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Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration
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A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of
an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure
on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow
a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The
model reproduces the behavior of the instability observed in former numerical simulation results and provides a
relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
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I. INTRODUCTION

There is a growing interest in the hydrodynamic instabilities
taking place in accelerated solids, namely Rayleigh-Taylor
instability (RTI) and Ritchmyer-Meshkov instability (RMI),
mainly because of the central role played by these insta-
bilities in many experiments in high-energy-density physics
(HEDP) [1–38]. In fact, hydrodynamic instabilities are of
importance for determining the performance of many current
and planned experiments directed to the study of equation of
state and mechanical and thermophysical properties of mat-
ter [1–18], as well as experiments related to the examination
of new approaches to inertial confinement fusion [19–23].
In particular, on the basis of the pioneering work by Barnes
et al. [14,15] with solid plates accelerated by means of high
explosives, intense research has been recently undertaken cen-
tered in the use of RTI for the evaluation of the yield strength
of solids at high strain and high-strain-rate conditions [2–7].
More recently, also RMI has been considered for similar
purposes [29,30,39–42].

Most of the theoretical work on hydrodynamic instabilities
in accelerated media consider that the acceleration is driven
by a constant pressure so that the early acceleration phase,
taking place during the time when the shock wave is running
into the plate, is dominated by the evolution of RMI. In such a
case, RTI does not start until the rarefaction wave reflected at
the rear face of the plate arrives back to the front face. In that
moment the plate is accelerated as a whole and the instability
becomes dominated by the RTI seeded by the perturbations
left by the RMI evolving during the shock transit time in the
previous early stage of the plate acceleration.

However, in most of the situations of interest in HEDP
experiments the solid plate is driven by a highly transient
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pressure pulse that varies considerably during the shock transit
time and causes the acceleration of the shocked material.
Therefore, during this early stage the plate is also susceptible
to being affected by RTI in addition to RMI. Such a situation
has not been frequently considered in the literature. In fact, it
has been investigated by Clarisse et al. [43] for the case of an
ablation front by using a self-similar solution for describing
the ideal gas mean flow profiles in order to take into account
the unsteadiness and compressibility effects on the instability
evolution.

For the case of accelerated solids, Swegle and Robin-
son [44] have performed two-dimensional numerical simu-
lations for the case of a solid occupying a half-space, and with
a sinusoidal perturbation imposed on the interface. In this work
a shock wave is driven by a time-dependent pressure consisting
of a linear ramp to the maximum pressure over the rise time of
the pressure pulse, after which the pressure remains constant
or decreases linearly to zero. In these simulations the effect of
the pressure time dependence is studied by varying the time
duration and the slope of the pressure ramp. The results were
interpreted in terms of an acceleration instability, which was
considered to produce phenomena that were without precedent
in classical RTI. It was concluded that although the solid
interface was accelerated “in a global sense,” there was “no
quantity which is strictly analogous to the acceleration of
gravity g in RTI.”

Part of the difficulty in assimilating the simulation results
obtained in Ref. [44] to a known instability may have been
due to the fact that at this early stage of the acceleration
process both RMI and RTI are contributing to the interface
instability. In fact, it should be expected that the interface
instability will be controlled by RMI until the shock wave has
separated from the interface a distance of the order of k−1

(k = 2π/λ, where λ is the perturbation wavelength) [45–50].
The latter is true even for the weakest shock waves, since RMI
develops for any intensity of the shock including the case of an
upstream Mach number equal to unity [45–47,50]. Therefore,
even in the so-called shockless driven experiments in which the
plate is quasi-isentropically accelerated by a tailored pressure
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pulse [3,4,7,14,15], a weak shock may be launched at the initial
stage which would lead to the growth of interface perturbations
as a consequence of the RMI. This would happen provided that
the process of shock formation, as a consequence of the overlap
of the weak compression waves launched from the interface,
takes place within a distance shorter that k−1 [49].

After the shock wave has separated from the interface
a distance of the order of k−1, the RTI would dominate
the perturbation growth caused by the interface acceleration
produced by the time-varying pressure that drives the shock.

In this work we present an analytical model for the early
stage of the RTI evolution occurring at the solid interface
during the transit time of the shock wave inside the solid plate.
This stage will be eventually preceded by a previous phase of
RMI growth that would settle new initial conditions.

II. FORMULATION OF THE PROBLEM AND MODEL

A. Mean flow model

We consider an elastic-plastic (EP) solid of density ρ0

occupying the half-space y < 0 as in Fig. 1 (actually a plate
thick enough that, during the time span we are studying the
problem, the shock wave has not yet achieved the rear face).
On the free surface (y = 0), a time-dependent pressure pp(t)
is applied for times t � 0. As a consequence, a shock wave is
launched into the solid and it moves away from the interface
with a velocity Us − u (where Us and u are, respectively, the
velocities of the shock and of the particles behind it in the
laboratory reference frame). From the conservation laws, we
have

ρs

ρ0
= Us

Us − u
, (1)

ps = ρ0Usu, (2)

where ρs and ps are, respectively, the density and the pressure
immediately behind the shock, and we have neglected the
pressure ahead of it. In addition, we assume that the wave
velocity Us and the particle velocity u are related by a linear
relationship [51],

Us = c0 + su, (3)

where c0 and s are known material constants. Since in the
present situation we are considering a shock propagating
in a solid media, it must be relatively weak in order to
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FIG. 1. Diagram of the unperturbed interface (y = 0) and of the
shock wave (y = −ys) in the interface reference frame.

avoid melting, so that we typically have σ = 1 − ρ/ρ0 � 1.
Furthermore, we assume isentropic flow behind the shock and
a low enough compressibility in order to consider that in the
momentum conservation equation the particle velocity u can
be taken to be practically uniform. Actually, u will be rather
uniform except for a highly compressible medium behind the
shock, as can be noticed from the mass conservation equation:

d

dt
(ln ρ) = −∂u

∂y
≈ 0. (4)

Thus from Eqs. (2) and (3) we get the following relationship
between the particle velocity u and the pressure ps(t) just
behind the shock:

u(t)

c0
= 1

2s

(√
1 + 4sps(t)

