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Near-field acoustic streaming jet
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A numerical and experimental investigation of the acoustic streaming flow in the near field of a circular plane
ultrasonic transducer in water is performed. The experimental domain is a parallelepipedic cavity delimited by
absorbing walls to avoid acoustic reflection, with a top free surface. The flow velocities are measured by particle
image velocimetry, leading to well-resolved velocity profiles. The theoretical model is based on a linear acoustic
propagation model, which correctly reproduces the acoustic field mapped experimentally using a hydrophone,
and an acoustic force term introduced in the Navier-Stokes equations under the plane-wave assumption. Despite
the complexity of the acoustic field in the near field, in particular in the vicinity of the acoustic source, a good
agreement between the experimental measurements and the numerical results for the velocity field is obtained,
validating our numerical approach and justifying the planar wave assumption in conditions where it is a priori far
from obvious. The flow structure is found to be correlated with the acoustic field shape. Indeed, the longitudinal
profiles of the velocity present a wavering linked to the variations in acoustic intensity along the beam axis
and transverse profiles exhibit a complex shape strongly influenced by the transverse variations of the acoustic
intensity in the beam. Finally, the velocity in the jet is found to increase as the square root of the acoustic force
times the distance from the origin of the jet over a major part of the cavity, after a strong short initial increase,
where the velocity scales with the square of the distance from the upstream wall.
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I. INTRODUCTION

The ability of acoustic fields to drive steady flows in fluids
has been known for decades [1] and is usually referred to
as acoustic streaming. This phenomenon is, willingly or not,
present in a number of applications ranging from ultrasound-
based velocimetry [2,3] to medical applications [4,5] and from
heat and mass transfer [6–10] to sonochemistry [11]. It can
also be used to move particles [12] or droplets [13] or to
generate jets in small and even microsize domains [14]. It
can be seen as a coupling between acoustic propagation and
fluid motion [15]. This coupling is often accounted for by
an additional force term in the Navier-Stokes equations for
a viscous incompressible flow. For an acoustic plane wave
propagating along the x direction, this force [16,17] can be
expressed, at every location X, as

�fac(X) = 2α

c
Iac(X)�x, (1)

where Iac is the acoustic intensity, α is the acoustic pressure
wave attenuation coefficient (α = 0.1 m−1 for water at 20 ◦C
and an acoustic frequency f = 2 MHz), and c is the sound
celerity (c = 1480 m s−1 for water at 20 ◦C). The acoustic
field, however, is known to often involve diffraction effects, as
shown in our recent experimental investigation in the acoustic
far field [17]. The flow structure was found to be strongly
correlated to the shape of the acoustic beam, so a conclusion
was that accounting for diffraction is a key ingredient in the
modeling of acoustic streaming. However, as the near field
exhibits complicated patterns for the space variations of Iac,
the question about the validity of the plane-wave assumption
used to obtain Eq. (1) can be raised.

A few years ago, Kamakura et al. [18] performed an
experimental and theoretical study of acoustic streaming in
the near field of a circular plane transducer. Their theoretical
approach relies on a physically intricate nonlinear propagation
model including diffraction, attenuation, and nonlinear effects
to compute the acoustic streaming force field. They solve the
Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation [19,20]
with appropriate boundary conditions for the acoustic pressure.
From the obtained acoustic pressure field, they deduce the
force term to be included in the Navier-Stokes equations,
which they solve using a stream-function vorticity method.
A limit of this approach is that solving the KZK equation
for the propagation problem is very time-consuming since
this transient nonlinear equation must be solved on every
point of the mesh used for the Navier-Stokes solver, though
the significance of the acoustic nonlinearity influence on the
generated velocity field remains questionable. In the same
paper, Kamakura et al. [18] investigate the acoustic streaming
velocity field using the laser Doppler anemometry (LDA)
technique, which allows a local measurement of the velocity.
They obtain detailed transverse velocity profiles but have a
poor spatial resolution in their longitudinal velocity profiles,
with only six data points for the 27-cm-long fluid domain.
The comparison between the numerical and experimental
transverse velocity profiles supports the reliability of their
numerical model. However, the numerically obtained longi-
tudinal velocity profiles exhibit an undulating shape which
cannot be confirmed experimentally due to the lack of spatial
resolution. Our contention is that such a shape can probably be
correlated to the complex longitudinal profile of the acoustic
beam in the near field. Such correlation between velocity
and acoustic intensity is only discussed in Kamakura et al.
[18] for transverse profiles taken close to the Fresnel length.
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They underscore the fact that the velocity profile shape only
transiently looks similar to the acoustic intensity profile shape,
i.e., featuring one central peak and two secondary local
maxima; on the contrary, the steady-state velocity profile
features only one, smooth, maximum on the centerline. For the
other velocity profiles taken closer to the source, unfortunately,
no explicit velocity to acoustic intensity comparison is given.

