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Delay-induced instability in a nutrient-phytoplankton system with flow
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In this paper, a nutrient-phytoplankton system described by a couple of advection-diffusion-reaction equations
with delay was studied analytically and numerically. The aim of this research was to provide an understanding
of the impact of delay on instability. Significantly, delay cannot only induce instability, but can also promote
the formation of spatial pattern via a Turing-like instability. In addition, the theoretical analysis indicates that
the flow (advection term) may lead to instability when the delay term exists. By comparison, diffusion cannot
result in Turing instability when flow does not exist. Results of numerical simulation were consistent with the
analytical results.

DOI: 10.1103/PhysRevE.91.032929 PACS number(s): 05.45.−a, 87.23.−n, 89.75.−k

I. INTRODUCTION

Plankton play an important role in ocean ecology and the
climate because of their participation in the global carbon cycle
at the base of the food chain [1]. In particular, phytoplankton
carry out photosynthesis and form the base of the food chain in
oceans, lakes, and reservoirs. However, phytoplankton blooms
occur in some environments, which may lead to ecological
failure and can even cause harm to humans. Hence, an
understanding of the dynamic mechanism of phytoplankton
becomes much more significant.

In recent years, ecologists have paid increasing attention
to spatial processes in interactions among species [2–5] and
have found that a variety of ecological phenomena can be
modeled using partial differential equations [6]. Medvinsky
et al. showed that modeling by reaction-diffusion equations is
an appropriate tool to investigate fundamental mechanisms of
complex spatiotemporal plankton dynamics [7]. Especially,
pattern formation has been a major interest of many re-
searchers. Since the pioneering work of Turing [8], pattern
formation has been a common area of interest in many diverse
fields of research, including chemistry [9,10], physics [11,12],
biology [13], ecology [14,15], and so on.

Although some phenomena can be well explained by
pattern formation in reaction-diffusion systems, flow should
be considered in some cases, such as tidal currents in an
algae-mussel system [16], sinking in a nutrient-phytoplankton
system [17], downhill water flows in a plant-water system [18],
and so on. In these cases, the systems can be described
by reaction-advection-diffusion equations. Actually, the role
of flow in pattern formation has been investigated recently.
The formation mechanism of flow-distributed structures was
discovered theoretically by Kuznetsov et al. [19]. Earlier,
Rovinsky et al. [20] had indicated that the flow of species
at different rate induced instability by experiment. This kind
of instability is similar to the diffusion-driven one in Turing
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case, but it does not restrict the diffusion coefficients [20].
Thus, such a system is much more general.

Growing evidence shows that some conversion processes
from one state to another in certain systems are not instan-
taneous, that is, time delay exists, which is an important
factor affecting the dynamics of various systems. Volterra [21]
considered time delay in a prey-predator system first, the
result showed that a spatial distribution may possess oscillatory
behavior under certain conditions. And Ott et al. first employed
time-delayed feedback to control the chaotic behavior of a
deterministic system [22]. Since then, the delay has been
widely used to investigate pattern dynamics in reaction-
diffusion systems, and many interesting results have been
obtained [23–29]. For example, in an experimental study of
delay feedback in Ref. [30], it was found that the delay could
induce the emergence of a spiral wave. Although studies of the
effects of delay on pattern formation are abundant in reaction-
diffusion systems, such studies in advection-reaction-diffusion
systems appear to be rare.

The paper is organized as follows: in Sec. II, the system with
delay is introduced, and the effects of delay on the system are
explored analytically. The numerical results are presented in
Sec. III. Finally, the paper ends with conclusion in Sec. IV.

II. THE SYSTEM AND THEORETICAL ANALYSIS

A. The nutrient-phytoplankton system

In Ref. [31], Huppert et al. presented a model of phy-
toplankton blooms to investigate the threshold effect that a
bloom would only be triggered when nutrients exceeded a
certain defined level, and much better results are obtained.
Here, this system is extended into a spatial one, as follows:

∂N

∂t
= a − bNP − eN + DN�N, (1)

∂P

∂t
= αbNP − mP − V

∂P

∂x
+ DP �P, (2)

where N , P are nutrient levels and phytoplankton biomass,
respectively. a is a constant rate of nutrient inputs flowing
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into the system; b is nutrient uptake rate of phytoplankton;
α denotes the efficiency of nutrient utilization; e and m are
the mortality and loss rates of nutrients and phytoplankton,
respectively; DN and DP are the diffusion coefficient of
nutrients and phytoplankton, respectively; V is flow velocity,
and V ∂P