ρ0c
2
0

− 1

)
. (5)

We can relate the pressure ps(t) with the driving pressure pp(t)
applied on the interface by using the momentum conservation
equation:

ρ
du

dt
= ρ

(
∂u

∂t
+ u

∂u

∂y

)
= −∂p

∂y
, (6)

where the convective derivative as well as the mechanical
forces (described by the stress tensor) are negligible for
the one-dimensional flow with ∂u/∂y ≈ 0 behind the shock.
Therefore, in the interface reference frame, Eq. (6) becomes
the hydrostatic equation and upon integration it yields

pp = ps + ρgys, g = du

dt
, (7)

where ps(t) = ρ0u(c0 + su), and y = ys(t) is the instanta-
neous position of the wave in the interface reference frame:

−ys =
∫ t

0
(Us − u)dt =

∫ t

0
[c0 + (s − 1)u]dt. (8)

For a given driving pressure pp(t), Eqs. (3), (7), and (8)
lead to a nonlinear second-order differential equation for ys(t)
which, together with Eqs. (1) to (3) yields u(t), Us(t), and ps(t).
However, without losing generality in our conclusions and
in order to achieve considerable simplicity, we can impose a
pressure time dependence ps(t) behind the shock and calculate
the pressure pp(t) on the interface necessary to produce it from
Eq. (7). Thus, from Eq. (5) we can get the acceleration of the
medium behind the shock:

g(t) = du

dt
= 1

ρ0c0

1√
1 + 4sps

ρ0c
2
0

dps

dt
= const. (9)

A particularly simple case corresponds to the one with a
constant acceleration g = g0, and we will consider it in the
following analysis of the plate instability. Therefore, from
Eq. (2) we easily obtain the time dependence of the pressure
just behind the shock wave:

ps(t) = ρ0g0t(c0 + sg0t). (10)

Actually, for the purposes of the present work, the previous
equation is all what we need to study in the next section the
instability problem. However, Eqs. (1), (7), and (8) allow for
obtaining the time dependence pp(t) on the interface necessary
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to drive the constant acceleration flow behind the shock. In fact,
from Eq. (8) with u = g0t , we get

ys = c0t + s − 1

2
g0t

2. (11)

Taking into account mass conservation, it is ρ dy = ρ(Us −
u)dt = ρ0Usdt , and pp(t) results to be

pp(t) = 2ρ0c0g0t

(
1 + 3sg0

4c0
t

)
. (12)

Different pressure histories on the interface can be obtained by
following the same procedure for different assumptions of the
time dependence of u(t). But, for the purpose of the present
study, the previous picture is very suitable. The only condition
is to keep isentropic the flow behind the shock for which, after
the shock formation, the characteristic time td = pp/(dpp/dt)
of variation of the driving pressure pulse on the piston must
be larger or of the order of the sound waves’ transit time tT
between the piston and the shock (td � tT ). In this manner, the
sequentially launched compression waves from the piston will
not overlap, giving place to a new shock behind the first one,
and they will just contribute to the intensity enhancement of
a single shock wave. For the case of a power law pp(t) ∼ tn,
this condition is fulfilled provided that n is not much larger
than unity. The particular case n = 0 (pp = constant) was
considered in Ref. [29] and leads to uniform pressure and
density profiles behind the shock. In the opposite case, when
td � tT occurs, new shocks are formed and the hypothesis of
isentropic flow behind the shock breaks.

In the present case, the previous isentropic flow assumption
together with the flat velocity profile approximation in the
momentum conservation equation lead to quasihydrostatic
profiles between the shock and the piston. The details of
such profiles, depending on the equation of state of the solid
medium, are not necessary for the present purposes and will
be analyzed elsewhere.

B. Instability model

1. Initial phase and RMI

We consider now that the solid free surface has a small
sinusoidal corrugation of amplitude ξi and wavelength λ which
are taken in such a manner that they satisfy the condition
kξi � 1. At the time t = 0 a time-dependent pressure pp(t)
is applied at the interface solid-vacuum (y = 0) that drives a
corrugated shock moving with a velocity Us(t) into the solid
material. If the shock is formed at a distance from the interface
larger than k−1, this region will be isentropically accelerated
and RTI will affect the interface immediately from t = 0, with
no influence of RMI.

Instead, when the shock is formed within a distance much
shorter than k−1, as in Ref. [29] were a box pressure pulse
was applied on the piston surface, then we consider that
RMI develops and this corrugated shock produces pressure
modulations in the shocked region that impart an acceleration
to the ripple modulation of the interface during the time
interval 0 � t � t0 in which the shock is within a distance
ys � k−1 [49].

We will not describe the details of the interaction between
the shock and the interface but, instead, we assume that

this interaction ends at t = t0 leaving a rotational velocity
field behind the shock. As in Refs. [29,30,32,33] we will
approximately represent such a velocity field for t > t0 (ys >

k−1) in the following form:

vx = ζ̇ (t)eqxy cos kx, η̇ = vy = ξ̇ (t)eqy sin kx, (13)

where η is the vertical component of the medium perturbation,
ξ and ξ̇ are, respectively, the instantaneous normal amplitude
and velocity of the interface, and ζ (t) and ζ̇ (t) are, respectively,
the instantaneous tangential amplitude and velocity of the
interface.

In addition, q−1 and q−1
x are the characteristic lengths with

which the surface modes decay from the interface. As in
Ref. [29] we impose them into the model equations in the same
manner as has been also done in the past in similar models for
RTI and RMI [26–37]. We take q−1 = αk−1 and q−1

x = αxk
−1,

where α is a numerical factor that expresses our ignorance
about the exact velocity field and that, according to the
numerical simulations results of Refs. [28–30], can be taken
as α ≈ 1.5. Besides, the incompressibility of the perturbations
requires that qξ̇ = kζ̇ at y = 0, and the parameter αx = k/qx

will be determined by the self-consistency of the equation of
motion for the perturbations [29,30].

