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Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore
size of a porous medium. This phenomenon leads to Klinkenberg’s effect where the measured permeability
of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice
Boltzmann model is proposed for flow through porous media that includes Klinkenberg’s effect, which is based
on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002)]. The second-order Beskok and Karniadakis-Civan’s
correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999) and F. Civan, Transp.
Porous Med. 82, 375 (2010)] is adopted to calculate the apparent permeability based on intrinsic permeability
and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate
the model. Simulations performed in a heterogeneous porous medium with components of different porosity and
permeability indicate that Klinkenberg’s effect plays a significant role on fluid flow in low-permeability porous
media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without
fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenberg’s effect
leads to higher global permeability of the shale matrix.
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I. INTRODUCTION

Fluid flow and transport processes in porous media are
relevant in a wide range of fields, including hydrocarbon re-
covery, ground water flow, CO2 sequestration, metal foam, fuel
cell, and other engineering applications [1]. Understanding
the fluid dynamics in porous media and predicting effective
transport properties (permeability, effective diffusivity, etc.) is
of paramount importance for practical applications [2,3].

Fluid flow and transport in porous media are usually
observed physically and treated theoretically at two different
scales: pore scale and representative elementary volume (REV)
scale [4–8]. A REV of a porous medium is the smallest
volume for which large fluctuations of observed quantities
(such as porosity and permeability) no longer occur and
thus scale characteristics of a porous flow hold [6]. Multiple
techniques are in use for numerically modeling fluid flow
in porous media at different scales. Conventionally, fluid
flow through porous media is solved by discrete numerical
methods (such as finite difference, finite volume, and finite
element methods) based on governing partial differential
equations such as Navier-Stokes (or Stokes) equation, Darcy
equation, and extended Darcy equations (Brinkman-Darcy and
Forchheimer-Darcy equations). The lattice Boltzmann method
(LBM) is an alternative and efficient tool for simulating such
processes. It has shown enormous strengths over conventional
numerical methods to study complicated fluid flow such
as in complex structures and multiphase flow [9–11]. The
LBM has been widely applied to simulate fluid dynamics
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in porous media at the pore scale where the LB equation
recovers the Navier-Stokes equation and the solid matrix is
usually impermeable [3,11–19]. However, the pore-scale LB
model is unrealistic to perform REV-scale simulations of
porous medium flow due to the huge computational resources
required. Therefore, recently several REV-scale LBM models
have been proposed [4–7], which enhance the capacity of
LBM for larger scale applications. These models recover the
common continuum equations for fluid flow in porous media
such as the Darcy equation and extended Darcy equations
[4–7]. Usually, force schemes are adopted in LB to account
for the presence of the porous media. Using the force scheme
proposed in [20], Guo et al. developed a generalized LB
model for fluid flow through porous media, where the gen-
eralized Navier-Stokes equation proposed in [21], including
the Brinkman term, and the linear (Darcy) and nonlinear
(Forchheimer) drag terms, can be recovered in the incom-
pressible limit [6].

Permeability k is a key variable to describe the trans-
port capacity of a porous medium, and is required in the
REV-scale simulations [21]. The intrinsic permeability of a
porous medium, for which there is no slip on the fluid-solid
boundary, only depends on the porous structures. However,
when the Knudsen number (Kn, ratio between the mean
free path of gas and the characteristic pore size of a porous
medium) is relatively high, the gas molecules tend to slip
on the solid surface. Gas slippage in porous media and
its effects on permeability was first studied by Klinkenberg
[22]. It was found that due to the slippage phenomenon, the
measured gas permeability (apparent permeability) through
a porous medium is higher than that of the liquid (usually
called intrinsic permeability), and the difference becomes
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increasingly important as Kn increases. This phenomenon
is called Klinkenberg’s effect. Klinkenberg proposed a linear
correlation between apparent permeability and the reciprocal
of the pressure [22]. This correlation has been a consistent basis
for the development of new correlations between the apparent
and intrinsic permeability [23–26]. Later, Karniadakis and
Beskok [27] developed a second-order correlation based on
fluid flow in microtubes, which was shown to be valid
over the flow regimes that include Darcy flow (Kn < 0.01)
regime, slip flow regime (0.01 < Kn < 0.1), transition
flow regime (0.1 < Kn < 10), and free molecular flow
regime (Kn > 10). Recent experimental studies of natural gas
through tight porous rocks found that the apparent permeability
can be 100 times higher than the intrinsic permeability,
emphasizing the importance of gas slippage in the study
of the fluid flow in tight porous rocks [28]. Therefore, if
Klinkenberg’s effect is neglected, the transport rate of gas in
tight rocks will be greatly underestimated. However, none of
the existing REV-scale LB models account for Klinkenberg’s
effect.