Note, finally, that Lighthill [15] discussed the different
types of streaming generated by an attenuated acoustic beam
and the resulting flow structures. More recently, Bradley
[21] studied analytically the acoustic streaming field structure
taking into account the displacement of the acoustic radiator:
The expressions obtained include new terms, but these terms
are mainly important in gases. These authors, however, did
not consider the specific shape of the acoustic field in the near
field due to Fresnel diffraction and its influence on the flow
structure.

In the present paper the geometry is close to that of
Kamakura et al. [18], although the diameter and the frequency
of the source differ. The former study [18] indeed considered
a higher frequency f , but a smaller source diameter ds , so the
near-field size, i.e., the Fresnel length Lf = d2

s /(4λ) (where
λ is the acoustic wavelength), is similar in both studies. An
objective of our study is to experimentally validate the force
model given by Eq. (1) in the near-field region where the
legitimacy of the plane-wave assumption is questionable. For
that we rely on space-resolved velocity profiles obtained by
use of the particle image velocimetry (PIV) technique. Another
objective is to show that a numerical model based on linear
acoustic propagation is able to accurately simulate this type
of flow in the investigated parameters range. We also want
to confirm that steady-state transverse velocity profiles can
show strong similarities with intensity profiles, for instance,
concerning the number of local maxima. A final objective is
to provide scaling laws for the velocity on the acoustic beam
axis.

II. EXPERIMENTAL SETUP

The experiments are performed within an aquarium filled
with water. The sound source is a 2-MHz ultrasonic circular
plane transducer from Imasonic, with a diameter of 29 mm.

As depicted in Fig. 1, the domain of investigation is a
rectangular cavity of inner dimensions 265 × 180 × 160 mm3

(length × width × height) with a top free surface. It is delim-
ited by two 10-mm-thick Apflex F28 absorbing walls, hatched
on the figure, from Precision Acoustic. The end wall is placed
at xL = 275 mm from the transducer, i.e., at the end of the
acoustic near field, in order to prevent standing waves to
form in the investigated domain. The other wall, referred to
as the intermediate tile and placed close to the transducer,
has been drilled with a 63-mm hole. The diameter of the
hole has been chosen as about twice the transducer diameter
in order to avoid modifying the acoustic pressure field. The
hole was covered with a thermoretractable plastic film (plastic
film that retracts when heated, allowing a film which is
tight and flat) to let the sound enter into the investigation
area but, at the same time, to provide a rigid wall condition
for the generated flow. The distance between the transducer
surface and the plastic film is x0 = 10 mm. This setup has
already been described in our previous experimental paper
[17]; it is also presented in more detail by Moudjed [22].

A needle hydrophone from Precision Acoustics, held on
a three-dimensional (3D) motorized system, is used to map
the acoustic field. A Lavision PIV system is used to measure
velocity fields. Image acquisition is made with a 12-bit PCO
Sensicam charge-coupled device camera with a resolution of
1280 × 1024 pixels. In our measurements, we use a double
frame mode with a frequency of 4 Hz; 6000 double frames
are acquired as soon as the transducer is switched on, so
acquisition lasts about 25 min. The time between the frames
of each image pair is chosen to be 120, 90, and 50 ms for
transducer electric powers of respectively 2, 4, and 8 W, in
order to optimize the apparent displacement of the seeding
particles. The deionized water used was seeded with 5-μm
polyamid seeding particles (PSP) of density 1030 kg m−3 from
Dantec. The water temperature was measured to be 23 ◦C. Care
should be taken to adjust the position and the thickness of the
laser sheet since velocity gradients are strong. A 3D motorized
displacement ensures the precise positioning and a homemade
optical system is used to generate a laser sheet of less than
1 mm in thickness.

PIV measurements were made in two 20-cm-long and
16-cm-wide areas of the xy horizontal middle plane with an

FIG. 1. Experimental setup, view from the side. The origin of the Cartesian frame is set at the middle of the transducer plane surface: x

axis coincides with the propagation direction, and the y and z axes are, respectively, horizontal and vertical. The overall length of the aquarium
is 900 mm.
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overlap region to ensure a sufficient spatial resolution while
observing the whole region of interest. The first zone extends
from x = 10 mm, i.e., from the intermediate sound-absorbing
wall, to x = 205 mm and the second zone extends from x = 80
to x = 275 mm, i.e., to the downstream sound-absorbing wall.

III. NUMERICAL MODEL

To simulate the flow, we consider a rectangular cavity with
dimensions 265 × 180 × 160 mm3 (length × width × depth)
filled with water. The top free surface is assumed to be a
plane with a free-slip condition for the flow and all the other
boundaries are considered as rigid with a no-slip condition.
Laminar, 3D, incompressible computations are performed with
the commercial software STARCCM+, which solves the Navier-
Stokes equations with an additional acoustic force term:

ρ
d �u
dt

= −−−→
gradp + �fac + μ��u, (2)

where �u is the flow velocity (m s−1), p is the hydrodynamic
pressure (Pa), �fac is the volumetric acoustic force (N m−3)
defined by Eq. (1), ρ is the fluid density (ρ = 1000 kg m−3),

and μ is the dynamic viscosity (μ = 10−3 Pa s). This equation
was derived with a time-scale separation method, which is
detailed in a former paper [17].