When the shock is formed at distance larger than k−1

(t > t0) from the interface, the flow in this region is taken
as isentropic and the velocity field in Eqs. (13) reduces to the
irrotational case (α = αx = 1), and we consider that RMI is
not present, so that RTI develops from the very beginning.

Besides, due to the low compressibility of the shocked
material we can neglect the change in the corrugation ampli-
tude for t � t0 and consider that the main effects of this RMI
phase are to create the velocity field given by Eq. (13) and to
impart a normal velocity ξ̇0 = ξ̇ (t0) to the interface corrugation
amplitude. Therefore, the effects of the mechanical properties
of the material can be neglected in this phase and we can
assume that ξ̇0 is given by the classical expression for the
asymptotic velocity [50,52–54],

ξ̇0 ≈ kξ0u(t0), (14)

where, according to the previous discussion, we have taken
ξ0 = ξ (t0) ≈ ξi , and t0 is given by the condition that ys(t0) =
k−1. For the case of a constant acceleration g0 of the interface,
we have

ξ̇0 ≈ kξ0g0t0, (15)

t0 = c0

(s − 1)g0

[√
1 + 2(s − 1)g0

kc2
0

− 1

]
. (16)

2. RTI phase

The force driving the RMI, when it is present, lasts only for
the relatively short period of time t0 during which the initial
conditions for RTI, such as those given by Eqs. (13) to (16), are
settled. The linear evolution of the perturbation amplitude in
this latter phase can be described by the following equation of
motion for the perturbation amplitude [26–33,35–37,55–60]:

ρ

q
η̈ = ρgη − Syy, (17)
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where g = du/dt and it will be taken as a constant g = g0.
Syy is the normal component of the perturbation of the
deviatoric part Sij of the stress tensor σij = −pδij + Sij

(p is the thermodynamic pressure and δij is Kronecker delta).
We are using the usual tensor notation where i and j denote the
coordinate directions x,y,z). In addition, ρ is the solid density
in the region close to the interface, and’ because of the low
compressibility it will be taken as ρ ≈ ρ0.

Equation (17) represents the momentum conservation
equation for the motion due to the perturbation of the interface,
with ρ/q being the mass per unitary surface of the medium
that is involved in the motion, and η̈ being its acceleration, so
that the term on the left-hand side is change of momentum
caused by the forces acting on the medium. These forces
are given by the terms on the right-hand side of Eq. (17),
where the first term (ρgη) is the buoyancy force arising
when the interface departs from the equilibrium position and
a hydrostatic pressure difference is created on the interface.
This is the force that drives the instability and defines the
RTI. The second term on the right-hand side of Eq. (17),
Syy , represents, in general, any other force of either external
(like magnetic fields, coriolis effects, etc.) or internal origin
(mechanical forces including viscous effects, surface tension,
elasticity, etc.). In the framework of RTI, these forces are, by
definition, stabilizing forces because the instability is defined
by the driving force that causes it.

In the present case, Syy represents the mechanical forces due
to the EP material properties of the solid, and it was obtained in
Ref. [29] by assuming an EP solid with constitutive properties
described by the Prandtl-Reuss model with the von Mises yield
criterion [29,30,32,33]:

Syy =
{

2kGMyy(η − η0) if η � ηp,√
2
3

Myy

|M| Y if η � ηp,
(18)

η = ξ (t)eqy sin kx, (19)

where ξ (t) is the instantaneous perturbation amplitude of the
interface, and η0 and ηp correspond to the initial and to the EP
transition amplitudes, respectively. In addition, G and Y are,
respectively, the solid shear modulus and the yield strength,
and we have used the following definitions:

Mij = Dij

kξ̇
, Dij = 1

2

(
∂vi

∂xj

+ ∂vj

∂xi

)
, (20)

|M|2 = M2
xx + M2

yy + 2M2
xy. (21)

Therefore, from Eq. (13), we get

Myy = 1

α
eqy sin kx, |M| =

√
2

α
eqy, (22)

where we have already considered that the self-consistence
of Eq. (17) requires that |M| must be independent of the
coordinate x and, therefore, it must be [29]

2

α2
= 1

2

(
1 + 1

ααx

)2

. (23)

Then, the normal component Syy of the deviatoric part of the
stress tensor reads

Syy =
{

2
α
kGeqy(ξ − ξ0) sin kx if ξ � ξp,

1√
3
Y sin kx if ξ � ξp.

(24)

Introducing the previous expression into Eq. (17), the equation
of motion for the perturbation turns out to be

ξ̈ = k

α
gξ −

⎧⎨
⎩

2k2G
α2ρ

(ξ − ξ0) if ξ � ξp,

kY√
3αρ

eq|yp | if ξ � ξp,
(25)

where, as in Refs. [33,35–37], we have considered that the
onset of plastic flow cannot be felt on the instability until it
has affected the entire region with thickness |yp| ∼ k−1. In
order to agree with the results of the numerical simulations of
Refs. [29,33] for the cases of a constant driving pressure and of
an irrotational velocity field, respectively, we will take eq|yp | ≈
3α, with α ≈ 1.5 when the shock is formed within distance
shorter than k−1 from the interface, and α ≈ 1 otherwise. Thus,
the perturbation equation of motion reads

ξ̈ = k

α
gξ −

⎧⎨
⎩

2k2G
α2ρ

(ξ − ξ0) if ξ � ξp,

√
3kY
ρ

if ξ � ξp.
(26)

This equation must be solved for t � t0 with the following
initial conditions:

ξ (t0) ≈ ξ0, ξ̇ (t0) ≈ ξ̇0. (27)

At this point it is convenient to introduce the following
dimensionless magnitudes:

z = ξ − ξ0

ξ0
, τ = (t − t0)

√
kg0

α
, F = g(t)

g0
. (28)

Thus, Eq. (26) yields

z̈ = F (z + 1) −
{

z/λ̂ if z � zp,

1/ξ̂ if z � zp,
(29)

where

λ̂ = αρg0λ

4πG
, ξ̂ = ρg0ξ0

α
√

3Y
, zp = λ̂

ξ̂
, (30)

and the initial conditions read

z(0) ≈ 0, ż(0) ≈ ż0. (31)

For the case of a constant acceleration g = g0 (F = 1), we get
from Eqs. (15) and (16)

ż0 =
√

α

s − 1

(√
μ0

λ̂
+ 2 −

√
μ0

λ̂

)
, μ0 = αρ0c

2
0

2(s − 1)G
.