The present work is motivated by the multiscale fluid flow
in a shale matrix. Gas-bearing shale formations have become
major sources of natural gas production in North America, and
are expected to play increasingly important roles in Europe
and Asia in the near future [29]. Experimental observations
indicate that the shale matrix is composed of pores, nonorganic
minerals (predominantly clay minerals, quartz, and pyrite), and
organic matter [30–36]. Different components have different
structural and transport properties. While the nonorganic
matter is usually impermeable, nanosize pores widely exist
in the organic matter, with pore diameters in the range of a few
nanometers to hundreds of nanometers [31,35], thus allowing
transport to occur through the bulk shale matrix. These pores
are so small that gas slippage occurs therein [29,37,38]. There-
fore, apparent permeability, rather than intrinsic permeability,
should be defined and used in the REV-scale studies of shale
gas transport [29], which is also demonstrated by our recent
work on pore-scale studies of Knudsen diffusion and fluid flow
in a three-dimensional porous structure of shale [2]. Therefore,
the accurate prediction of shale matrix permeability is crucial
for improving the gas production and lowering production
cost.

In the present work, a generalized LB model for fluid flow
through porous media with Klinkenberg’s effect is developed
based on the work of Guo et al. [6]. The following aspects of
flow in porous media are investigated: How does the permeable
matrix impact the fluid flow in the porous medium? How does
Klinkenberg’s effect influence the flow field and the apparent
permeability of the porous medium? Why are fractures impor-
tant for enhancing permeability? The remaining parts of this
study are arranged as follows. The generalized Navier-Stokes
equations that include Klinkenberg’s effect are developed in
Sec. II. The generalized LB model for solving the generalized
Navier-Stokes equations is introduced in Sec. III. In Sec. IV,
first the model is validated by simulating fluid flow between
two parallel plates filled with a porous medium. Then, a porous
medium with three different components is reconstructed, and
fluid flow therein is investigated. The flow field and influence
of Klinkenberg’s effect are discussed in detail. Finally in this
section, the importance of fractures on fluid flow in porous

media is also illustrated. Finally, some conclusions are drawn
in Sec. V.

II. GENERALIZED MODEL FOR POROUS FLOW
WITH KLINKENBERG’S EFFECT

A. Generalized Navier-Stokes equations

During the extraction of shale gas, the transport of gas is
compressible flow under high pressure gradient at the field
scale of kilometers [39]. However, the present study focuses
on a small portion of shale matrix with the size of microns,
thus the flow in which can be considered incompressible. The
generalized Navier-Stokes equations proposed by Nihiarasu
et al. [21] for isothermal incompressible fluid flow in porous
media can be expressed as follows:

∇ · u = 0, (1a)

∂u
∂t

+ (u · ∇)
u
ε

= − 1

ρ
∇(εp) + υe∇2u + F, (1b)

where t is time, ρ is volume averaged fluid density, p

isvvolume averaged pressure, u is the superficial velocity, ε

is the porosity, and υe is an effective viscosity equal to the
shear viscosity of fluid υ times the viscosity ratio J (υe = υJ ).
In the present study, porosity is the effective porosity that
is responsible for fluid flow, and “dead-end” pores are not
included. The force term F represents the total body force due
to the presence of the porous media and other external body
forces:

F = −ευ

k
u − εFε√

k
|u|u + εG, (2)

where υ is fluid viscosity and G is the external force. The first
term on the right-hand side is the linear (Darcy) drag force
and the second term is the nonlinear (Forchheimer) drag force.
The geometric function Fε and the permeability k are related
to the porosity of the porous medium, and for a porous medium
composed of solid spherical particles, they can be calculated by
Ergun’s equation [6]. The quadratic term (Forchheimer term)
becomes important when the fluid flow is relatively strong and
inertial effects become relevant; it can be neglected for fluid
flow with Reynold number much lower than unity.