Cubic cells are used to mesh the fluid domain. A cylindrical
zone, where the mesh is refined, is created around the location
of the acoustic beam. A mesh convergence study lead us to
choose cells with a 0.5-mm side in the central cylindrical zone
and with a 2-mm side in the rest of the fluid domain [22]; the
total number of cells is then 3.82 million. The acoustic force
is computed with MATLAB at each cell center using Eq. (1).
The calculation of the acoustic intensity field, which appears
in Eq. (1), is based on the Huygens-Fresnel assumption. The
plane circular acoustic source is discretized with 200 × 200
elements. Each element has a surface �S = σ�σ�θ , where
σ and θ are the polar coordinates (in the yz plane) of the
element center, and is considered a secondary source emitting
a spherical wave. The resulting acoustic pressure field is
calculated at any location (x,y,z) in the fluid domain by adding
each secondary source contribution (Rayleigh’s integral). It is
a complex quantity from which the phase of the wave and,
assuming a plane-wave assumption, the acoustic intensity can
be deduced. This acoustic intensity is thus expressed as

Iac = Iac max

4λ2

∣∣∣∣∣
N∑

n=1

M∑
m=1

e−i 2π
λ

√
x2+y2+z2+σ 2

n −2σny cos(θm)−2σnz sin(θm)√
x2 + y2 + z2 + σ 2

n − 2σny cos(θm) − 2σnz sin(θm)
σn�σ�θ

∣∣∣∣∣
2

, (3)

where Iac max is the maximal acoustic intensity, which is
reached at the different peaks on the beam axis, the last peak
being located at the Fresnel length [23] [see also Fig. 4(b)].
The source diameter, ds , is implicitly present in Eq. (3) since
it defines the maximum value of σn. The acoustic intensity
field given by Eq. (3) can be adjusted to the Iac measurements
by means of a least-mean-squares method, with two adjustable
parameters, Iac max and ds . Though we consider the hydrophone
measurements to be reliable in a relative sense to obtain the
acoustic pressure spatial variations in an experimental run,
they are, however, very imprecise concerning acoustic pressure
values in an absolute sense; the confidence interval given
by Precision Acoustics, the supplier of this gauge, is indeed
±13% on the acoustic pressure, i.e., ±26% on the acoustic
intensity. Moreover, the hydrophone measurements cannot be
done at the same time as the velocity measurements in our
experimental setup. Another issue is that the determination
of Iac max from the applied electric power P is also not
possible as neither the electric losses nor the efficiency of
the transducer can be accurately measured in our system.
As a consequence, we consider that reliable values of Iac max

cannot be directly deduced from these measurements. We then
rather chose to make an adjustment between the longitudinal
velocity profiles obtained in the experiments and simulations
by tuning the acoustic force level used in the simulations. This
allows us to get rid of the uncertainties on the hydrophone
measurements, the efficiency and losses of the acoustic source,
but also of those on the acoustic attenuation coefficient, already
discussed in our former paper [17]. The acoustic force level
is characterized by the maximum value of the force, fac max,

reached, for example, on the beam axis at the Fresnel length.
Rough adjustments lead to the values fac max = 0.725, 1.5,
and 2.9 N m−3 to be used in our simulations to compare with
the experiments at P = 2, 4, and 8 W, respectively. Note the
good proportionality between the chosen fac max values and the
applied electric powers.

Note also that an adjustment based on the normalized fields
of Iac led to ds = 28.5 mm, a value which is very close to the
transducer nominal diameter (namely 29 mm), indicating that
the structures of the measured acoustic field and the theoretical
Iac field are very close; it is confirmed when comparing
normalized transverse acoustic intensity profiles (see Moudjed
[22] for more details). With this value of ds , the Fresnel length
is Lf = d2

s /(4λ) = 274 mm.
The coupled Navier-Stokes solver uses a second-order

upwind implicit finite-volume scheme. A steady solver is used
for fac max = 0.725 and 1.5 N m−3; for fac max = 2.9 N m−3, a
second-order implicit time scheme is used. In this last case, the
results presented hereunder correspond to the steady regime
reached with this unsteady solver.

A question could be raised about the degree of validity of
the plane-wave assumption used to derive the expression (1)
of the acoustic force. To get some indications on that point,
numerically calculated wave fronts of the acoustic wave are
given in Fig. 2. They are plotted at x = 100 mm [Fig. 2(a)] and
x = 150 mm [Fig. 2(b)] in the near field and at x = 274 mm
[Fig. 2(c)] and x = 549 mm [Fig. 2(d)] in the far field.
These wave fronts correspond to the phase isovalues of the
acoustic pressure wave represented at the locations 0.36Lf ,
0.55Lf , Lf , and 2Lf , respectively. As the wavelength is very
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FIG. 2. (Color online) Plots of the phase isocontours of the acoustic wave in the near field at (a) x = 100 mm (0.36 Lf ) and (b) x = 150
mm (0.55 Lf ) and in the far field at (c) x = 274 mm (Lf ) and (d) x = 549 mm (2Lf ).