(32)

In Eq. (30) we have introduced the factor F = g/g0 to take into
account the situations in which the driving pressure ramp pp(t)
[Eqs. (10) to (12)] switches to a constant pressure (F = 0) or
decreases producing a negative constant acceleration (F < 0)
for times t � tR .
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C. Model results for F = 1 for t � tR

For this case, Eq. (29) becomes identical to the one used
in Ref. [33] for describing RTI in EP solid plates accelerated
as a whole at times longer enough that some few sound waves
transit times between the shock and the interface, except for
the different definitions of λ̂ and ξ̂ . In fact, in the present case,
these definitions contain the constant parameter α accounting
for the rotationality of the perturbed velocity field generated
in the previous RMI phase. We proceed to solve this equation
as in Ref. [36], and for this end we introduce the following
definitions:

x1 = 1 − z, x2 = z − X, (33)

where

 = λ̂−1 − 1, X = ξ̂−1 − 1. (34)

Therefore, Eq. (29) is re-written as follows:

ẍ1 = −x1 if z � zp, (35)

ẍ2 = x2 if z � zp; (36)

and the initial conditions read:

x1(0) ≈ 1, ẋ1(0) ≈ −ż0, (37)

x1(τp) = x2(τp) ≡ xp, (38)

ẋ1(τp) ≡ ẋ1p, (39)

where τp is the time when the EP transition takes place.
Equations (35) to (39) will be analytically solved to obtain

the complete evolution of the perturbation amplitude in the
linear regime. However, we will first find the stability region
in the space (λ̂,ξ̂ ) with ż0 as a parameter in order to analyze the
effects introduced by the early phase dominated by the RMI.

1. Stability boundary

As discussed in Refs. [33,35–37], the boundary for marginal
stability is given by the condition that when at a certain time
τ th
m it is ż(τ th

m ) = 0, it must also be z̈(τ th
m ) = 0. The index

th denotes that we are considering the solutions of Eq. (29)
that lie on the instability threshold, and τ th

m is the time when
such solutions reach the maximum perturbation amplitude.
Equation (29) shows that the conditions for marginal stability
are never satisfied for λ̂ > 1 (z � 0) and that stability is only
possible for λ̂ � 1. In order to find the stability boundary we
need to integrate Eqs. (35) and (36). For the branch z � zp and
with the initial conditions given by Eq. (37), we get

ẋ1 = −
√


(
1 − x2

1

) + 2ż2
0 = −żp. (40)

In a similar manner, upon integration of Eq. (36) with the
initial conditions given by Eq. (38), we get

ẋ2
2 = ẋ2

2p + x2
2 − x2

p. (41)

Since on the instability threshold ẋ2(τ th
m ) = ż(τ th

m ) = 0 and
ẍ2(τ th

m ) = z̈(τ th
m ) = 0, then Eq. (36) shows that we must also

have x2(τ th
m ) = 0. Therefore, Eq. (41) yields

ẋth
2p = żth

p = −xth
p , (42)

and, replacing it into Eq. (40) evaluated at τ = τ th
p , we get

xth
p = −

√
λ̂
(
1 + ż2

0

)
; (43)

and, taking into account that xth
p = 1 − (1 − λ̂)/ξ̂th, we obtain

the following expression for the stability boundary:

ξ̂th = 1 − λ̂

1 +
√

λ̂ + (1 − λ̂)ż2
0

, (44)

which for ż0 = 0 reduces to the expression obtained in
Ref. [33].

In a similar manner we can find the boundary ξ̂ep for the EP
transition by considering that it occurs when the maximum
amplitude ze

m of the pure elastic oscillations (for z � zp)
becomes equal to zp:

ξ̂ep = 1 − λ̂

1 +
√

1 + 1−λ̂

λ̂
ż2

0

. (45)

We have represented ξ̂th and ξ̂ep in Fig. 2 for different
values of the parameter μ0 defined by Eq. (32) that accounts
for the initial velocity ż0. As we can see, the effect of the
initial velocity is to reduce both the region of stability and the
region below the EP boundary. However, for typical cases it is
μ0 > 2. For instance it is μ0 = 6.2 for Al and W, and therefore
the results do not differ considerably from the case for ż0 = 0.
However, we should remember that the present definitions of
the parameters λ̂ and ξ̂ differ from the ones corresponding to
the irrotational case of Ref. [33] in the factor α ≈ 1.5. Thus, in
the present case the maximum stable wavelength is reduced by
a such a factor α, while the maximum stable initial amplitude
(for λ̂ = 0) is increased by the same factor. It seems that the
main effect of initial RMI phase on the stability boundary
comes from the modification of the perturbed velocity field
that is found when the RTI develops.

2. Evolution of the perturbation amplitude

From Fig. 2(A) we can see that, as in the case of pure RTI
of Ref. [33], here we also have two kinds of stable solutions
occurring both for λ̂ < 1: one for 0 � ξ̂ � ξ̂ep that corresponds
to pure elastic solutions, and the other one for ξ̂ep � ξ̂ � ξ̂th

which corresponds to solutions that, after undergoing the
transition to the plastic regime, achieve a maximum and then
go back to an oscillatory elastic regime.

033007-5



A. R. PIRIZ, Y. B. SUN, AND N. A. TAHIR PHYSICAL REVIEW E 91, 033007 (2015)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

th

a)b)
c)

a) µ
0
 >>1 (zero velocity)

b) µ
0
 = 1

c) µ
0
 = 0.1

d) µ
0
 = 0 (maximum velocity)

d)

µ0 = c0
2

2(s 1)G

(A)
0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

a)

b)

c)

d)

a) µ
0
 >>1 (zero velocity)

b) µ
0
 = 1

c) µ
0
 = 0.1

d) µ
0
 = 0 (maximum velocity)

ep

µ0 = c0
2

2(s 1)G

(B)

FIG. 2. Dimensionless amplitude ξ̂ as a function of the dimensionless perturbation wavelength λ̂ for (A) the stability boundary and (B) the
EP transition boundary ξ̂ep , for different values of the parameter μ0 determining the initial perturbation velocity.