B. Klinkenberg’s effect

Gas slippage is a phenomenon that occurs when the mean
free path of a gas particle is comparable to the characteristic
length of the domain. Klinkenberg [22] first conducted the
study of gas slippage in porous media, and found that the
permeability of gas (apparent permeability) through a tight
porous medium is higher than that of liquid due to gas slippage.
Klinkenberg [22] proposed a linear correlation for correcting
the gas permeability

ka = kdfc, (3)

where kd is called Klinkenberg’s corrected permeability, which
is the permeability of liquid, or the intrinsic permeability. kd

only depends on the porous structures of a porous medium and
is not affected by the operating condition and fluid properties.
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The correction factor fc is given by [22]

fc =
(

1 + bk

p

)
, (4)

where Klinkenberg’s slippage factor bk depends on the
molecular mean free path λ, characteristic pore size of a porous
medium r , and pressure [22]

bk

p
= 4cλ

r
≈ 4Kn, c ≈ 1. (5)

It can be found in Eqs. (3)–(5) that the apparent permeability
ka not only depends on the topology of a porous medium,
but also is affected by pressure and temperature conditions.
Based on Eq. (4), various expressions of bk have been proposed
in the literature. Heid et al. [23] and Jones and Owens [24]
proposed similar expressions by relating bk to kd. Sampath and
Keighin [25] and Florence et al. [26] considered the effects of
porosity and developed a different form by relating bk to kd/ε.
Klinkenberg’s correlation is a first-order correlation. Beskok
and Karniadakis [27] developed a second-order correlation,
which has been shown to be capable of describing the four
fluid flow regimes [viscous flow (Kn < 0.01), slip flow (0.01 <

Kn < 0.1), transition flow (0.1 < Kn < 10), and free molecular
flow (Kn > 10)]

fc = [1 + α(Kn)Kn]

[
1 + 4Kn

1 − bKn

]
, (6)

where slip coefficient b equals −1 for slip flow, and α(Kn)
is the rarefaction coefficient. The expression of α(Kn) is
very complex in [27], and later Civan [40] proposed a much
simplified one:

α(Kn) = 1.358

1 + 0.170Kn−0.4348
. (7)

We refer to the combination of Eq. (6) with Eq. (7) as the
Beskok and Karniadakis-Civan’s correlation.

C. Generalized model for porous flow with Klinkenberg’s effect

In the present study, Eq. (2) is modified to incorpo-
rate the effects of the gas slippage phenomenon (Klinken-
berg’s effect) by substituting k with apparent permeability
ka,

F = −ευ

ka
u + εG. (8)

Compared with Eq. (2), the nonlinear drag force is not
considered in Eq. (8), because usually flow rate is extremely
low in low-permeability tight porous media such as shale
matrix [38]. Due to the complex pore morphology and char-
acteristics in mudrocks, it is difficult to develop a generalized
porosity-permeability relationship for mudrock, which, in fact,
is an important but separate research topic. Here we use the
Kozeny-Carman (KC) equation [41] to calculate the intrinsic
permeability of the porous medium

kd = C
ε3

(1 − ε)2 , (9)

with C ithe KC constant and is set as d2/180 for packed
spheres, where d is the diameter of the solid spheres. After

kd is determined, Beskok and Karniadakis-Civan’s correlation
equations (6) and (7) are then used to calculate ka. To
calculate Kn in Eqs. (6) and (7), the mean free path λ and
the characteristic pore radius of the porous medium r should
be determined. The former one is calculated by [42]

λ = μ

p

√
πRT

2M
, (10)

where R is the gas constant, T is the temperature, and M
is the molar mass. Following [28], the following expression
proposed by Herd et al. is used to calculate r [23]:

r = 8.886 × 10−2

√
kd

ε
. (11)

The units of r and k are microns and millidarcy (1 mD =
9.869 × 10−16 m2), respectively. We have to admit that
Eq. (11) is based on the assumption that pores in the porous
media are uniform, parallel, and cylindrical capillaries, and
thus it only provides an approximation of the pore radius
[23,28]. More accurate expressions instead of Eq. (11) can
be adopted to improve the prediction of r , which, although
out of the scope of the present study, deserve further
study.

On the whole, Eq. (1), combined with Eq. (8), together with
apparent permeability calculated by Eqs. (3), (6), and (7), is
called the generalized Navier-Stokes equation for porous flow
that includes Klinkenberg’s effect.