short (λ = 0.74 mm), the phase isocontours are represented
in very thin areas (2 mm along x and 70 mm, namely
more than two diameters, along y). In that way, the phase
isovalues are depicted on almost three wavelengths and on a
transverse length greater than the source diameter (notice that
a wavelength corresponds to two color variations on the plot).
We see that in both the near field and the far field the isovalues
are not rigorously straight. In the central part (−20 mm � y �
+20 mm), however, the deviation along x for a given isovalue
(measured, for example, between y = 20 mm and the center) is
very short (a few tenths of millimeters) compared to the source
diameter, so the wave front can be considered as a plane in this
domain. Outside this domain (y > +20 mm or y < −20 mm),
the isovalues have a stronger curvature, particularly in the
near field, but the acoustic force intensities are much smaller
in these zones. These observations thus support the validity of
the plane-wave assumption, used to derive Eqs. (1) and (3), in
the area of interest for our present purposes, that is, the region
of the acoustic beam where the acoustic force is strong and
where the hydrodynamic jet principally develops.

IV. COMPARISON OF EXPERIMENTAL AND
NUMERICAL RESULTS

The experimental velocity fields measured for P = 4 W
and the corresponding numerical velocity fields obtained for
fac max = 1.5 N m−3 are plotted in the xy horizontal plane
in Figs. 3(a) and 3(b), respectively. A good agreement on
the global flow structure can first be noted between the
experimental measurements and the numerical calculations.
As expected, the flow is characterized by a central jet with
a very slow backflow on the sides of the fluid domain. A
comparison with the velocity fields corresponding to the two
other acoustic power values shows that the flow structure does
not depend on the acoustic power in the investigated range
(2 W � P � 8 W) [22]. A close look at the transverse velocity
profiles in this vector plot allows us to see that they exhibit one
or several local maxima, depending on the considered abscissa,
as expected from Kamakura et al. [18].

Figure 4(a) shows the variations of the longitudinal velocity
along the acoustic beam axis at P = 2, 4, and 8 W. As already
mentioned, each profile has been measured in two separate PIV
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FIG. 3. Velocity vector maps in the xy horizontal plane including the acoustic beam axis. (a) Experimental measurements with the PIV
technique for P = 4 W. (b) Numerical computations for fac max = 1.5 N m−3. The velocity fields for the two other considered values of P can
be found in Moudjed [22].

runs; between these two runs, the camera and the illuminating
laser sheet had to be moved along the aquarium with the risk
of modifying the alignment of the laser sheet with the acoustic
beam axis. In spite of this, there is a good connection between
the two parts of these profiles, as can be seen in Fig. 4(a).
The profiles obtained numerically are also plotted with red
dashed lines and a good agreement with the experimental
profiles is observed. The axial velocity increases throughout
the major part of the cavity and eventually drops suddenly
to zero, as a consequence of the no-slip condition at the end
wall. The initial curvature of the profiles, at small abscissa,
is unexpectedly positive (increase of the slope) on a distance
of a few millimeters [see the inset in Fig. 4(a)]. A wavering
of the velocity profiles is also observed in a large part of the
increasing portion. Note, finally, that electric powers of 2, 4,
and 8 W yield maximum velocities of 1, 1.5, and 2.1 cm s−1,
respectively.

The numerical velocity profiles are then normalized and
plotted with the normalized acoustic intensity profile in

Fig. 4(b). This acoustic intensity profile along the acoustic
beam axis is an exact analytic solution of Rayleigh’s integral
[23]. Note also that, in Fig. 4(b), the abscissa is scaled
with the Fresnel length Lf . The local overvelocities and
local undervelocities clearly correspond to the position of
the acoustic intensity extrema. From the location of the last
minimum of Iac to the Fresnel length, the acoustic intensity
increases; the axial velocity does as well, except close to the
end wall. Note here again that the velocity profile shapes are
very similar for the three considered values of electric power.

Figure 5 provides the normalized transverse velocity pro-
files obtained experimentally at x = 50, 100, 150, and 200 mm
from the transducer surface for the three considered powers.
The normalized experimental acoustic intensity profiles at
the same locations are also plotted as dashed lines, together
with the normalized numerical velocity profiles obtained
for fac max = 1.5 N m−3 plotted as solid lines. It can first
be observed that, regardless of the acoustic power, the
experimental velocity profile shapes are very similar, except
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FIG. 4. (Color online) (a) Longitudinal profiles of the experimental axial velocity along the acoustic beam axis for P = 2 W (blue solid
lines), 4 W (pink solid lines), and 8 W (green solid lines); the profiles obtained by the corresponding numerical calculations are also plotted as
red dashed lines for fac max = 0.725, 1.5, and 2.9 N m−3. These three numerical profiles are normalized and plotted in (b) with blue solid lines,
pink dashed lines, and green dotted lines, respectively; the normalized acoustic intensity along the beam axis is also plotted as a black line
(analytical expression [23]).

