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How turbulence regulates biodiversity in systems with cyclic competition
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Cyclic, nonhierarchical interactions among biological species represent a general mechanism by which
ecosystems are able to maintain high levels of biodiversity. However, species coexistence is often possible
only in spatially extended systems with a limited range of dispersal, whereas in well-mixed environments models
for cyclic competition often lead to a loss of biodiversity. Here we consider the dispersal of biological species
in a fluid environment, where mixing is achieved by a combination of advection and diffusion. In particular,
we perform a detailed numerical analysis of a model composed of turbulent advection, diffusive transport, and
cyclic interactions among biological species in two spatial dimensions and discuss the circumstances under
which biodiversity is maintained when external environmental conditions, such as resource supply, are uniform
in space. Cyclic interactions are represented by a model with three competitors, resembling the children’s game
of rock-paper-scissors, whereas the flow field is obtained from a direct numerical simulation of two-dimensional
turbulence with hyperviscosity. It is shown that the space-averaged dynamics undergoes bifurcations as the
relative strengths of advection and diffusion compared to biological interactions are varied.
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I. INTRODUCTION

Several studies have shown that biodiversity in spatially
extended population models can sometimes be maintained
even if only a single species is able to survive in the well-
mixed system [1–8]. This is typically the case if the inter-
actions among individuals are sufficiently local and the system
does not display a clear competition hierarchy as in the
case of cyclic interactions. Cyclic competitions have been
frequently investigated in discrete lattice models with nearest-
neighbor interactions, where the dispersal of individuals is
local [1,2,4,7,9–17]. To demonstrate the approach to the
well-mixed limit in these models one can either increase
the effective range of interactions towards the total domain
size [2,4] or explicitly consider individuals’ mobility by
allowing random exchange events among adjacent sites, which
leads to diffusive transport in the continuum limit [7,12,13,16].
However, a significant part of life on Earth is represented
by microorganisms dwelling in moving fluid environments,
such as the Earth’s oceans, where the dominant mechanism of
transport is typically attributed to fluid turbulence [18–20]. The
latter mechanism of microorganisms’ transport was a source
of inspiration for the work presented herein since, despite
the fact that cyclic interactions are used as a paradigm to
explain biodiversity, to our knowledge, only one previous
study has considered spatial games with cyclic dominance
in a fluid environment with mixing [6], and so far none
has been devoted to the study of cyclic competitions in
a turbulent flow. One of the most intriguing examples of
biological communities without a clear competition hierarchy
inhabiting turbulent aquatic environments is represented by
marine phytoplankton species that typically compete for a
limited number of natural resources [21,22]. Apart from
marine ecosystems there also seems to be a growing interest
for biodiversity in the atmosphere, although it remains an open
question as to whether organisms found in the atmosphere can
be regarded as an active ecosystem [23–25].

Fluid motion can have a profound effect on the time evolu-
tion of passively advected biological populations or chemical
substances [3,26–29]. In particular, stirring by a fluid flow
can lead to transitions between different dynamical regimes of
reactive systems, mathematically described by the so-called
reaction-diffusion-advection (RDA) equations [30–33]. From
an ecological point of view, these transitions correspond to
changes in relative species abundance and are therefore of
crucial importance for studies of biodiversity in moving fluid
environments. Here we demonstrate that, upon changing the
relative strengths of advection and diffusion compared to
biological interactions, a spatially extended population model
with cyclic dominance experiences dramatic changes in its
spatiotemporal dynamics. Distinct dynamical regimes of the
system are manifested by a rich variety of phenomena such as
rotating spiral waves, the emergence of periodic oscillations
in relative species abundance, and transitions into absorbing
states where only one species survives.

To shed some light on cyclic competitions in turbulent
flows we adopt a minimal biological model with three
competitors dominating each other in an analogous fashion
as in the children’s game of rock-paper-scissors, where
rock crushes scissors, scissors cut paper, and paper covers
rock. Known examples where cyclic dominance has been
identified in interactions between three competitors include
the mating strategies of lizards in the inner Coast Range
of California [34], competitions between mutant strains of
yeast [35], and bacterial strains of toxin-producing Escherichia
coli [5,36,37]. In the spatially extended population model, the
biological reactions are supplemented with diffusion terms and
advection by a two-dimensional (2D) turbulent flow. Diffusion
can be used either to represent random Brownian motion of
the advected species or as a parametrization for turbulent
transport below the model’s resolution, i.e., at the scales where
three-dimensional fluid motions become important [18,38].
Diffusion, however small it may be, in fact plays a crucial
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role in the population dynamics of passively advected species
because it enables particles in nearby fluid elements to come
in contact and interact [29,39]. In cases where particle inertial
effects or microorganism motility are considered important,
the species may additionally come in contact due to an
effective compressibility of the flow field [40–42]. In this study,
however, these effects are neglected and the tracer velocity field
is assumed to be incompressible.

It has been previously shown that cyclic interactions in
combination with diffusion lead to self-organization of the
three competitors into rotating spiral waves [7,12]. Turbulent
advection in 2D flows is, on the other hand, known to produce
sharp, patchy distributions of biological tracers [38,43–45].
Advective and diffusive transport in systems with cyclic
competition are therefore drawn towards a complex interplay
of diverse factors, exhibiting elements of competition as well
as of cooperation. On one hand, these two processes work
together to enhance the overall mixing rate, while, on the
other hand, they represent two opposing mechanisms, favoring
either sharp gradients in the subpopulation densities or smooth
density profiles propagating in the form of traveling waves.
Various relative strengths of turbulence compared to diffusion
can be also viewed—in a more loose sense—as different
compromises between the random Brownian and collective
motions of individuals. Our model might therefore provide
some general insight into situations where the motions of
individuals are adequately described by a single, spatially
correlated velocity field in the continuum limit. Apart from
plankton species in the ocean, an interesting example belong-
ing to this general class of biological systems is represented
by swimming bacteria in dense suspensions [46] where the
velocity correlation length was shown to depend mainly
on the bacterial concentration [47]. We also note that the
applications of this study concerning pattern formation in fluid
flows are not limited to biological systems since qualitatively
similar patterns to the ones observed in our model can
also be reproduced with the celebrated Belousov-Zhabotinsky
reaction [48–50].