III. LATTICE BOLTZMANN MODEL

In this section, we develop our LB model for solving
the above-proposed generalized Navier-Stokes equations for
porous flow with Klinkenberg’s effect based on the work of
Guo et al. [6] because porosity is the major input for this
model. The evolution of the density distribution function in
the LB framework is as follows:

fi(x + ei	t,t + 	t) − fi(x,t)

= − 1

τ
[fi(x,t) − fi

eq(x,t)] + 	tFi, (12)

where fi(x,t) is the ith density distribution function at the
lattice site x and time t . 	t is the lattice time step. The
dimensionless relaxation time τ is related to the viscosity. The
lattice discrete velocities ei depend on the particular velocity
model. For the D2Q9 model with nine velocity directions
at a given point in two-dimensional space, ei are given
by

ei =

⎧⎪⎪⎨
⎪⎪⎩

0, i = 0(
cos

[ (i−1)π
2

]
, sin

[ (i−1)π
2

])
, i = 1,2,3,4

√
2
(
cos

[ (i−5)π
2 + π

4

]
,sin

[ (i−5)π
2 + π

4

])
, i = 5,6,7,8.

(13)

The equilibrium distribution functions f eq are of the
following form by considering the effects of porosity [6]:

f
eq

i = ωiρ

[
1 + 3

c2
(ei · u) + 9

2εc4
(ei · u)2 − 3

2εc2
u2

]
,

(14)
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where the weight factors ωi are given by ω0 = 4/9, ω1−4 =
1/9, and ω5−8 = 1/36. Different schemes have been proposed
to incorporate the force term [Eq. (8)] into the LB model
[11]. Guo’s force scheme can recover the exact Navier-Stokes
equation without any additional term [20], which is thus
adopted to calculate the force term in Eq. (12):

Fi = ωiρ

(
1 − 1

2τ

)

×
[

3

c2
(ei · F) + 9

εc4
(ei · u)(ei · F) − 3

c2
(u · F)

]
.

(15)

Accordingly, the fluid velocity and density are defined
as

ρ =
∑

i

fi, (16a)

ρu =
∑

i

fiei + 	t

2
ρF. (16b)

Note that F also contains the velocity, as can be seen in
Eq. (8). Due to the only linear drag term considered in Eq. (8),
Eq. (16b) is a linear equation, and thus the velocity can be
easily solved:

u =
∑

i fiei + 	t
2 ρεG

ρ + 	t
2

ευ
ka

ρ
. (17)

If the nonlinear drag term is further considered, Eq. (16b)
turns into a quadratic equation [6]. Equations (12), (14), and
(15) can recover the generalized Navier-Stokes equation in
Eq. (1) using Chapman-Enskog multiscale expansion under
the low Mach number limit [43].

This LB model incorporates the influence of porous
media by introducing a newly defined equilibrium distribution
function [Eq. (14)] and adding a force term [Eq. (15)] into
the evolution equation [Eq. (12)], and thus it is very close to
the standard LB model [6]. Without invoking any boundary
conditions, it can automatically model the interfaces between
different components in a porous medium with spatially
variable porosity and permeability [6]. In the simulation
of flow through a porous system, this model is employed
by simply replacing the usual computational nodes with
porous medium nodes in the region occupied by the porous
medium. Each node in this region is given a porosity based on
the experimental results. Intrinsic permeability and apparent
permeability are calculated based on the scheme introduced in
Sec. II. At a node in pore space, the porosity is unity and the
Darcy term is zero. Under such condition, Eq. (1b) reduces
to the Navier-Stokes equation for free fluid flow. At a node in
the impermeable component, the drag force is specified to be
infinity, and the velocity is zero according to Eq. (1b). Such
flexibility of the proposed model allows for it to automatically
simulate interfaces between different components in a porous
medium [6]. Compared to the original model of Guo et al.
[6], Klinkenberg’s effect is taken into account by adopting the
second-order Beskok and Karniadakis-Civan’s correlation to
calculate the apparent permeability, allowing the current model
to handle fluid flow in porous media with gas slippage at the

REV scale. When Kn is small, the apparent permeability is
close to the intrinsic permeability, and Klinkenberg’s effect can
be neglected according to Eq. (3). Under such circumstances,
the model reduces to the original model in Ref. [6]. In
summary, the proposed generalized model can be used to
simulate at REV-scale wide flow regimes by considering
Klinkenberg’s effect.

IV. RESULTS AND DISCUSSION

A. Flow between two parallel plates filled with
a porous medium

Fluid flow between two parallel plates filled with a porous
medium of porosity ε is simulated to validate the present LB
model and to illustrate Klinkenberg’s effect. The flow is driven
by pressure difference 	p at the inlet and outlet. The flow at
steady state is described by the following Brinkman-extended
Darcy equation [6]:

υe

ε

∂2u

∂y2
− υ

ka
u + G = 0, (18)

with u(x,0) = u(x,H ) = 0, where H is the distance between
the two plates and G is the external body force. The velocity
in the y direction is zero everywhere. The analytical solution
for fluid flow under these conditions is

u = GK

υ

(
1 − cosh[a(y − H/2)]

cosh(aH/2)