These stable solutions are given by the following expressions:

z(τ ) =

⎧⎪⎨
⎪⎩

1


[1 − cos(
√

 τ ) + ż0

√
 sin(

√
 τ )], τ � τp,

X + 1
2 [(xp + ẋ2p)e(τ−τp) + (xp − ẋ2p)e−(τ−τp)], τp � τ � τm,

zm − X−zm


{1 − cos[

√
(τ − τm)]}, τ � τm,

(46)

where x1p = 1 − zp, and ẋ2p = żp = −ẋ1p/ is given by Eq. (40) evaluated at τ = τp:

ẋ2p =
√

ż2
0 + 1 − (1 − zp)2


, (47)

and τp is given by the following implicit equation:

zp = 1 − cos(
√

 τp) + ż0

√
 sin(

√
 τp). (48)

In addition, we have

τm = τp + 1

2
ln

xp − ẋ2p

xp + ẋ2p

, zm = X +
√

ẋ2
2p − x2

p. (49)

In a similar manner we find that there are two kind of unstable solutions occurring: one for λ̂ < 1 and ξ̂ � ξ̂th, and the other
one occurring for λ̂ > 1.

For λ̂ < 1 it reads

z(τ ) =
{

1


[1 − cos(
√

 τ ) + ż0

√
 sin(

√
 τ )], τ � τp

X + 1
2 [(xp + ẋ2p)e(τ−τp) + (xp − ẋ2p)e−(τ−τp)], τ � τp

. (50)

z(τ ) =
{

1


[1 − cosh(
√− τ ) − ż0

√− sinh(
√− τ )], τ � τp

X + 1
2 [(xp + ẋ2p)e(τ−τp) + (xp − ẋ2p)e−(τ−τp)], τ � τp

. (51)

Except for the initial velocity ż0 at t = t0 (τ = 0), the solutions presented in this section are the same as the ones obtained in
Ref. [33]. We have represented four typical cases in Fig. 3, each one corresponding to a kind of stable or unstable solution. Here,
in order to highlight the effect of changing the acceleration g0, in Fig. 3 we have used the transformed time τ ′ = τ/

√
λ̂ which is

independent of g0. Thus, λ̂ can be taken here as a dimensionless gravity for a given perturbation wavelength λ.

D. Pressure ramp with pp(t) = const for t � tR

Here we consider a driving pressure pp(t) that generates a
constant acceleration g0 during the time interval 0 � t � tR
and then the acceleration becomes g(t � tR) = 0 (F = 0).
This requires that the pressure behind the shock given by
Eq. (10) stops growing at t = tR and becomes a constant

p0 = ps(tR). Then, we can obtain the required driving pressure
on the interface as in Sec. II A, by assuming ∂u/∂y ≈ 0
between the shock and the interface so that pp(t) is given
by Eq. (12) for t � tR and pp(t � tR) = p0, thus presenting
a discontinuity at t = tR that reflects the discontinuity of the
acceleration such as that shown in Fig. 4.
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FIG. 3. Perturbation amplitude as a function of time for different
values of the dimensionless parameters ξ̂ and λ̂.

We rewrite Eqs. (10) and (12) as follows:

πs = T + T 2 for T � TR, (52)

πp = 2T + 3
2T 2 for T � TR, (53)

where we have used the following definitions:

π = sp

ρ0c
2
0

, T = sg0t

c0
. (54)
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FIG. 4. Time evolutions of the pressures at the interface (πp),
and at the shock (πs), and of the interface acceleration (F ). F = 0
for t > tR .

By calling π0 = πs(TR) we get

TR = 1
2 (

√
1 + 4π0 − 1). (55)

Figure 4 shows that pp(t) > ps(t) when dpp/dt > 0, as should
be expected from the process of shock formation [61–63].

Here we examine the instability evolution for the most
interesting case, in which the pressure ramp duration is longer
that the time required for the EP transition to take place
(tR > tp). Then, the perturbation evolution for t � tR is given
by Eqs. (46) to (51) in the previous section. However, we need
to contemplate only the unstable solutions, and those stable
ones for which tR � tm. Therefore, for t � tR it is sufficient to
consider Eqs. (50) and (51).

On the other hand, for t � tR the interface acceleration
becomes zero (F = 0) and Eq. (29) must be replaced by

z̈ = −
{

z/λ̂ if z � zp,

1/ξ̂ if z � zp.
(56)

This equation must be solved with the condition at τ = τR

[z(τR) = zR , and ż(τR) = żR] left by the previous phase driven
by the pressure ramp [Eqs. (52) and (53)]:

zR = X + 1
2 [(xp + ẋ2p)e(τR−τp) + (xp − ẋ2p)e−(τR−τp)], (57)

żR = 1
2 [(xp + ẋ2p)e(τR−τp) − (xp − ẋ2p)e−(τR−τp)]. (58)

Since we are assuming that τR � τp, the perturbation is
growing in the plastic regime and it will remain in it until the
maximum amplitude is achieved at the time τm2. Therefore,
the solution of Eq. (56) reads

z(τ ) =
⎧⎨
⎩

zR + żR(τ − τR) − 1
2ξ̂

(τ − τR)2, τR � τ � τm2,

zm2 − zp

[
1 − cos

(
τ−τm2√

λ̂

)]
, τ � τm2,

(59)

where

τm2 = τR + ξ̂ żR, zm2 = zR + 1
2 ξ̂ ż2

R. (60)

In Fig. 5 we have represented the perturbation amplitude
as a function of the dimensionless time τ ′ = τ/

√
λ̂ for two

different cases with the same acceleration time τ ′
R and,

therefore, with the same duration of the driving pressure ramp,
but with different final pressures (different accelerations λ̂),
as shown in the inset of the figure where the pressures ps

behind the shock have been represented. We see that the
maximum amplitude, as well as the time required to achieve
it, increases with the magnitude of the final pressure p0.
This can be better appreciated in Fig. 6 where we have
represented the maximum perturbation amplitude zm2 and
the time τm2 necessary to achieve it as functions of the
dimensionless interface acceleration λ̂ for different durations
of the pressure ramp and different ratios zp between the
perturbation wavelength and initial amplitude. We have used a
fixed value of the material parameter μ0 = 6 which is close to
the value corresponding to Al and W. Both zm2 and τm2 grow
monotonically with the driving gravity g0 (λ̂).