In the ocean, advection is recognized as the dominant source
of transport, and the biological interactions among planktonic
organisms typically occur on similar time scales as horizontal
mixing [38,43]. Nevertheless, in order to obtain a thorough
understanding of the various physical processes involved, and
due to possible applications of our work outside the field
of marine ecology, we perform a comprehensive numerical
analysis of our model over a wide range of relative advection
as well as diffusion strengths compared to the biological
interactions. All the available simulation results are then used
to construct a rough nonequilibrium phase diagram of the
spatiotemporal dynamics.

The remainder of this article is structured as follows. In
Sec. II we present a set of rate equations describing cyclic
interspecies interactions and give details regarding our 2D
turbulence simulation before discussing the full set of RDA
equations used to model the dynamics of the spatially extended
system. In Sec. III we perform a detailed analysis of the
numerical results. The complex spatiotemporal patterns are
first inspected through snapshots of the solutions and by means
of space-time autocorrelation functions. Afterwards, adopting
a recently introduced method developed in the context of

interacting particle systems [51], we show that the most
pronounced qualitative changes in the system’s spatiotemporal
dynamics correspond to bifurcations of the space-averaged
dynamics. The main conclusions are given in Sec. IV.

II. MODEL

A. Rate equations

We study a biological population comprised of three species
A, B, and C that cyclically dominate each other. In addition, the
individuals from each subpopulation are able to reproduce if
an empty spot ∅ is available. The complete model composed
of selection and reproduction processes is described by the
following reaction scheme [12,17]:

AB
σ−→ A∅, A∅

μ−→ AA,

BC
σ−→ B∅, B∅

μ−→ BB, (1)

CA
σ−→ C∅, C∅

μ−→ CC,

where σ and μ are the selection and reproduction rates,
respectively. If the size of each subpopulation is macroscop-
ically large, such that the relative fluctuations arising from
stochastic effects are small, the system’s time evolution may
be treated as deterministic, and the discrete distributions of
individuals belonging to each species can be replaced by the
mean densities a, b, and c of subpopulations A, B, and C,
respectively. In the well-mixed limit, the mean population
densities are governed by the following set of rate equations:

∂ta = μa(1 − ρ) − σac,

∂tb = μb(1 − ρ) − σba, (2)

∂tc = μc(1 − ρ) − σcb,

where ρ = a + b + c represents the total population density.
Equation (2) is a special case of a three-species population

model first studied by May and Leonard [52]. For the above
system, May and Leonard reported four nontrivial fixed
points [52]: three single-species equilibrium points, (1,0,0),
(0,1,0), and (0,0,1), and an unstable reactive fixed point,

μ

3μ+σ
(1,1,1), where all three subpopulations coexist. The

single-species fixed points correspond to absorbing states that
can never be left by the system’s dynamics once they are
reached. Solutions of Eq. (2) starting in the vicinity of the
coexistence point form so-called heteroclinic orbits [52,53]:
the trajectories [a(t),b(t),c(t)] spiral outwards from the co-
existence point and come ever closer to the single-species
equilibrium points but never converge to any of them. However,
the time spent in the vicinity of the single-species fixed
points increases proportionally with time. In consequence,
one of the species will sooner or later dominate the other
two over times which are much longer than any biological
time scale of interest, even though there can be no winner
in the strict limit t →∞. It should also be noted that any
inclusion of (demographic) noise in the deterministic model (2)
will inevitably lead to the complete extinction of all but one
species in a finite time [54]. Reichenbach et al. [12] have
investigated system (2) further and showed that all solutions
of Eq. (2) decay onto a 2D invariant manifold (a subspace left
invariant by the system’s time evolution), which contains all
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FIG. 1. (Color online) Evolution of subpopulation densities
(a,b,c) on the invariant manifold for equal selection and reproduction
rates (μ = σ ). The red (gray) curve shows a trajectory starting in the
vicinity of the reactive fixed point.

four nontrivial fixed points. The invariant manifold together
with an example of a phase-space trajectory starting in the
vicinity of the reactive fixed point is shown in Fig. 1.

B. Turbulence model

The turbulent velocity field is obtained from solutions of the
incompressible, 2D Navier-Stokes equations with hypervis-
cosity and large-scale, random forcing. Real flows in nature are
always, at least to some extent, three dimensional. However,
the particular type of flow was primarily chosen to fit the needs
of a model for the stirring of microorganisms by large-scale
geophysical flows. These flows are strongly anisotropic due
to geometrical constraints (large horizontal scale compared
to the fluid’s depth) and body forces acting on the fluid
(Coriolis force, density stratification) and may be treated
as 2D in the first approximation [55,56]. Fluid turbulence
constrained to two spatial dimensions is characterized by
many unique features such as an inverse cascade of kinetic
energy to large scales, a cascade of enstrophy to small scales,
and strong, long-lived vortices comparable to the size of
the energy injection scale [57–59]. With the random forcing
being concentrated at large scales, the flow field obtained
from our simulations is smooth and limited to the direct 2D
turbulence enstrophy cascade. Given the typical forcing scales
in the ocean (∼50 km) [3], large-scale forcing constraints
the simulation domain size within the ocean mesoscale range,
where horizontal advection is aptly described by the (standard)
2D Navier-Stokes equations [38]. We also note that similar
modeling approaches have been used in many previous studies
of population dynamics over large horizontal scales in the
ocean [3,28,38,43–45].

In two dimensions the Navier-Stokes equations are most
conveniently solved by integrating the vorticity equation [59]

∂tω + v · ∇ω = D + ξ, (3)

where v = (vx,vy) is the 2D velocity field, ω = ∂xvy − ∂yvx

is the (scalar) vorticity, D represents dissipation terms, and
ξ is the external forcing. For the dissipation, we use a

sum of hyperviscosity and linear friction given by D =
ν �3ω − αω. The viscous term of the Navier-Stokes equations
is frequently replaced by higher powers of the Laplacian in
turbulence simulations because it is possible to achieve higher
effective Reynolds numbers at a given spatial resolution in this
way [60,61]. The second source of dissipation—the linear drag
term—provides a large-scale energy sink, necessary to reach
a statistically steady state in 2D turbulence simulations due to
the flow of energy to large scales [58,59].