in the low-velocity backflow region. Such shapes are also
reproduced by the normalized numerical velocity profiles.
Moreover, a correlation can here again be noted between the
shape of the acoustic intensity profiles and the shape of the
velocity profiles. For instance, at x = 100 mm, the local peak
in velocity corresponds to the acoustic intensity central peak.
At x = 150 mm, the two local velocity maxima correspond
to the two acoustic intensity peaks. Closer to the Fresnel
length, as for x = 200 mm, acoustic and velocity profiles
become smoother and closer in shape to those expected in
the acoustic far field [17], whereas at a small distance from
the transducer, as for x = 50 mm, the velocity profile does
not follow the rapid spatial variations in acoustic intensity.
Thus, though the correlation in shape between velocity profiles
and acoustic intensity profiles is not perfect, we observe
steady-state velocity profiles featuring several local maxima
corresponding to local acoustic intensity maxima. To the best
of our knowledge, such a feature has only been observed once
before, by Kamakura et al. [18], but in a different situation,
namely in the vicinity of the Fresnel length for transient (i.e.,
in the early stages of the jet, before steady state is reached)
velocity profiles. In another context, the Fresnel diffraction in
the near field is observed to promote fingering instabilities in
a spreading film under surface acoustic waves [24].

Note that we only focus here on the jet part of the flow,
which is the part that is forced by the acoustic wave. Due
to the closed cavity configuration, the flow has to turn back
at the end wall, and there is necessarily a backflow. This
backflow, however, occurs in a vast area compared to the
jet size and is then very slow: As a consequence of mass
conservation, for a velocity of 2 cm s−1 in the central area of
3 cm in diameter, a fluid particle in the backflow region will
take more than 8 min to cross the cavity length. A precise
quantitative characterization of the flow in such a low-velocity
region would need a specific experimental treatment, which is
beyond the scope of the present paper.

V. SCALING ANALYSIS

Our objective in this section is to identify the leading
mechanisms governing the main features of the fluid flow
within the cavity. To this end, order of magnitude relations
between the fluid velocity at a given axial location and other
relevant quantities will be proposed. To start with, let us recall
that in the zones of development of the acoustic streaming jet,
a balance between inertia effects and the acoustic force can
be expected [17]. This balance, in the case of a free acoustic
streaming jet, can be written, on the beam axis, as

ρu
∂u

∂x
∼ fac (4)

[u being a characteristic (e.g., the maximum) velocity at
location x], which leads to the following scaling law:

u ∼
√

fac max

ρ
x ′, (5)

where x ′ = x − x0 represents the distance to the upstream wall
(Fig. 1). Note that a similar scaling has already been observed
experimentally for the velocity in the acoustic far-field zone
[17].

In Fig. 6, the velocities u calculated on the beam axis for
the three values of fac max are plotted as a function of the
expression under the radical sign in Eq. (5). The simulation
results obtained by Kamakura et al. [18] in the near field are
also plotted. Let us recall that Kamakura’s experiment featured
a source with a different diameter and a different frequency
(ds = 18 mm, f = 5 MHz), so the plot of their data with
ours is in itself a good test of the proposed scaling law; in
particular, the attenuation coefficient in their experiment is
expected to be 5.7 times larger. For each numerical velocity
profile plotted in Fig. 6, a good agreement with the scaling
law given by Eq. (5) (heavy black solid line) can be observed
in an intermediate range of the abscissa values. In practice,
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FIG. 5. (Color online) Horizontal transverse profiles of the nor-
malized experimental acoustic intensity (black dashed lines), the
normalized experimental velocity at P = 2 W (blue open squares),
4 W (pink open circles), and 8 W (green stars), and the normalized
numerical velocity calculated with fac max = 1.5 N m−3 (black solid
lines). These profiles are plotted at a distance x = 50, 100, 150, and
200 mm from the transducer. The black dotted-dashed vertical lines
indicate the acoustic source diameter. Note that these plots are focused
on the jet region, so the location of the lateral walls (|y|/ds ≈ 3.2) is
not represented.

the square-root behavior is valid over the major part of the
cavity. Of course, the scaling is not valid near the end wall
due to the zero-velocity condition at the wall, which prevents
the further increase of the velocity. More interestingly, the
square-root scaling is also not observed near the upstream
wall in a region where the velocity profiles have an intriguing
initial positive curvature along x [i.e., an increase of the slope,
see the inset in Fig. 4(a)]. In this region, typically 5 to 10
mm long in our experiments, the velocity is found to evolve
approximately as x ′2 (Fig. 6). To assess this observation, mass
conservation was applied in a thin cylindrical control volume
close to the upstream wall, as depicted in Fig. 7. This mass
budget involves an axisymmetric radial inflow and an axial
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FIG. 6. (Color online) Longitudinal velocities along the acoustic
beam axis plotted as a function of the expression appearing under the
radical sign in Eq. (5). Four cases are presented corresponding to our
simulations performed for fac max = 0.725, 1.5, and 2.9 N m−3 and
the simulation of Kamakura et al. [18]. Two characteristic variations
of the velocity are obtained: an initial quadratic increase, as depicted
by the heavy black dashed line and heavy black dotted-dashed line
obtained from Eq. (9) for fac max = 0.725 N m−3 and for Kamakura
et al. [18], respectively, and a square-root increase, as depicted by
the heavy black solid line obtained from Eq. (5). On the different
numerical profiles, the black solid diamonds indicate the points
located at the distance ds/2 from the upstream wall, which give
the transition between the two characteristic variations. The f 1/2

ac max

dependence in these different zones is also shown.