)
, a =

√
υε

υeK
, (19)

where cosh is the hyperbolic function with cosh(x) = (ex +
e−x)/2. The external body force can be calculated by the
pressure difference according to G = 	p/L/ρ, where L is
the length of the plates. In all the simulations of the present
study, the viscosity ratio J is assumed to be unity, thus υe

equals υ.
Figure 1(a) shows the characteristic pore radius calculated

by Eq. (11) and Kn under different porosity. d in Eq. (9) for
calculating the intrinsic permeability is set as 40 nm. The pore
radius decreases as the porosity is reduced, which is expected
based on Eqs. (9) and (11). For the minimum porosity studied
(0.02), the pore radius is only about 1.12 nm (a typical order
of the size of throats connecting larger pores in the organic
matter of shale matrix [35]). To calculate the mean free path
in Eq. (10), the temperature is set as 323 K, the molar mass
M is that of methane 16 × 10−3 kg mol−1, and the viscosity µ
of methane is determined by using an online software called
PEACE software. Three pressures, 4000, 1000, and 100 psi,
are studied (1 psi � 6894.75 Pa). Note that the pressure of
100 psi may not be encountered in the shale gas production,
which is chosen here for studying Klinkenberg’s effect under
a wider range of pressure. In fact, some lab experiments for
tight shale samples were also conducted under pressure lower
than the reservoir pressure. The mean free path under the
three pressures is 0.38, 1.09 and 10.26 nm, respectively. As
shown in Fig. 1(a), Kn increases nonlinearly as the porosity
decreases. At a fixed value of porosity, Kn is higher for lower
pressures due to the longer mean free path. The flow can enter
the transition regime (0.1 < Kn < 10) when the porosity is low.
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FIG. 1. (Color online) (a) Knudsen number, pore radius, and
(b) correction factor under different porosity.

The correction factor increases as the porosity decreases (or Kn
increases) as shown in Fig. 1(b), which is expected based on
the Beskok and Karniadakis-Civan’s correlation equation (6).
For the highest pressure of 4000 psi, the value of the correction
factor is about 2, which can be as high as 60 when the pressure
is reduced to 100 psi.

Figure 2 shows the numerical simulation results as well as
the analytical solutions for the velocity profile between the
two plates. In the simulations, the domain is discretized by
200 × 80 square meshes. The relaxation time τ in LB is set
as 0.9. No-slip boundary conditions are used for the top and
bottom walls and a pressure difference is applied between the
left inlet and right outlet. When porosity is 1.0, there is no
porous medium and the fluid flow is free fluid flow between
the two plates. Therefore, the velocity profile is the same
for all the cases. When the porosity is reduced, the velocity
profile flattens due to the presence of the porous medium. As
Klinkenberg’s effect becomes significant with the decrease of
the pressure, the boundary layer becomes thicker, as shown in
Fig. 2. For all the cases, the simulation results (symbols) are
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FIG. 2. (Color online) Velocity profiles between two plates filled
with a porous medium. The simulation results (symbols) are in good
agreement with the analytical solutions (lines).

in good agreement with the analytical solutions (lines), which
confirms the validity of the present model.

Figure 3 shows the relationship between the permeability
of the entire domain (called global permeability in the present
study, obtained by applying Darcy’s law to the entire domain)
and the porosity. Note that there are three kinds of permeability
in our simulations: the intrinsic permeability, the apparent
permeability, and the global permeability. The former two
are related to a computational cell, while the calculation
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of the global permeability requires the flow field in the
entire domain according to its definition. Therefore, accurate
predictions of flow field are of great importance to obtain the
accurate global permeability. Figure 3 is an important graph
clearly demonstrating the effects of Klinkenberg’s effect on
the domain scale. For fluid flow between two plates without
porous media, the global permeability is H 2/12 according
to the cubic law [7]; the simulated global permeability is
530.68, very close to the analytical solution obtained from
the cubic law (533.3), further demonstrating the validity our
model. The important observation from Fig. 3 is that the
global permeability increases as the pressure decreases, due to
higher Kn and thus larger apparent permeability of the porous
medium. In addition, the permeability difference between
different cases increases as the porosity is reduced. For
porosity of 0.2, two orders of magnitude of the permeability
difference can be observed between the case with p = 100 psi
and that without Klinkenberg’s effect. Therefore, apparent
permeability, rather than the intrinsic permeability, must be
adopted to simulate the fluid flow in porous media with gas
slippage, especially under a low pressure.