Equation (3) is solved with a pseudospectral method on
a doubly periodic square domain at resolution 7682 using
the exponential time differencing fourth-order Runge-Kutta
scheme [62] for the time integration. The random forcing is
applied in spectral space by adapting a general forcing scheme
for three-dimensional turbulence, introduced by Alvelius [63],
to the 2D case. The forcing power spectrum is restricted to a
narrow range of wave numbers with a peak at kf = 2π/�f ,
where lf is a characteristic forcing length scale. Following
the approach of Ref. [63], the time and length units of the
simulation are fixed by the choice �f ≡ 1 and P ≡ 1, where
P is the average external power input.

In the chosen units, the simulation domain edge length,
hyperviscosity, and drag coefficient were set to L = 5, ν =
3 × 10−13, and α = 0.13, respectively. Starting from an initial
zero vorticity, Eq. (3) was integrated until a statistically steady
state, characterized by a steady value of the total kinetic
energy, was reached. The generated vorticity profile [Fig. 2(a)]
was then used as the initial condition for vorticity in the
simulations of cyclic competitions in a turbulent flow (see
Sec. II C). To confirm that our numerical solution is consistent
with well-known results from the literature, we computed
the kinetic energy spectrum E(k) and the longitudinal ve-
locity correlation function f (r) = 〈vi(r′,t)vi(r′ + r êi ,t)〉/〈v2

i 〉
[Fig. 2(b)], where the brackets 〈· · ·〉 denote a space-time
average, the index i represents the x or y direction, and êi is the
unit vector. We found f (r) to be a non-negative, monotonically
decreasing function with a correlation length [the length �c at
which f (�c) = exp(−1)] close to the forcing length scale. The
estimated turbulence energy spectrum has a slope close to −3
on the logarithmic graph, in the wave number range between
the energy injection scale and hyperviscous dissipation scale.
These results are in good agreement with theoretical predic-
tions [57,58] and other numerical simulations [60,64].

C. The spatially extended population model

In the spatially extended model, we combine the differential
equations for species competition (2) and the turbulence
model (3) into a set of RDA equations for the subpopulation
densities a(r,t), b(r,t), c(r,t):

∂ta + v · ∇a = μa(1 − ρ) − σac + D�a,

∂tb + v · ∇b = μb(1 − ρ) − σba + D�b, (4)

∂tc + v · ∇c = μc(1 − ρ) − σcb + D�c,

where D is the diffusion constant and the flow field v(r,t) is
determined at each time instant from Eq. (3).

The corresponding discretized version of system (4) as
well as the continuous model have been extensively studied
by Reichenbach et al. [7,12,65] for the case with no fluid
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FIG. 2. (Color online) Results of the 2D turbulence simulation.
(a) Snapshot of the vorticity field in a statistically steady turbulent
state. (b) Longitudinal velocity correlation function. The inset shows
the turbulence energy spectrum.

flow. The authors of Refs. [7,12,65] have shown that mobile
individuals exhibiting cyclic dominance are able to coexist
up to some critical value of species mobility (characterized
by an effective diffusion constant in the continuum limit).
Within the coexistence phase the fields a(r,t), b(r,t), and c(r,t)
self-organize—in two dimensions—into rotating spiral waves.
As the species mobility increases, the spirals’ wavelength
grows proportionally to

√
D until the patterns outgrow the

system size. The state in which spirals are absent corresponds
to the well-mixed system (2) where only one subpopulation
survives. Taking into account the main features of the reaction-
diffusion part of Eq. (4), the natural time and length scale of
the spatially extended model appear to be the spirals’ rotation
period T0(μ,σ ) and the linear size of the simulation domain
L. We shall make use of these units in the following analysis
of our numerical results. It is also worth emphasizing that T0

is uniquely determined by μ and σ alone [12], even though
rotating spirals can only emerge in the presence of diffusion.

For a given type of 2D flow and for a fixed ratio σ/μ, the
solutions of Eq. (4) are characterized by two dimensionless
parameters, which can be constructed by assigning a charac-
teristic time scale to each of the three physical phenomena
(reactions, diffusion, and advection) and comparing these
scales to each other. Here we choose to analyze our results

in terms of the parameters

Da = τf /τr and Kd = τd/τr , (5)

where τr , τd , and τf are a characteristic reaction, diffusion,
and flow time scale, respectively. The ratio Da is known in
literature as the Damköhler number [29]. We adopt a common
definition for the flow time scale given by τf = �f /u, where u

is the root-mean-square velocity of the flow [29,44]. For τr , we
use the definition τr = T0 because this appears to be the slowest
reaction time scale of Eq. (4), and it is reasonable to expect
that the reactions will balance turbulent advection only when
the slowest reaction time scale is able to keep up with the flow.
We estimated the spirals’ rotation period from simulation runs
performed with v(r,t) = 0 and found T0 ≈ 61.5/μ for μ = σ ,
which is in good agreement with Reichenbach et al. [12]. The
diffusion time scale τd is defined by the ratio L2/D in order to
make Kd independent of any parameters of the flow. Hence,
Kd gives the inverse of the diffusion constant in units of L2/T0.

Equation (4) is solved on a doubly periodic square domain
using a second-order operator splitting (Strang splitting) ap-
proach [66] which treats separately the reaction and advection-
diffusion part of Eq. (4). The advection-diffusion terms are in-
tegrated with a hybrid method, introduced by Spiegelman and
Katz [67], which combines the semi-Lagrangian scheme for
advection with the Crank-Nicolson algorithm for the diffusion
equation. In the semi-Lagrangian method, we use a second-
order midpoint iteration technique for finding the departure
point of each fluid parcel at previous time step [68], together
with bicubic interpolation for approximating the values of the
advected fields at departure points. The bicubic interpolation
is constructed from a series of one-dimensional cubic spline
interpolations with fourth-order central difference estimates of
the derivatives at the interpolating nodes. To reduce spurious
oscillations, which typically arise from standard high-order
interpolations near sharp gradients of the concentration fields,
a monotonicity-preserving modification of the derivatives is
used for each one-dimensional cubic interpolation [69]. The
reaction terms are integrated independently of the advection-
diffusion part with a second-order Runge-Kutta scheme. In
order to make our numerical method consistent with the
externally supplied time-dependent flow field v(r,t), the same
spatial resolution as in the 2D turbulence simulation (7682 grid
points) is used to solve Eq. (4).