outflow. The characteristic radial velocity at ds/2 (the radial
limit of the transducer) can be written as

vr ∼ Sx ′, (6)

featuring a linear increase of the velocity in the boundary
layer along the upstream wall. As depicted in Fig. 7(b), the
axial velocity profiles close to the upstream wall can be
considered as constant on a typical radial distance close to the
acoustic source radius and almost zero outside this cylindrical
domain, so the axial flow rate is simply πd2

s u/4. Concerning
the radial flow rate, it is obtained by integrating (6) on the
cylindrical surface of radius ds/2 and height x ′. Applying
mass conservation, the axial velocity can thus be expressed as

u ∼ 4
S x ′ 2

ds

, (7)

where S is still unknown. A further assumption, supported by
the numerical simulations, is to suppose that the jet recirculates
at the scale of the transducer radius [see Fig. 7(a)]. In other
words, at x ′ = ds/2, u given by Eq. (7) should match its far-
field expression (5). Note that at this distance (represented by
the black solid diamonds on the curves in Fig. 6), both our
set of experiments and the experiment of Kamakura et al. [18]
are well in a transition zone between the two observed scaling
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FIG. 7. (Color online) (a) Sketch showing a two-dimensional axisymmetric view of the region close to the upstream wall. Mass conservation
is performed in a control volume between the inflow (radial velocity considered as linear in the boundary layer along the upstream wall) and
the outflow (constant axial component for 0 � r � ds/2). Sketched streamlines are represented with black lines. (b) Radial profiles of the axial
velocity obtained numerically for fac max = 0.725 N m−3 and given at different distances x ′ from the upstream wall.

laws. We thus get

S ∼
√

fac max

2 ρ ds

. (8)

Introducing this value of S in (7), we thus finally obtain

u ∼ 4

√
fac max

2ρ
ds

−3/2 x ′ 2. (9)
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Present work fac max = 0.725 N m−3

Present work fac max = 1.5 N m−3

Present work fac max = 2.9 N m−3

Kamakura fac max = 8.2 N m−3

FIG. 8. (Color online) Dimensionless longitudinal velocity U =
u/(fac maxds/2ρ)1/2 along the acoustic beam axis plotted as a function
of the dimensionless distance to the upstream wall X′ = x ′/(ds/2) for
the different experiments. A collapse of the curves is observed and
the two characteristic variations of the velocity are shown: U = X′ 2

(heavy black dashed line) for X′ < 1 and U = X′ 1/2 (heavy black
solid line) for X′ > 1.

This expression of u is plotted in Fig. 6 as a heavy black
dashed line for our situation at fac max = 0.725 N m−3 and as
a black dotted-dashed line for the situation of Kamakura et al.
[18] (ds = 18 mm, fac max = 8.2 N m−3). A good adjustment
is found in both cases. Note also that a comparison between
the values of u obtained in this zone at constant x ′ for different
fac max (see the thin black dotted-dashed lines in Fig. 6)
indicates that u varies as f

1/2
ac max, as proposed in (9).

All these observations suggest that the typical scales for
these experiments are the length scale ds/2 and the value of
u corresponding to the previous matching at ds/2, i.e., u =√

fac max ds/2 ρ [obtained, for example, from (5)]. We then
define new dimensionless variables, X′ = x ′/(ds/2) and U =
u/

√
fac max ds/2ρ . Note that U can be seen as a Froude number

since it expresses the balance between inertia effects and a
volumetric force [see Eqs. (4) and (5)]. As shown in Fig. 8,
with this new scaling the different results corresponding to
our simulations performed for fac max = 0.725, 1.5, and 2.9
N m−3 and the simulation of Kamakura et al. [18] collapse to
a single curve (with a slightly different wavering for the two
studied configurations), except close to the downstream walls
located at the distances X′ = (xL − x0)/(ds/2) = 18.6 and 30
for our simulations and Kamakura’s simulation, respectively.
The two characteristic variations of the velocity are now given
by U = X′ 2 (heavy black dashed line) and U = X′ 1/2 (heavy
black solid line) which intersect at X′ = 1.

VI. CONCLUSION

The objective of the present work was a numerical and
experimental investigation of the acoustic streaming flow
in the near field of a plane ultrasonic transducer in water.
This study, in particular, gives spatially resolved experimental
velocity profiles along the acoustic beam axis. A good
agreement between the experimental measurements and the
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numerical results for the velocity field is obtained. Despite
the complex structure of the acoustic near field that exhibits
spatial variations at very small scales, the plane-wave approach
leading to expression (1) for the acoustic force can thus be
taken as valid in this near-field zone, a result which is supported
by the observed shape of the wave fronts in the region of high
acoustic intensity corresponding to the jet area. The use of a
linear acoustic propagation model is also found to be suitable to
compute the acoustic field and deduce the acoustic streaming
force in the investigated range of parameters. Such acoustic
propagation model is thus far simpler and lighter than the
KZK model used by Kamakura et al. [18]. With a smaller
computational time, it leads to results of the same quality
concerning the correspondence between simulated flows and
experiments.