We want to point out that in our simulations, the Kozeny-
Carman relationship was used to calculate the intrinsic perme-
ability. Using a different porosity-permeability relationship in
the model will likely affect the simulation results. However,
based on our numerical method, no matter what kind of
porosity-permeability relationship is used, the difference be-
tween the intrinsic permeability and the apparent permeability
will still exist as long as there is slippage effect, which will
lead to variations of the global permeability.

B. Flow in porous media with different components

In this section, the flow through a trimodal heterogeneous
porous medium is studied. Three components coexist in the
porous medium including the pores (light blue), impermeable
solids (black), and permeable solids (green), as shown in
Fig. 4. The impermeable solids are generated using a self-
developed overlapping tolerance circle method based on
the three-dimensional overlapping tolerance sphere method
[44]. The permeable solids are generated using the quartet
structure generation set (QSGS) method [45]. This porous
system roughly represents the structures of the shale matrix
composed of pores, inorganic matter, and organic matters
[30–34]. In shale matrix, the organic matter is the source of
shale gas (methane) and plays an important role in shales.
Figure 4(b) shows the nanoscale structures of the organic
matter reproduced from the literature (Fig. 9 in [34]), which
is a magnified image of the organic matter in Fig. 4(a)
[as schematically shown in the red circle of Fig. 4(a)].
Numerous nanosize pores can be observed in Fig. 4(b),
with pore diameters in the range from a few nanometers to
hundreds of nanometers. In some shales almost all the pores in
the shale matrix are associated with organic matter, and thus the
permeability of the organic matter is very important for shale
gas transport. The pore structures of these organic matters are
geometrically and topologically intricate being the result of
several factors including maturity, organic composition, and
late localized compaction [30,31]. Even consistent values of
porosity are elusive. Loucks et al. reported a range of porosity

FIG. 4. (Color online) (a) A heterogeneous porous medium with
three components: pores (light blue), impermeable solid (dark circle),
and permeable solid (dark green), which represents the pores,
inorganic matter, and organic matter in shale matrix, respectively. The
impermeable solid circle is generated by a self-developed overlapping
tolerance circle method. The randomly distributed permeable solid
is generated using the QSGS method [45]. Volume fraction of the
impermeable solid and permeable solid is 0.4 and 0.3, respectively.
(b) The nanoscale structures of the organic matter (reproduced from
Fig. 9 in Ref. [34]).

0%–30% in the organic matter of Barnett shales, North Texas
[31], while Sondergeld et al. estimated a porosity of 50% of the
organic matter from Barnett shales [33]. In the present study, a
wider range of porosity (0.1 � ε � 0.9) of the organic matter
is studied. In Fig. 4, the volume fraction of the impermeable
solid and permeable solid is 0.4 and 0.3, respectively. There
is no connected void space percolating the x direction. The
domain size is 410 × 200 lattices with a resolution of each
lattice as 10 nm. With such a coarse resolution, nanosize pores
in the organic matters cannot be fully resolved, and thus the
REV-scale model is adopted. Periodic boundary conditions
are applied on the top and bottom walls. For a void space
node the porosity is unit, while for an impermeable solid node
the porosity is zero, leading to zero and infinite drag force,
respectively, according to Eqs. (8) and (9). Other parameters
and boundary conditions are the same as that in Sec. IV A.
Note that multiple physicochemical processes occur during
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FIG. 5. (Color online) Velocity magnitude distributions in the porous medium with and without considering Klinkenberg’s effect. (a) No
Klinlenberg’s effect, (b) p = 4000 psi, (c) p = 1000 psi, and (d) p = 100 psi. The porosity of the permeable solid in the left, middle, and right
columns is 0.8, 0.5, and 0.1, respectively. As Klinkenberg’s effect becomes stronger with the decrease of the pressure, the flow rate increases due
to the increased permeability in the permeable solids and the fixed pressure gradient used in our simulations. The preferred pathways for fluid
flow change [solid dark lines in Fig. 5(a)]; therefore, without considering Klinkenberg’s effect, not only quantitatively but also qualitatively
incorrect flow field would be predicted.

the extraction of shale gas, such as desorption, condensation,
fines migration, stress compaction, and fracture closure, all of
which play roles on the evolution of the porous structures of
the shale matrix and can affect the permeability. In the present
study, we focus our study on the effects of slippage.