In all simulations, we use initial conditions of the form

(a∗ + δξa, b
∗ + δξb, c

∗ + δξc), (6)

where (a∗,b∗,c∗) = μ

3μ+σ
(1,1,1) is the reactive fixed point

of Eq. (2), {ξs} are randomly distributed numbers between
−1 and 1, and δ is the amplitude of fluctuations around
the reactive fixed point. The random numbers are generated
independently for each point on the computational grid so no
spatial correlations are present in the initial conditions. We also
avoid using the same flow time evolution for all simulation runs
by initializing the random turbulence forcing term differently
for each run. It is important to note that various initial
conditions and flow realizations should be considered for
studies of ecosystem stability because any particular solution
of Eq. (4) might show stability properties that—on a given
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time scale—significantly differ from the statistical average
over many realizations.

III. RESULTS

To investigate the characteristics of our spatially extended
population model we performed over 250 simulation runs for
the system (4). In most cases, the equations were integrated
over a time T ≈ 23τr . In order to determine the circumstances
under which the spatial degrees of freedom facilitate a
significant improvement of ecosystem stability, it is sufficient
to consider time scales which are only about an order of
magnitude larger than τr , since the heteroclinic orbits of
the well-mixed system (2) typically require less than τr to
reach the boundaries of the phase space. In the following,
we refer to the time scales which are only about an order, or
perhaps a few orders, of magnitude larger than τr as to the
biological or ecological time scales of interest. Moreover, the
term “long-time regime” should be in the following understood
only in the context of such time scales.

In our simulations, the amplitude of fluctuations around the
reactive fixed point in the initial conditions was set to δ =
2.5 × 10−3, and we have always used equal selection and re-
production rates (μ = σ ). Reichenbach et al. [12] have shown
that different choices of the ratio σ/μ do not qualitatively
change the system’s dynamics in the limit Da→∞. It seems
reasonable to expect this to be true in general for all Damköhler
numbers, although we have not explicitly considered various
choices of σ/μ in our simulations. Different values of Da for
fixed Kd were in the simulations achieved by rescaling the
entire right-hand side of Eq. (4) while keeping the parameters
of the flow unchanged. The same effect could have been
alternatively achieved by varying the magnitude of the flow
field while keeping the parameters of the reaction-diffusion
part fixed.

Different aspects of the solutions are presented in two
subsections. In Sec. III A we describe the spatiotemporal
dynamics for those choices of Da and Kd that give rise to
a heterogeneous spatial structure (i.e., the system is able to
maintain a state of biodiversity). In the following, we call the
latter range of values for Da and Kd the species coexistence
region. A more formal definition of this term is given later in
Sec. III B, where we discuss the transitions between different
dynamical regimes and present a rough nonequilibrium phase
diagram of the spatiotemporal dynamics.

A. System’s spatiotemporal evolution

The spatial structure of solutions can be qualitatively
explored through snapshots of the subpopulation densities
a(r,t), b(r,t), and c(r,t). Figure 3 shows a selection of long-
time snapshots of the solutions. In the long-time regime, the
three species occupy separate parts of the (periodic) domain,
forming various types of patterns which give qualitative insight
into the underlying character of spatial transport. In the top
row of Fig. 3, we show solutions obtained in the absence of
fluid flow in order to draw a clear picture of the differences
between the full set of RDA equations and the reaction-
diffusion dynamics with v(r,t) = 0. The patterns resulting
from the interplay among reactions, diffusion, and turbulent

D
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∞
(v
=
0)

D
a
=
2 .
4

D
a
=
0 .
92
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a
=
0.
29

Kd = 1.6 × 104 Kd = 5.4 × 103 Kd = 1.8 × 103

FIG. 3. (Color online) Snapshots of the concentration fields a, b,
and c for different Damköhler numbers Da and ratios of the diffusion-
to-reaction-time-scale Kd . Each subpopulation density is represented
by its own color channel (gray tone)—red (medium gray) for a, green
(light gray) for b, and blue (dark gray) for c.

advection in general differ substantially from those induced
by diffusive transport alone because the chosen flow field is
correlated on the largest scale resolved by the simulations.
For moderately large Damköhler numbers (Fig. 3, second
row), one can observe a collection of irregular spiral shapes
which are rendered unstable by the stretching and folding
of material lines in 2D turbulence (see also Supplemental
Material, [70] Movie 1). In other words, these spirals have
a finite lifetime. However, new spirals are spontaneously
formed at a similar rate as the old ones are being destroyed.
For Damköhler numbers around Da ≈ 1 (Fig. 3, third row),
the reaction-diffusion dynamics and turbulent advection are
found to be in an approximate dynamic balance (Supplemental
Material [70], Movie 2). This statement will be clarified later
when we examine the time autocorrelation functions. As the
Damköhler number is decreased even further (Fig. 3, bottom
row), fluid mixing significantly increases the effective range
of species’ interactions, leading to collective oscillations in
relative species abundance on the largest scales (Supplemental
Material [70], Movie 3). This phenomenon will be discussed
in more detail later.

The influence of turbulent transport on the system’s dynam-
ics is strongest for low Da and high Kd . In this regime, the
subpopulation densities are expected to behave effectively as
passive (weakly diffusive) tracers on the time scale of the flow
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FIG. 4. (Color online) Adaptation of spatial patterns to the vor-
ticity field structure in the regime of long reaction-diffusion time
scales compared to the characteristic flow time scale. (a) Snapshot of
the subpopulation densities a, b, and c. Different colors (gray tones)
should be interpreted in the same way as in Fig. 3. (b) The vorticity
field of 2D turbulence. Only 1/4 of the whole domain is shown in (a)
and (b). Both snapshots are taken at the same time of the simulation
run.