The strong correlation between the acoustic field shape
and the flow structure is confirmed: the wavering observed
on the longitudinal profiles of the velocity is linked to the
variations in acoustic intensity on the beam axis, and the
complex shape of the transverse velocity profiles is directly
linked to acoustic intensity transverse variations. In particular,
we observe steady-state transverse velocity profiles featuring
several local extrema in correlation with those of the acoustic

intensity profiles. Finally, different scaling laws are observed
for the variation of the velocity along the jet axis. A strong
initial acceleration is observed close to the upstream wall;
the velocity scales there as x ′2, as a consequence of mass
conservation near the wall, with a flow recirculating on a length
scale characteristic of the acoustic source. Farther downstream,
the velocity scales as x ′1/2, as a consequence of the 1D
balance between inertia and the acoustic forcing; this scaling
is observed to be valid over the rest of the cavity, except at the
approach of the downstream wall. In both cases, the velocity
scales as the square root of the applied maximum acoustic
force. Finally, with an appropriate scaling of the distance
from the upstream wall x ′ and of the longitudinal velocity,
the variation of the velocity along the jet axis for the different
experiments in the near-field zone can be represented with a
single curve, except close to the downstream wall.
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[3] A. Pothérat, F. Rubiconi, Y. Charles, and V. Dousset, Direct
and inverse pumping in flows with homogeneous and non-
homogeneous swirl, Eur. Phys. J. E 36, 94 (2013).

[4] L. Clarke, A. Edwards, and K. Pollard, Acoustic streaming in
ovarian cysts, J. Ultrasound Med. 24, 617 (2005).

[5] X. Shi, R. W. Martin, S. Vaezy, and L. A. Crum, Quantitative
investigation of acoustic streaming in blood, J. Acoust. Soc. Am.
111, 1110 (2002).

[6] M. C. Charrier-Mojtabi, A. Fontaine, and A. Mojtabi, Influ-
ence of acoustic streaming on thermo-diffusion in a binary
mixture under microgravity, Int. J. Heat Mass Transf. 55, 5992
(2012).

[7] V. Frenkel, R. Gurka, A. Liberzon, U. Shavit, and E.
Kimmel, Preliminary investigations of ultrasound induced
acoustic streaming using particle image velocimetry, Ultrasonics
39, 153 (2001).

[8] H. Ben Hadid, W. Dridi, V. Botton, B. Moudjed, and D. Henry,
Instabilities in the Rayleigh-Bénard-Eckart problem, Phys. Rev.
E 86, 016312 (2012).

[9] W. Dridi, D. Henry, and H. Ben Hadid, Influence of acoustic
streaming on the stability of a laterally heated three-dimensional
cavity, Phys. Rev. E 77, 046311 (2008).

[10] W. Dridi, D. Henry, and H. Ben Hadid, Influence of acoustic
streaming on the stability of melt flows in horizontal Bridgman
configurations, J. Cryst. Growth 310, 1546 (2008).

[11] M. C. Schenker, M. J. B. M. Pourquie, D. G. Eskin, and B. J.
Boersma, PIV quantification of the flow induced by an ultrasonic
horn and numerical modeling of the flow and related processing
times, Ultrason. Sonochem. 20, 502 (2013).

[12] R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, Acoustic
radiation- and streaming-induced microparticle velocities de-
termined by microparticle image velocimetry in an ultrasound
symmetry plane, Phys. Rev. E 86, 056307 (2012).

[13] P. Brunet, M. Baudoin, O. Bou Matar, and F. Zoueshtiagh,
Droplet displacements and oscillations induced by ultrasonic
surface acoustic waves: A quantitative study, Phys. Rev. E 81,
036315 (2010).

[14] M. B. Dentry, L. Y. Yeo, and J. R. Friend, Frequency effects on
the scale and behavior of acoustic streaming, Phys. Rev. E 89,
013203 (2014).

[15] J. Lighthill, Acoustic streaming, J. Sound Vibr. 61, 391
(1978).

[16] Wesley L. Nyborg, Acoustic Streaming (Academic Press,
San Diego, CA, 1998).

[17] B. Moudjed, V. Botton, D. Henry, H. Ben Hadid, and
J. P. Garandet, Scaling and dimensional analysis of acoustic
streaming jets, Phys. Fluids 26, 093602 (2014).

[18] T. Kamakura, T. Sudo, K. Matsuda, and Y. Kumamoto, Time
evolution of acoustic streaming from a planar ultrasound source,
J. Acoust. Soc. Am. 100, 132 (1996).