In Fig. 7 we show the time evolution of the perturbation
amplitude for different pressure ramps, so that accelerations
g0 during the time interval 0 � t � tR are also different, but
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FIG. 5. Time evolution of the perturbation amplitude for two
cases with different driving accelerations λ̂ and with the same duration
of the pressure ramp (different final pressures).

in both cases the final pressure is the same (see the inset).
Thus, also the final particle velocity uR = g0tR is the same.
In this case the perturbation amplitude grows more slowly
for the case with the lowest acceleration sustained for a
longer time, but the maximum amplitude becomes larger.
In other words, a shorter ramp leads to a lower maximum
amplitude and, in addition, it takes a shorter time to achieve this
maximum.

The behaviors shown in Figs. 5 to 7 are qualitatively
identical to those observed in the numerical simulations of
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FIG. 7. Time evolution of the perturbation amplitude for two
cases with different driving accelerations λ̂, and different duration
of the pressure ramp, but with the same final pressure.

Ref. [44] for the case of a linear ramp, instead of the
parabolic one used here, which is more suitable for an
analytical treatment. Nevertheless, the tendency described in
Fig. 7 is actually not general, and this can be seen in Fig. 8
representing zm2 and τm2 for uR = const as a function of the
dimensionless driving acceleration λ̂ acting during the ramp
duration (τ ′ � τ ′

R). For λ̂τ ′ = 1.5 [Figs. 8(A) and 8(B)] we can
see that the behavior observed in Fig. 7 only occurs for some
cases with relatively low accelerations (λ̂ < 1). However, by
increasing the final particle velocity uR so that λ̂τ ′ = 3 the
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FIG. 6. (A) Maximum perturbation amplitude zm2 and (B) time τm2 to achieve the maximum as a function of the interface acceleration λ̂

for two different durations of the pressure ramp and for different ratios zp = λ̂/ξ̂ .
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FIG. 8. Maximum perturbation amplitude zm2 [(A) and (C)] and time τm2 to achieve the maximum [(B) and (D)] as a function of the
interface acceleration λ̂ for two different velocities at the end of the pressure ramp (λ̂τ ′ = 1.5 and 3), and for different ratios zp = λ̂/ξ̂ .

behavior shown in Fig. 7 is more pronounced, indicating that
the numerical simulation results obtained in Ref. [44] may
not be general but are at least quite typical. For a quantitative
comparison with the results of Ref. [44] it would have been
necessary here to impose a linear time dependence of the
driving pressure pp(t) on the interface, such as what was
considered in those numerical simulations. However, as we
have already mentioned, it would not have been possible
to obtain analytical solutions from the present model, thus
obscuring the physical interpretations. On the other hand,
detailed comparisons are impossible because, unfortunately,
in that paper the specific perturbation wavelengths used in the
corresponding calculations are missing, making it impossible
to attempt a quantitative comparison.

Anyway, we can at least to compare the orders of magnitude
that results from the present model with those of the numerical
simulations of Ref. [44]. We show in Table I the values of

the physical quantities for an Al sample (G = 28 GPa; Y =
0.3 GPa, ρ0 = 2700 kg/m3, c0 = 5380 m/s, and s = 1.337),
for the two cases represented in Fig. 5. We have chosen a
perturbation wavelength λ = 8.89 mm and an initial pertur-
bation amplitude ξ0 = 4 μm, which correspond to at least
one of the cases reported in Ref. [44]. We have assumed

TABLE I. Physical parameters corresponding to the two cases
shown in Fig. 5 for an Al solid medium. The perturbation wavelength
and initial amplitude are τ ′

R = 1.5, with λ = 8.89 mm, and ξ0 = 4

μm. (t0 = 0, tR = 0.466 μs,
√

λ̂/kg0 = 0.311 μs.)

λ̂ ξmax (μm) g0 (m/s2) p0 (GPa) ppR (GPa)

(a) 0.45 30 0.66 × 1010 78 140
(b) 0.90 130 1.32 × 1010 223 380
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FIG. 9. Time evolution of the perturbation amplitude for two
cases with the same driving acceleration λ̂ and with the different
durations of the pressure ramp [curves (a) and (c)], and for a case
with the same final pressure as that in curve (b) but with a different
pressure ramp.

that the presence of RMI in the initial phase is negligible
and we have taken α = 1 (irrotational velocity field). The
resulting pressure pulse on the interface grows parabolically
from t = 0 until t = 0.466 μs, achieving a maximum value
pp(tR) = ppR = 140 GPa for the case (a) with λ̂ = 0.45, and
ppR = pp(tR) = 380 GPa for the case (b) with λ̂ = 0.90. For
t � 0.466 μs the pressures on the interface and behind the
shock both become constant and equal to p0 = 78 GPa and
p0 = 223 GPa, respectively. The perturbation grows up to
values ξmax = 30 μm (at tmax = 3.4 μs) and ξmax = 130 μm
(at tmax = 5.9 μs), respectively.

These values are of the same order of magnitude as the ones
presented in Fig. 29 of Ref.[44]. It should be noticed, however,
that in case (b) with λ̂ = 0.90 the maximum pressures on the
interface and behind the shock could be above the melting
pressure for Al, which has been reported in Ref. [64] to be
around 120–160 GPa for a single shock. However, this value
considerably increases for a quasi-isentropic compression that
keeps the temperature below the melt value given by the
Lindemann melt law and depends on the pressure history.
Nevertheless, we ignore whether melting effects were included
or not in the numerical simulations of Ref. [44].