τf , adapting a structure similar to that of the vorticity field [29].
Figure 4 compares a solution of Eq. (4) for Da = 0.18 and
Kd = 1.6 × 104 with the instantaneous vorticity field and
confirms this prediction. However, on the time scale of the
reaction τr the concentration fields are highly sensitive to
fluid mixing and develop large oscillations in relative species
abundance as already mentioned above.

The most intriguing questions regarding the system’s time
evolution are those related to the long-time maintenance
of biodiversity. In the species coexistence region, the total
space-averaged density ρ always reaches a nearly steady
value close to 0.9. On the contrary, the space-averaged
subpopulation densities a, b, and c never settle to a steady
value but rather oscillate around their space-time average;
approximately 1/3 of the total density. The time evolution
observed for low Damköhler numbers deserves some special
attention. In this regime, the space-averaged concentrations
display surprisingly regular periodic oscillations, and the three
subpopulations cyclically dominate the total biomass of the
system (Fig. 5). A large global concentration of one of the
subpopulations does not necessarily lead to a loss of bio-
diversity because an abundant species represents a convenient
“spreading medium” for its superior competitor that can easily
outperform the first species and become abundant itself before
it is in turn replaced by the third species, and so on. However,
when the relative strength of mixing is increased further, the
amplitudes of oscillations approach the lower bound of the
total space-averaged concentration ρ, so the probability of
extinction increases, until species coexistence becomes almost
impossible.

Collective oscillations in cyclic competitions with fluid
mixing have also been reported by Károlyi et al. [6]. The
model studied in Ref. [6] was composed of cyclic interactions
between three species and an analytically prescribed unidi-
rectional shear flow with a changing direction. Like in our
turbulence model, large-scale correlations were present in the
velocity field used in Ref. [6]. Interestingly, transitions to states
with global oscillations have also been observed in studies
of cyclic competitions on regular small-world networks,
where a given portion of randomly chosen nearest-neighbor
links is replaced with long-range links [71,72]. In view of
these previous works, our results provide further evidence
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FIG. 5. (Color online) Transition to low Damköhler numbers
where space-averaged concentrations display large periodic oscil-
lations. The solid red (medium gray), dashed green (light gray), and
dotted blue (dark gray) lines display the space-averaged subpopula-
tion densities. The dashed black lines show the total space-averaged
density. The diffusion-to-reaction-time-scale ratio Kd was set to
Kd = 8.1 × 103 in all cases.

that the collective oscillations are a robust phenomenon,
unaffected by the details of cyclic interactions, as long as there
exists a mechanism capable of mediating interactions among
spatially separated parts of the system. For sufficiently small
velocity field correlation lengths in statistically stationary
and homogeneous flows, however, it should be possible to
approximate advection with an effective diffusion, thereby
eliminating the possibility of collective oscillations. Instead,
the effect of advection in this case would be to increase the
size of spiral patterns observed in the absence of fluid flow.
This phenomenon was recently demonstrated in experiments
by von Kameke et al. [50] with the pattern-forming Belousov-
Zhabotinsky reaction in a quasi-2D turbulent flow.

To gain a more quantitative understanding of the system’s
spatiotemporal dynamics, we computed the normalized space-
time autocorrelation functions

Css(|r − r′|,t,t ′) ≡ 1

σ 2
〈s(r,t)s(r′,t ′)〉

− 1

σ 2
〈s(r,t)〉〈s(r′,t ′)〉, (7)

where s ∈ {a,b,c}, σ 2 = 〈s(r,t)2〉 − 〈s(r,t)〉2, and the brack-
ets 〈· · ·〉 should be in principle understood as ensemble
averages over all possible realizations of the flow and over
all initial conditions. When the probability that one (or
two) of the species will go extinct becomes small on any
biologically reasonable time scale, the autocorrelations in
the system’s long-time regime may be approximated with
finite-time averages. Under such circumstances, the temporal
part of Css(|r − r′|,t,t ′) in the long-time regime depends only
on |t − t ′|. For large Damköhler numbers, the solutions of
Eq. (4) strongly depend on initial conditions which raises
a concern regarding the validity of approximating Eq. (7)
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FIG. 6. (Color online) Spatial autocorrelation functions for dif-
ferent Damköhler numbers Da. The correlations Caa(r) are shown
for Da = 4.7 (solid red line), Da = 0.92 (dashed green line), and
Da = 0.29 (dotted blue line). The diffusion-to-reaction-time-scale
ratio Kd was kept fixed at Kd = 8.1 × 103 in all cases. For higher
values of Da, the autocorrelations suddenly develop a local minimum
which emerges due to the presence of rotating spiral patterns. The
inset shows the correlation lengths as functions of 1/Kd for Da = 4.7
(red triangles), Da = 0.92 (green squares), and Da = 0.29 (blue
crosses). The dashed lines on the logarithmic graph have a slope
of 1/2 which means that all correlation lengths scale as ξ ∼ 1/

√
Kd ,

albeit with a different proportionality factor for each Da.

with a time average. Nevertheless, we found that various
initial conditions in the form of expression (6) give very
similar estimates for Css(|r − r′|,t,t ′), even in the high-Da
limit. Since the ecosystem model (4) is homogeneous, the
autocorrelations may also be evaluated with the help of space
averages. However, space averages alone generally do not give
sufficiently accurate results due to the presence of various
finite-size effects in the solutions of Eq. (4).

Spatial autocorrelation functions Css(|r − r′|) ≡ Css(|r −
r′|,t,t) for different choices of Da are shown in Fig. 6. The
functions Css(|r − r′|) were calculated from a space average
and an additional time average over time T ≈ 13τr , once the
total population density had reached a steady value. In this way,
we were able to obtain well-behaved estimates of Css(|r − r′|)
with a monotonically decreasing correlation length ξ [the
length ξ at which Css(ξ ) = exp(−1)] as a function of Da
and Kd . The correlation length falls with Da (Kd ) because
an increase of Da (Kd ) generally corresponds to a reduced
total mixing rate. It has been previously shown that ξ scales
with the square root of the diffusion constant in the absence
of fluid flow [12]. Our results suggest that the scaling relation
ξ ∼ √

D ∼ 1/
√

Kd remains valid in general for any choice of
Da.