[19] S. I. Aanonsen, T. Barkve, J. N. Tjotta, and S. Tjotta, Distortion
and harmonic generation in the nearfield of a finite amplitude
sound beam, J. Acoust Soc. Am. 75, 749 (1984).

[20] V. P. Kuznetsov, Equations of nonlinear acoustics, Sov. Phys.
Acoust. 16, 467 (1971).

[21] C. E. Bradley, Acoustic streaming field structure: The influence
of the radiator, J. Acoust. Soc. Am. 100, 1399 (1996).

033011-9

http://dx.doi.org/10.1098/rstl.1831.0018
http://dx.doi.org/10.1098/rstl.1831.0018
http://dx.doi.org/10.1098/rstl.1831.0018
http://dx.doi.org/10.1098/rstl.1831.0018
http://dx.doi.org/10.1007/s00348-010-1001-2
http://dx.doi.org/10.1007/s00348-010-1001-2
http://dx.doi.org/10.1007/s00348-010-1001-2
http://dx.doi.org/10.1007/s00348-010-1001-2
http://dx.doi.org/10.1140/epje/i2013-13094-y
http://dx.doi.org/10.1140/epje/i2013-13094-y
http://dx.doi.org/10.1140/epje/i2013-13094-y
http://dx.doi.org/10.1140/epje/i2013-13094-y
http://dx.doi.org/10.1121/1.1428544
http://dx.doi.org/10.1121/1.1428544
http://dx.doi.org/10.1121/1.1428544
http://dx.doi.org/10.1121/1.1428544
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.009
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.009
http://dx.doi.org/10.1016/S0041-624X(00)00064-0
http://dx.doi.org/10.1016/S0041-624X(00)00064-0
http://dx.doi.org/10.1016/S0041-624X(00)00064-0
http://dx.doi.org/10.1016/S0041-624X(00)00064-0
http://dx.doi.org/10.1103/PhysRevE.86.016312
http://dx.doi.org/10.1103/PhysRevE.86.016312
http://dx.doi.org/10.1103/PhysRevE.86.016312
http://dx.doi.org/10.1103/PhysRevE.86.016312
http://dx.doi.org/10.1103/PhysRevE.77.046311
http://dx.doi.org/10.1103/PhysRevE.77.046311
http://dx.doi.org/10.1103/PhysRevE.77.046311
http://dx.doi.org/10.1103/PhysRevE.77.046311
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.014
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.014
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.014
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.014
http://dx.doi.org/10.1016/j.ultsonch.2012.04.014
http://dx.doi.org/10.1016/j.ultsonch.2012.04.014
http://dx.doi.org/10.1016/j.ultsonch.2012.04.014
http://dx.doi.org/10.1016/j.ultsonch.2012.04.014
http://dx.doi.org/10.1103/PhysRevE.86.056307
http://dx.doi.org/10.1103/PhysRevE.86.056307
http://dx.doi.org/10.1103/PhysRevE.86.056307
http://dx.doi.org/10.1103/PhysRevE.86.056307
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.81.036315
http://dx.doi.org/10.1103/PhysRevE.89.013203
http://dx.doi.org/10.1103/PhysRevE.89.013203
http://dx.doi.org/10.1103/PhysRevE.89.013203
http://dx.doi.org/10.1103/PhysRevE.89.013203
http://dx.doi.org/10.1016/0022-460X(78)90388-7
http://dx.doi.org/10.1016/0022-460X(78)90388-7
http://dx.doi.org/10.1016/0022-460X(78)90388-7
http://dx.doi.org/10.1016/0022-460X(78)90388-7
http://dx.doi.org/10.1063/1.4895518
http://dx.doi.org/10.1063/1.4895518
http://dx.doi.org/10.1063/1.4895518
http://dx.doi.org/10.1063/1.4895518
http://dx.doi.org/10.1121/1.415948
http://dx.doi.org/10.1121/1.415948
http://dx.doi.org/10.1121/1.415948
http://dx.doi.org/10.1121/1.415948
http://dx.doi.org/10.1121/1.390585
http://dx.doi.org/10.1121/1.390585
http://dx.doi.org/10.1121/1.390585
http://dx.doi.org/10.1121/1.390585
http://dx.doi.org/10.1121/1.415987
http://dx.doi.org/10.1121/1.415987
http://dx.doi.org/10.1121/1.415987
http://dx.doi.org/10.1121/1.415987


B. MOUDJED et al. PHYSICAL REVIEW E 91, 033011 (2015)

[22] B. Moudjed, PhD. thesis, INSA de Lyon, 2013.
[23] D. T. Blackstock, Fundamentals of Physical Acoustics (John

Wiley & Sons, New York, 2000).

[24] A. R. Rezk, O. Manor, J. R. Friend, and L. Y. Yeo, Unique
fingering instabilities and soliton-like wave propagation in thin
acoustowetting films, Nat. Commun. 3, 1167 (2012).

033011-10

http://dx.doi.org/10.1038/ncomms2168
http://dx.doi.org/10.1038/ncomms2168
http://dx.doi.org/10.1038/ncomms2168
http://dx.doi.org/10.1038/ncomms2168