For completeness we have also represented in Fig. 9 the
time evolution of the perturbations for two cases with the same
pressure ramp (same initial accelerations) but with different
ramp durations tR [curves (a) and (b) in Fig. 9]. As it could
be expected from the previous results, the longest ramp leads
to a considerably larger maximum amplitude after having the
same initial growth rate. For comparison, curve (c) shows a
case with the same final pressure as in curve (b), such as that
considered in Fig. 7.

E. Pressure ramp with d pp(t)/dt < 0 for t � tR

It is relevant to study here the case in which the driving
pressure decreases after the end of the ramp at t = tR in
order to get insight into the physical interpretation of the
numerical simulations results of Ref. [44]. For this, as in the
previous section, we consider an idealized acceleration gravity
g(t) consisting in a piecewise function with g(t � tR) = g0,
g(tR � t � tF ) = −F0g0. Then, the pressures ps(t) behind the
shock and pp(t) at the interface for t � tR are still given,
respectively, by Eqs. (52) and (53). Instead, for tR � t � tF
we find the resulting pressure functions as in Sec. II A, by
replacing g0 in Eq. (9) by −F0g0:

πs = TR + F0(T − TR) + [TR + F0(T − TR)]2, (61)

πp = πs − F0
(
TR + 1

2T 2
R

)
−F0(1 + TR)(T − TR) + 1

2F 2
0 (T − TR)2. (62)

For t = tF we get pp(tF ) = 0, and this happens for a finite
value psF = ps(tF ) of the pressure behind the shock. Once the
driven pressure becomes specified [pp(t � tF ) = 0], it is not
possible any longer to prescribe the acceleration and to impose
a constant value because it becomes determined by the process
of shock attenuation studied in Refs. [61–63]. For the present
purpose of performing the instability analysis, it is sufficient to
consider the instability evolution for t � tF , as was done in the
numerical simulations of Ref. [44]. We will discuss elsewhere
the problem of the decaying of the shock wave for t � tF by
using the model of Sec. II A.

A typical case has been represented in Fig. 10 for F0 = 1/5,
in which we have truncated the calculation at t = tF . As before,
the discontinuity of pp at t = tR reflects the corresponding
discontinuity of the assumed piecewise acceleration function.
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FIG. 10. Time evolutions of the pressures at the interface (πp)
and at the shock (πs), and of the interface acceleration (F ). F < 0
for tR < t < tF (F0 = 0.2).
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Therefore, at the interval tR � t � tF , the perturbation amplitude evolution is obtained by solving Eq. (29) with F = −F0:

z(τ ) =
⎧⎨
⎩

(
zR + 1 + 1

ξ̂F0

)
cos[

√
F0 (τ − τR)] + żR√

F0
sin[

√
F0 (τ − τR)] − 1 − 1

ξ̂F0
, τR � τ � τm2,

zm2 − zp+λ̂F0(zm2+1)
1+λ̂F0

{
1 − cos

[√
F0 + 1

λ̂
(τ − τm2)

]}
, τm2 � τ � τF ,

(63)

where

τm2 = τR + 1√
F0

tan−1

[ √
F0żR

F0(zR + 1) + ξ̂−1

]
. (64)

zm2 = 1

F0

⎧⎨
⎩

√[
F0(zR + 1) + 1

ξ̂

]2

+ F0ż
2
R − 1

ξ̂

⎫⎬
⎭ . (65)

In Fig. 11 we have represented the evolution of the
perturbation amplitude for the cases in which the driving
pressure remains constant and when it decreases for t � tR .
When the pressure decreases we can observe a strong reduction
of the amplitude during the time tF − tR in which the pressure
decreases to zero. This is again in qualitative agreement
with the behavior obtained from numerical simulations in
Ref. [44]. This amplitude reduction is a consequence of the
large amplitude of the elastic oscillations taking place for
τm2 � τ � τF [see the second branch of Eq. (63)] and of
the relatively short decreasing time tF − tR of the pressure,
in comparison with the period of such oscillations. In fact,
the perturbation has no time to grow again before the driving
pressure goes to zero at t = tF . Nevertheless, the behavior
observed in Fig. 11 depends on the particular choice of the
parameters λ̂, ξ̂ , and F0.
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FIG. 11. Time evolution of the perturbation amplitude for two
cases with the same driving acceleration λ̂ for τ � τR and with the
different evolutions for τ � τR: constant pressure [curve (a)], and
decreasing pressure [curve (b)]. F0 = 0.35, λ̂ = 0.90, and ξ̂ = 1.06.

In fact, the situation is different in the case shown in
Fig. 12 for the same pressure pulses but for a much smaller
λ̂ that results in a higher frequency of the elastic oscillations.
As a result, the amplitudes of the elastic oscillations during
the interval τm2 � τ � τF are very similar for both pressure
pulses, with constant and with decreasing pressure for t � tR .
The ratio of oscillation amplitudes Aconst/Aneg in the elastic
regime (t � tm2) for the cases of constant and decreasing
pressures for t � tR , can be obtained from the second branches
of Eqs. (59) and (63),

Aconst

Aneg
= 1 + λ̂F0(zm2 + 1)/zp

1 + λ̂F0
, (66)

and the ratio of oscillation frequencies ωconst/ωneg are

ωconst

ωneg
=

√
1 + λ̂F0. (67)

Then, when λ̂F0 � 1 both cases becomes very similar, as
shown in Fig. 12.

III. CONCLUDING REMARKS

We have presented a model for the RTI occurring at the early
stage of acceleration of a solid plate, during the time in which
a shock wave driven by a time-varying driving pressure is still
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FIG. 12. Time evolution of the perturbation amplitude for two
cases with the same driving acceleration λ̂ for τ � τR and with the
different evolutions for τ � τR: constant pressure [curve (a)], and
decreasing pressure [curve (b)]. F0 = 0.35, λ̂ = 0.09, and ξ̂ = 0.65.
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running into the plate. This stage may eventually starts after a
short initial phase dominated by the RMI that is considered to
finalize when the shock has moved away a distance equal to
k−1 from the interface, provided that the shock has had time
to be formed within such a distance.