The time autocorrelations Css(|t − t ′|) ≡ Css(0,t,t ′) were
initially obtained from a time average over time T ≈ 11τr ,
taken at a fixed point inside the simulation domain, once
the total density had reached a steady value. By examining
the initial estimates, we realized that the chosen averaging
time was too short to give satisfactory results. Therefore, we
picked three points from different regions of the parameter
space and improved our estimates of Css(|t − t ′|)—for those
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FIG. 7. (Color online) Time autocorrelation functions for differ-
ent Damköhler numbers Da. Estimates of Caa(t) were obtained for
Da = 0.29 (dotted blue line), Da = 0.92 (dashed green line), and
Da = 4.7 (solid red line). The diffusion-to-reaction-time-scale ratio
Kd was set to Kd = 3.2 × 103 in all cases.

three particular choices of control parameters—by taking an
additional average over 15 realizations of the model. The final
results for Css(|t − t ′|) are shown in Fig. 7. The estimated time
autocorrelations are not as well behaved as their corresponding
spatial part, but we are still confident that the results in Fig. 7
are sufficiently accurate to correctly predict the gross features
of the time autocorrelations. Namely, Css(|t − t ′|) display
damped oscillations, except for values of Da around Da ≈ 1.
In the low-Da regime, the oscillations in Css(|t − t ′|) arise
from the collective oscillations in relative species abundance,
whereas in the high-Da regime, the oscillations result from the
(unstable) rotating spiral patterns. For intermediate values of
Da around Da ≈ 1, the time autocorrelations quickly decay
towards zero without any clear signs of (damped) oscillations.
This result justifies the use of the spirals’ rotation period T0

for the definition of the reaction time scale τr because the
reactions appear to be approximately in balance with turbulent
advection when Da ≈ 1 (i.e., when T0 ≈ τf ).

B. Global attractors and ecosystem stability

The qualitative changes in the system’s spatiotemporal
dynamics with respect to the control parameters seem very
pronounced, suggesting that the model’s parameter space can
be divided into different dynamical regimes. To develop our
idea further, we follow the approach of Rulands et al. [51]
and analyze the attractors of the global (space-averaged)
dynamics. Adopting the terminology of Ref. [51], we call the
attractors of the space-averaged dynamics global attractors.
To avoid confusion, we note that the same phrase is also
used in a similar context in mathematical literature but its
specific meaning there differs. Due to the inherent presence
of flow-induced statistical fluctuations, the global attractors
correspond to maxima of the probability density to find the
system in a specific global state (a , b , c) rather than to isolated
orbits or points, for example. In this framework, the transitions
between different dynamical regimes are to be interpreted
as bifurcations of the global dynamics and should not be
confused with nonequilibrium phase transitions. Moreover, the
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FIG. 8. (Color online) Global phase portraits of the dynamics
for different Damköhler numbers Da and ratios of the diffusion-
to-reaction-time-scale Kd . The trajectories of the space-averaged
solutions are shown for Da = 0.21, Kd = 8.1 × 103 (a); Da = 0.71,
Kd = 8.1 × 103 (b); and Da = 0.29, Kd = 5.4 × 102 (c).

observed qualitative changes in the dynamics arise essentially
from finite-size effects due to variations of the physical length
scales compared to the domain size. Evidently, the global
attractors do not give any information regarding the small-
scale variability of the subpopulation densities. However, the
dimensional reduction of the problem considerably simplifies
the search for bifurcations in the parameter space, while at
the same time it still gives valuable insight into the nature of
biological interactions on the largest scales.

Figure 8 shows three global phase portraits of the solutions,
corresponding to three different types of global attractors
observed in our simulations. The attractors can be readily
identified as a “limit cycle” [Fig. 8(a)], a “fixed point”
[Fig. 8(b)], and a heteroclinic orbit [Fig. 8(c)]. The solutions
starting in the vicinity of the reactive fixed point of Eq. (2)
converge (in a statistical sense) to a limit cycle or to the
fixed point attractor if turbulent mixing is not too strong so
biodiversity can be maintained on the time scales of interest.
It is worth emphasizing that the fixed point global attractor
does not coincide with the reactive fixed point of the rate
equations. Instead, it is shifted along the symmetry axis
a = b = c towards a higher density ρ ≈ 0.9 as compared to

1

1

1

0

3
1 (1, 1, 1)

b

a

c

FIG. 10. (Color online) The invariant manifold of Eq. (2) (black
dots) compared to the solutions of Eq. (4) projected onto the global
phase space [green (gray) dots]. The dashed arrow denotes the unit
vector along the symmetry axis.

the well-mixed limit where ρ = 3/4 in the reactive fixed point.
The limit cycle global attractors correspond to oscillations
in relative species abundance observed for low Da. In the
context of dynamical systems theory, the collective oscillations
are quite a remarkable property, considering the fact that
the well-mixed system (2) is characterized by heteroclinic
orbits rather than by limit cycles. Neglecting the mathematical
details regarding the true asymptotic nature of solutions
corresponding to heteroclinic orbits, we may say that the
heteroclinic orbits correspond to extinctions of all but one
species. In the spatially extended model (4), the system tends
to get trapped into one of the absorbing states when the average
size of spatial patterns approaches the domain size (Fig. 9).
The size of spatial patterns is, in turn, controlled by Da and
Kd . Therefore, species coexistence depends essentially on the
choice of Da and Kd .

