that
energy spectra and structure functions, obtained far away
from walls, are not affected significantly by the walls. Thus,
our studies are relevant to the bulk parts of wall-bounded
flows too.
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