In order to keep the model analytically tractable we have
assumed a piecewise function for the interface acceleration
consisting of constant steps, and we have determined the
pressures behind the shock and on the interface necessaries
to generate such accelerations by means of a relatively
simple physical model. In particular, we have considered three
different cases resembling the situations studied in Ref. [44] by
means of numerical simulation calculations in order to provide
a physical interpretation of such results which were originally
interpreted in terms of a new acceleration instability distinct
of the classical RTI. Namely, we have studied the cases of
a positive acceleration, a positive acceleration followed by no
acceleration, and a positive acceleration followed by a negative
one.

We have shown that indeed there does exist a quantity
like the acceleration of gravity in the interface reference
frame associated with the time variation of the pressure
behind the shock. In fact, the practically uniform particle
velocity behind the shock, arising from the not-very-high
compressibility of the shocked material, ensures the existence
of practically hydrostatic conditions for the medium affected
by the interface instability. Therefore, we are in conditions
completely analogous to those giving place to the classical
RTI. Perhaps the main difference with the classical case is
introduced by the rotational velocity field when the initial RMI
stage is present. As a consequence, these initial conditions
lead to a reduction of the stability region in the space (λ,ξ0),

but no fundamental phenomena are introduced that could
justify defining this instability as something different from
RTI, especially because no new driving force needs to be
assumed.

We have considered an elastic-plastic solid that is described
by the Prandtl-Reuss model with von Mises yield criterion, and
it qualitatively reproduces the main features of the instability
evolution observed in the numerical simulation for the three
cases mentioned above. In particular, the effect of the sign
of the pressure gradient is directly related to the sign of the
time derivative of the pressure by means of the hydrostatic
equation, and this derivative determines the acceleration sign in
a natural manner through the momentum conservation across
the shock [Eqs. (6) and (9)]. Therefore, an amplitude reduction
must be expected if a deceleration phase follows the stage of
acceleration (Fig. 11). We find that such an effect will occur
provided that the resulting period of the elastic oscillations is
not too short compared with the duration of this deceleration
phase.

The present model can be easily generalized to include an
arbitrary time dependence of the driving pressure, provided
that the flow behind the shock wave remains isentropic, and/or
for considering the compressibility of the shocked material.
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[34] A. R. Piriz, J. J. López Cela, and N. A. Tahir, Phys. Rev. Lett.

105, 179601 (2010).
[35] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Phys. Rev. E 88, 023026

(2013).
[36] A. R. Piriz, Y. B. Sun, and N. A. Tahir, Phys. Rev. E 89, 063022

(2014).

[37] Y. B. Sun and A. R. Piriz, Phys. Plasmas 21, 072708 (2014).
[38] N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and

A. Shutov, Phys. Rev. E 63, 036407 (2001).
[39] G. Dimonte, G. Terrones, F. J. Cherne, T. C. Germann,

V. Dupont, K. Kadau, W. T. Buttler, D. M. Oro, C. Morris,
and D. L. Preston, Phys. Rev. Lett. 107, 264502 (2011).

[40] W. T. Buttler, D. M. Oro, D. L. Preston, K. O. Mikaelian, F. J.
Cherne, R. S. Hixson, F. G. Mariam, C. Morris1, J. B. Stone,
G. Terrones, and D. Tupa, J. Fluid Mech. 703, 60 (2012).

[41] G. Dimonte, G. Terrones, F. J. Cherne, and P. Ramaprabhu,
J. Appl. Phys. 113, 024905 (2013).

[42] M. B. Prime, D. E. Vaughan, D. L. Preston, W. T. Buttler, S. R.
Chen, D. M. Oro, and C. Pack, J. Phys.: Conf. Ser. 500, 112051
(2014).

[43] J.-M. Clarisse, C. Boudesocque-Dubois, and S. Gauthier,
J. Fluid. Mech. 609, 1 (2008).

[44] J. W. Swegle and A. C. Robinson, J. Appl. Phys. 66, 2838
(1989).

[45] J. G. Wouchuk and K. Nishihara, Phys. Plasmas 3, 3761
(1996).

[46] J. G. Wouchuk and K. Nishihara, Phys. Plasmas 4, 1028
(1997).

[47] A. L. Velikovich, J. P. Dahlburg, A. J. Schmitt, J. H. Gardner,
L. Phillips, F. L. Cochran, Y. K. Chong, G. Dimonte, and
N. Metzler, Phys. Plasmas 7, 1662 (2000).

[48] V. N. Goncharov, O. V. Gotchev, E. Vianello, T. R. Boehly,
J. P. Knauer, P. W. McKenty, P. B. Radha, S. P. Regan, T. C.
Sangster, S. Skupsky, V. A. Smalyuk, R. Betti, R. L. McCrory,
D. D. Meyerhofer, and C. Cherfils-Clerouin, Phys. Plasmas 13,
012702 (2006).

[49] M. Lombardini and D. I. Pullin, Phys. Fluids 21, 044104
(2009).

[50] F. Cobos Campos and J. G. Wouchuk, Phys. Rev. E 90, 053007
(2014).

[51] R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and
W. J. Carter, in High Velocity Impact Phenomena, edited by
R. Kinslow (Academic, New York, 1970).

[52] R. D. Richtmyer, Commun. Pure Appl. Math. 13, 297 (1960).
[53] E. E. Meshkov, Fluid Dyn. 4, 101 (1969).
[54] K. O. Mikaelian, Phys. Rev. A 42, 7211 (1990).
[55] S. A. Piriz, A. R. Piriz, and N. A. Tahir, Phys. Plasmas 16,

082706 (2009).
[56] A. R. Piriz and N. A. Tahir, New J. Phys. 15, 015013 (2013).
[57] A. R. Piriz, L. DiLucchio, and G. Rodriguez-Prieto,

Phys. Plasmas 18, 012702 (2011).
[58] A. R. Piriz, L. Di Lucchio, G. Rodriguez Prieto, and N. A. Tahir,

Phys. Plasmas 18, 082705 (2011).
[59] A. R. Piriz, S. A. Piriz, and N. A. Tahir, Phys. Plasmas 18,

092705 (2011).
[60] G. Rodriguez Prieto, A. R. Piriz, J. J. López Cela, and N. A.
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