A common feature shared by all global attractors of the
spatially extended model is their confinement to a quasi-2D
geometry within the three-dimensional global phase space. In
Fig. 10, we show the projections of long-time solutions for
various Da and Kd onto the global phase space and compare
the obtained result with the invariant manifold of Eq. (2). It
is shown that the global dynamics can be effectively reduced

Da = 4.7 Da = 1.8 Da = 0.92 Da = 0.47 Da = 0.29 Da ≈ 0.15

FIG. 9. (Color online) Approach to the absorbing state with a decreasing Damköhler number Da at a fixed diffusion-to-reaction-time-scale
ratio Kd = 8.1 × 103. Each subpopulation density is represented by its own color channel (gray tone) as described in Fig. 3. As illustrated
above, a relative increase of turbulent advection enhances the dispersal of species and increases the average size of spatial patterns until the
biodiversity is lost. For Kd = 8.1 × 103, we were able to observe the first extinction events around Da ≈ 0.15.

033009-8



HOW TURBULENCE REGULATES BIODIVERSITY IN . . . PHYSICAL REVIEW E 91, 033009 (2015)

to a quasi-2D surface within the global phase space which
does not correspond to the invariant manifold of Eq. (2). The
quasi-2D surface spanned by the solutions of Eq. (4) has a
very mild curvature at the intersection with the symmetry
axis around ρ ≈ 0.9 and becomes slightly more curved close
to the boundaries of the phase space where it touches the
single-species equilibrium points. For most values of Da and
Kd considered in our simulations, even the solutions that
correspond to transitions into absorbing states lie on this
surface rather than on the invariant manifold of the well-mixed
system. A significant departure of the phase portraits from the
global surface of solutions was observed only for Kd ∼ 10,
and it should be probably required that Kd ∼ 1 in order to
completely neglect the spatial degrees of freedom.

Let us now try to analyze the transition into the collective
oscillations regime in more detail. Due to the inherent presence
of noise in the system, it is necessary to use a statistical
approach to distinguish between the fixed point and limit
cycle global attractor. In order to distinguish a limit cycle from
small fluctuations around the symmetry axis which correspond
to the fixed point attractor, the global trajectories have to
be well separated from the symmetry axis a = b = c. To
introduce a measure for the mean separation of trajectories
from the symmetry axis, we can make use of the Lyapunov
function of the global concentrationsL ≡ (a b c)/(a + b + c)3,
which can be regarded as a radial coordinate, measuring the
distance of a point from the boundaries of the global phase
space [51,53]. Using the Lyapunov function, an effective radius
of a limit cycle as measured from the symmetry axis can be
defined as R ≡ 1 − L/Lmax, where Lmax = 1/27. Hence, to
distinguish a fixed point from a limit cycle in a statistical sense,
we should at least require that R/

√
χ � 1 in the collective

oscillations regime, where χ = 〈R2〉 − 〈R〉2. The dependence
of the rescaled radius R/

√
χ on Da is shown in Fig. 11.

The abrupt jump around Dac ≈ 0.4 reflects the underlying
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FIG. 11. (Color online) Dependence of the rescaled radius
R/

√
χ on the Damköhler number Da for different diffusion-to-

reaction-time-scale ratios Kd . Estimates of R/
√

χ are shown for
Kd = 8.1 × 103 (red crosses), Kd = 1.8 × 103 (green squares), and
Kd = 5.4 × 102 (blue circles). The inset shows the measurements
of R with the error bars representing the magnitude of statistical
fluctuations
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FIG. 12. (Color online) Extinction probability Pext calculated in
the absence of fluid flow as a function of the diffusion-to-reaction-
time-scale ratio Kd . The values Kd,c and K∗

d on the graph denote the
points above which the extinction probability drops below Pext ≈ 1
and Pext ≈ 1/2, respectively.

bifurcation of the global dynamics. We do not rule out a
possible weak dependence of the transition also on Kd , but
the available simulation data are insufficient to clearly confirm
or neglect a possible dependence on Kd .

To quantitatively describe the transitions into absorbing
states, one can consider the extinction probability Pext that
two species have gone extinct after time T [7]. For the sake of
simplicity, and for consistency with previous works [7,51] per-
formed for the discretized version of model (4) in the absence
of fluid flow, let us first discuss the limiting case Da → ∞.
To begin with, the meaning of the extinction probability in
deterministic reaction-diffusion models requires some special
attention. The randomness in discrete models originates from
the stochastic nature of biological interactions, whereas in
models described by partial differential equations (PDEs)
the “randomness” can be achieved by considering various
initial conditions. These two formulations might at a first
glance appear as completely unrelated; however, our approach
illustrates that the results of the PDE model are equivalent
to the ones produced from discrete lattice simulations with
a large number of particles [7,12], provided that the initial
conditions match the solutions of the discrete lattice model at
early stages of the system’s time evolution. In our case, this
means that the initial conditions for the PDE model should
be generated as random, δ-correlated-in-space perturbations
around the reactive fixed point of Eq. (2). In Fig. 12, we show
the dependence of Pext on Kd in the limit Da→∞. Since
the spatial patterns of the reaction-diffusion system remain
unchanged for all times after an initial transient of a typical
duration T ∼10τr , we consider a waiting time T ≈ 9.8τr ,
and each estimate for Pext is obtained from an average over
100 initial conditions. The critical value Kd,c = 35 ± 5, below
which species coexistence becomes almost impossible, is in
good agreement with the result from Reichenbach et al. [7]
obtained from discrete lattice simulations (written in terms of
Kd , the estimate from Ref. [7] reads Kd,c = 36 ± 4).