Figure 5 shows the distributions of velocity magnitude |u|
inside the porous medium without (a) and with increasingly
stronger [from (b) to (d)] Klinkenberg’s effect. The porosity
of the permeable solid for the set of images in the left, middle,
and right columns is 0.8, 0.5, and 0.1, respectively. When the
porosity of the permeable solid is relatively high (εps = 0.8 in
the left column; subscript “ps” stands for “permeable solid”),
the Darcy drag term in the permeable solid is small and
the local flow resistance is weak. Therefore, fluid can flow
through the permeable solids. In such cases, there are two
main preferred pathways from the left inlet to the right outlet,
as shown in the first image of Fig. 5(a). It can be seen that the
velocity magnitude distributions are quite close for different
cases (four images in the left column), because gas slippage in
the porous medium with high porosity (or large pore radius)
is insignificant and Klinkenberg’s effect can be neglected.
As the porosity is reduced (εps = 0.5, middle column), the
difference of |u| between different cases becomes obvious
although they are qualitatively similar. A lower pressure leads
to a higher apparent permeability of the permeable solid,
resulting in a stronger flow rate. When the porosity is further
reduced (εps = 0.1, right column), the velocity magnitude
difference becomes more remarkable. For the case without

Klinkenberg’s effect, the preferred pathways for fluid flow
are very different from those at higher porosity, as shown
in the right image of Fig. 5(a), due to the extremely low
permeability in the permeable solid. However, the stronger
Klinkenberg’s effect [from Fig. 5(b) to Fig. 5(d)], the closer the
flow field is to that under high porosity. Normalized velocity
magnitude u0 = |u|/|u|max is also calculated in the entire
domain. Ten uniform ranges of u0 are selected and the percent
of the cells falling in each range is shown in Fig. 6. When
porosity is high, the normalized velocity magnitude is almost
the same; however, it shows variations between different
cases for low porosity, consistent with the above discussion
related to Fig. 5. Figure 7 shows the global permeability for
different cases. The permeability difference is obvious over
the range of selected parameters. The various behaviors under
different porosity and pressure are expected based on the above
discussion.

In summary, without considering Klinkenberg’s effect, not
only quantitatively but also qualitatively incorrect flow field
would be predicted. This incorrect prediction of flow results
in the misunderstanding of the transport mechanisms and
erroneous values for permeability. In shale matrix where
nanosize pores dominate [31], the apparent permeability will
be much higher than the intrinsic permeability. Using the
intrinsic permeability in the REV-scale modeling will lead
to underestimation of the fluid flow rate and consequently
low estimation of the gas production curve [39,46]. Finally,
during the shale gas extraction process, the reservoir pressure
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FIG. 6. (Color online) Distributions of the normalized velocity
magnitude. Normalized velocity magnitude u0 = |u|/|u|max are cal-
culated in the entire domain. Ten uniform ranges of u0 are selected
and the percent of the cells falling in each range is calculated.

is high initially, and then gradually decreases as the production
proceeds. As shown in Fig. 7, the apparent permeability
increases with the decrease of the pressure, which is consistent
with the experimental results in Ref. [28]. Hence, a dynamic
apparent permeability should be adopted in the reservoir
simulations [47].
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FIG. 7. (Color online) Relationship between the global perme-
ability and porosity for cases with and without Klinkenberg’s effect.
When Klinkenberg’s effect is considered, the global permeability
increases as the pressure decreases.

FIG. 8. (Color online) Structures of a shale matrix with artifi-
cially generated fractures. The shale matrix is reproduced from Fig. 13
in [35]. The fractures (light blue) are generated using a self-developed
method called treelike generation method. The porosity of the
organic matter (green) and inorganic matter (black) is 0.05 and 0.2,
respectively.

C. Flow in porous media with fractures

In this section, the realistic porous structures of a shale
matrix reproduced from the literature [see Fig. 13(a) in [35]]
are considered, as shown in Fig. 8. Due to the intrapores
between the grains of inorganic matters [35], the black solid
(inorganic matters) in Fig. 8 now is considered to be permeable,
but with a very low porosity of 0.05. The dark green solid
(organic matter) is still permeable with a relatively higher
porosity of 0.2. Volume fraction of the organic matter is 0.106.
As shown in Fig. 8, the organic matter is embedded in the
inorganic matters; therefore, the transport of shale gas out of
the organic matter will be extremely slow due to the quite
low permeability of the black solid. Therefore, conductive
pathways should be artificially generated. Currently, hydraulic
fracturing is a method widely used to increase the permeability
of a shale formation by extending and/or widening existing
fractures and creating new ones through the injection of a
pressurized fluid into shale reservoirs [48]. Here, we generate
fractures in the reproduced shale matrix using a self-developed
method called the treelike generation method. As shown
in Fig. 8, the fracture system percolating the shale matrix
consists of a main tree branch at the center with several
first and second subbranches. With the fractures added, the
volume fraction of the organic matter is slightly reduced to
0.097 and that of the fractures is 0.081. The size of the
domain is 1164 × 536 lattices, with a resolution of 100 nm.
The typical aperture of the fractures is about 1 µm. The
generalized LB model for fluid flow through porous media
with Klinkenberg’s effect developed in Sec. III is applied to
this system. The boundary conditions are the same as that in
Sec. IV B.