A large number of simulations are required for an accurate
estimate of the threshold Kd,c because the survivals of all
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DANIEL GROŠELJ, FRANK JENKO, AND ERWIN FREY PHYSICAL REVIEW E 91, 033009 (2015)

three competitors are statistically very rare near Kd,c. If one
only requires rough estimates of the transition points into the
absorbing states, a better alternative is to consider a threshold
K∗

d for which Pext ≈ 1/2 (see Fig. 12). Indeed, rough estimates
of K∗

d can be obtained even if only a single simulation run is
performed for each choice of the control parameters because
the point K∗

d should be in any case bounded from above
by the values of Kd for which Pext ≈ 0 and from below by
those values for which Pext ≈ 1. Therefore, in order to spend
our computational resources wisely, we have not explicitly
considered the extinction probabilities for the more general
case of a nonzero fluid velocity since it is already possible
to make qualitative conclusions regarding ecosystem stability
from a very limited number of simulation runs, performed for
various choices of Da and Kd . For the reasons explained above,
we use the threshold Pext ≈ 1/2 as a more formal definition
of the boundary between the species coexistence region and
the extinction region. It should be emphasized that in the
presence of random fluctuations, such as the ones arising from
a turbulent flow, the ecosystem can never remain stable in the
strict limit T → ∞ because there always exists a possibility
that the random disturbances will drive the system into one
of its absorbing states. The global attractors from the species
coexistence region are therefore in a strict mathematical sense
only long-lived transients. However, for sufficiently large Kd

and Da the extinction probability becomes very small on the
biological time scales of interest, and the states corresponding
to these parameters may be for practical purposes regarded as
states of species coexistence [73].

To determine the relative extent of the species coexistence
region in the parameter space, we performed several simu-
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FIG. 13. (Color online) Nonequilibrium phase diagram of the
spatiotemporal dynamics. The black crosses show the simulation runs
where biodiversity was lost before T ≈ 23τr , and the brown triangles
show the survivals of all three species. The (medium) gray shading
indicates the region of extinction where transitions into absorbing
states become more probable than long-lived states of biodiversity.
The horizontal and vertical dashed lines show the thresholds K∗

d

and Dac, respectively (see text for further details). Above the phase
diagram we show three long-time snapshots of the solutions from
different parts of the species coexistence region.

lations for various Da and Kd . In each of these simulations
we integrated Eq. (4) for at least T ≈ 23τr . Figure 13 finally
summarizes the main global dynamical features of our spatially
extended ecosystem with a nonequilibrium phase diagram.
Based on how the species extinction events and their survivals
are distributed across the parameter space, it is possible
to sketch a rough dependence of the Pext ≈ 1/2 extinction
probability threshold on Da and Kd . Below the transition into
the collective oscillations regime around Dac, the turbulent
flow becomes increasingly capable of synchronizing the local
subpopulation density oscillations among distant parts of the
domain, which in turn greatly reduces the extent of the species
coexistence region with respect to Kd . For high Da, our results
seem to be consistent with the limiting value K∗

d , estimated
from the simulations performed in the absence of fluid
flow.

IV. CONCLUSIONS

We studied the population dynamics of three cyclically
competing species in a two-dimensional turbulent flow forced
at large scales. The presented results of our numerical simu-
lations give new insight into how turbulent transport affects
ecosystem structure in biological communities without a clear
competition hierarchy. More specifically, we performed simu-
lations over a broad range of relative advection and diffusion
strengths compared to the biological reactions and studied how
different choices of ecosystem parameters affect the system’s
spatiotemporal dynamics and species’ biodiversity. For short
reaction time scales τr compared to the characteristic flow
time scale τf , corresponding to large Damköhler numbers
Da = τf /τr , the subpopulations self-organize into rotating
spiral waves. This phenomenon is consistent with previous
studies of cyclic competitions in reaction-diffusion systems,
with the exception that the spiral patterns become unstable
when subjected to perturbations induced by a turbulent flow.
For Damköhler numbers around Da ≈ 1, with τr defined as
the spirals’ rotation period measured in the absence of fluid
flow, the reaction-diffusion dynamics and turbulent advection
are found to be in an approximate dynamic balance. This is
most clearly seen by inspecting the species (Eulerian) time
autocorrelation functions, which do not show any clear signs
of periodic oscillations for Da ≈ 1. When the Damköhler
number is decreased even further, a sharp transition to a state
with collective oscillations in relative species abundance is
observed at a certain threshold value of Da. The observed
phenomenon suggests that turbulence might play an important
role in the structuring of marine phytoplankton communities,
which are typically composed of only a few dominant species
while the remaining ones represent only a small fraction of
the total biomass [74]. These types of interpretations are also
supported by some recent numerical experiments presented in
Ref. [75].

To further investigate the transitions between the qualita-
tively different dynamical regimes observed in our simulations,
we studied the attractors of the global (space-averaged)
dynamics and identified three different types attractors, cor-
responding to maxima of the probability density to find the
system in a specific global (space-averaged) state. The three
different types of global attractors have been identified as a
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fixed point, limit cycles, and heteroclinic orbits. The transitions
among these attractors should be interpreted as bifurcations of
the global dynamics. The fixed point attractor corresponds
to states of species coexistence observed for Damköhler
numbers of order unity and above, whereas the limit cycles
correspond to collective oscillations observed for low Da.
The heteroclinic orbits indicate transitions to homogeneous
states, where the system’s biodiversity is lost. The probability
that two of the species will go extinct depends essentially
on the choice of ecosystem parameters. Outside the regime of
collective oscillations, the extinction probability depends most
strongly on the relative strength of diffusion compared to the
reactions. However, as the Damköhler number drops below a
certain threshold, turbulence becomes increasingly capable of
synchronizing oscillations among distant parts of the domain,
which greatly reduces the acceptable range of relative diffusion
strengths that still allow for species coexistence.

In all of our simulations, we used the same type of turbulent
flow. Further studies could investigate the effects of different
types of flows on cyclic interactions and identify which system
properties are more general and which ones depend on the
details of the turbulence model. In particular, it would be
interesting to consider the dependence of solutions on the
correlation length of the flow, since it would seem reasonable to
expect that the turbulent flow becomes incapable of producing
collective oscillations in relative species abundance when the

correlation length is much smaller than the domain size.
To shed some light on these speculations, we performed a
couple of trial simulations at �f = L/10. There, we were still
able to observe the collective oscillations but their amplitude
for the same choice of Da was somewhat smaller.

Finally, it should also be noted that even though the main
motivation for this work comes from the field of theoretical
population biology, the presented results are also relevant in
other fields where RDA systems of a similar type as the one
studied here can be found. In particular, pattern-forming reac-
tions in fluid flows have also been realized in experiments with
the chemical Belousov-Zhabotinsky reaction [32,49,50]. See
Ref. [76] for information regarding the project’s source code.
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