Figure 9 shows distributions of the velocity magnitude in
the shale matrix with and without fractures under pressure of
4000 psi [Fig. 9(a)] and 100 psi [Fig. 9(b)]. Without fractures,
fluid flow is stronger in the organic matter, which is expected
due to the lower local flow resistance. With fractures added, the
gas percolates the system through the fractures and the fluid
flow is significantly enhanced. Klinkenberg’s effect becomes
more important as the pressure reduces, leading to a stronger
fluid flow rate, as shown in Fig. 9. Figure 10 displays the
relationship between the global permeability and the pressure.
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FIG. 9. (Color online) Distribution of velocity magnitude in shale matrix with (right) and without (left) fractures. (a) p = 4000 psi and (b)
p = 100 psi. With fractures, the velocity is greatly enhanced. Klinkenberg’s effect is obvious compared with the velocity magnitude under
different pressures.

For pressure of 4000 psi, the global permeability of the system
with fractures is about two orders of magnitude higher than
that without fractures, indicating the significant importance of
fractures for enhancing gas flow. The permeability difference
becomes smaller as the pressure decreases. For pressure of
100 psi, the global permeability for the system with fractures
is 1.18 × 10−14 m2, only two times higher than that without
fractures (0.50 × 10−14 m2). This is because the gas mainly
flows in the fractures, where Klinkenberg’s effect is not
obvious due to the relatively large fracture aperture of about 1
µm. However, Klinkenberg’s effect is very strong in the shale
matrix, especially under low pressure. Thus, as the pressure
decreases, the increase of the permeability for the system with
fractures is not as significant as that without fractures, as shown
in Fig. 10, thus reducing the difference.
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FIG. 10. The global permeability under different pressures.

V. CONCLUSION

We proposed generalized Navier-Stokes equations for fluid
flow through porous media that includes Klinkenberg’s effect.
Second-order Beskok and Karniadakis-Civan’s correlation is
employed to correct the apparent permeability based on the
intrinsic permeability and Knudsen number. A LB model is
developed for solving the generalized Navier-Stokes equa-
tions. Numerical simulations of fluid flow between two parallel
plates filled with a porous medium have been carried out to
validate the present model.

Flow in a porous medium with different components of
varying porosity and permeability is studied. The simulation
results show that Klinkenberg’s effect becomes stronger as
Kn increases, either due to decrease of the porosity of the
porous medium (this leads to the decrease of the characteristic
pore radius) or the decease of the pressure (this leads to
the increase of the mean free path). Global permeability
of the porous medium increases as Klinkenberg’s effect
becomes stronger. Without considering Klinkenberg’s effect,
not only quantitatively but also qualitatively incorrect flow
field would be predicted. This incorrect prediction of flow,
results in the misunderstanding of the transport mechanisms
and erroneous values for global permeability. Flow in a
porous medium with fractures is also investigated. It is found
that with fractures added, the gas percolates the system
through the fractures and the fluid flow is significantly
enhanced.

The simulation results of the present study have a great
implication to gas transport process in tight gas and shale
gas reservoirs which pose a tremendous potential source
for natural gas production. Distinguished characteristics of
the shale matrix are that nanosize pores widely exist and
the permeability is extremely low. Under such scenario,
Klinkenberg’s effect must be considered and apparent
permeability should be adopted in the numerical modeling
to predict the physically correct transport process. Using
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the intrinsic permeability will underestimate the gas
flow rate and consequently generate an inaccurate gas
production curve. In addition, during the shale gas extraction
process, the reservoir pressure dynamically changes, thus
a dynamic apparent permeability should be adopted in the
reservoir simulations based on our simulation results. The
Klinkenberg’s effect becomes increasingly important as
the gas extraction proceeds because the pressure gradually
decreases. Hydraulic fracturing facilitates the shale gas
transport, and a small volume fraction of fractures generated
in the shale matrix can significantly increase the global
permeability.
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