∂x
represents the flow that may be caused by current,

wind, or other factors. All parameters are positive constants.
Although the employed uptake dynamic in this system is

not Michaelis-Menten, but Lotka-Volterra, Huppert et al. [31]
have indicated that the Lotka-Volterra term was a good
first approximation to the Michaelis-Menten. And Lotka-
Volterra term has received much more attention, which is
used to described the population dynamics of nutrient and
phytoplankton. Using the dimensionless variables in Ref. [31],
and set dN = DN/m, dP = DP /m, v = V/m, Eqs. (1) and (2)
can be written as

∂N

∂t
= I − NP − qN + dN�N = f (N,P ) + dN�N, (3)

∂P

∂t
= NP − P − v

∂P

∂x
+ dP �P

= g(N,P ) − v
∂P

∂x
+ dP �P. (4)

In addition, because the conversion from nutrient uptake
to reproduction in phytoplankton requires some time, delay is
taken into consideration, and Eq. (4) can be rewritten as

∂P

∂t
= NτP − P − v

∂P

∂x
+ dP �P

= g(Nτ ,P ) − v
∂P

∂x
+ dP �P, (5)

where Nτ = N (x,t − τ ), and τ is a positive constant.

B. Theoretical analysis of the system with delay

In this subsection, the effects of delay on the system
will be analyzed. Based on biological reality, the objective
is a nonnegative homogeneous steady state. From Eqs. (3)
and (4), there always exists a homogeneous steady state,
E0 = (I/q,0) under q > 0, and there is a unique positive
homogeneous steady state, E∗ = (N∗,P∗) = (1,I − q) if the
condition, q < I , holds.

Assuming τ to be small, according to the method presented
in Refs. [32–34], N (x,t − τ ) = N (x,t) − τ∂N/∂t can be
substituted into Eq. (5) to yield

∂P

∂t
= g(N,P ) − τPf (N,P ) − v

∂P

∂x
+ dP �P

− τPdN�N. (6)

A standard linear analysis of the stability of the uniform
state to nonuniform perturbations [35] is then performed:(

N

P

)
=

(
N∗
P∗

)
+ ε

(
Nk

Pk

)
e(λt+ikx) + c.c. + O(ε2), (7)

where λ is the (complex) perturbation growth rate; k > 0 is the
wavenumber, and ε � 1, c.c. stands for complex conjugate.

Substituting Eq. (7) into Eqs. (3) and (6), and neglecting all
nonlinear terms, the characteristic matrix for the growth rate

λ can be obtained as

J =
(

λ − a11 + dNk2 −a12

−a21 − τP∗dNk2 λ − a22 + ivk + dP k2

)
, (8)

where a11 = −I, a12 = −1, a21 = (I − q)(1 + τI ), a22 =
τ (I − q). Obviously, a11 < 0, a12 < 0, a21 > 0, a22 > 0.
Then the following characteristic equation for λ can be
obtained:

λ2 − Aλ + B = 0, (9)

where A = τ (I − q) − I − (dN + dP )k2 − ivk, B = I −
q + IdP k2 + dNdP k4 + (dNk2 + I )ivk.

By Eq. (9), the roots yield the dispersion relation

λ1,2 = A ± √
A2 − 4B

2
. (10)

The Hopf bifurcation occurs when

Im[λ(k)] �= 0, Re[λ(k)] = 0 at k = 0.

Then the Hopf line can be obtained as

τH = I/(I − q). (11)

However, for v = 0, the Turing instability cannot occur be-
cause of B > 0. Hence, the diffusion cannot induce instability
when v = 0.

For v > 0, Eq. (10) can be rewritten as

λ1,2 = trk − ivk ± √
C + iE

2
, (12)

where C = tr2
k − v2k2 − 4�k , E = −2[trk + 2(I +

dNk2)]vk, trk = τ (I − q) − I − (dN + dP )k2, �k =
I − q + IdP k2 + dNdP k4.

To analyze the effect of flow on the system, the real and
imaginary parts of the eigenvalues must be obtained as follows:

Re(λ) = 1
2

[
trk ±

√
1
2 (

√
C2 + E2 + C)

]
, (13)

Im(λ) = 1
2

[−vk ± sgn(C)
√

1
2 (

√
C2 + E2 − C)

]
. (14)

The solution is stable when Re(λ) < 0. Otherwise, the
solution is unstable when one of the real parts with a finitewave
number k > 0 is greater than zero at least.

When τ = 0, by direct computation using Eq. (13), it is not
difficult to find that the real parts of Eq. (12) are always smaller
than zero for any v > 0. In other words, the flow cannot induce
instability when delay does not exist. Hence, the instability is
driven by delay.

For τ > 0, by Eq. (13), the critical flow-induced instability
condition can be obtained as

v2
c = tr2

k�k

(I + dNk2)[τ (I − q) − dP k2]k2
, (15)

Obviously, when 0 < k <
√

τ (I − q)/dP , Eq. (15) holds. If
v > vc, then the instability occurs.

Therefore, when the delay exists, the flow beyond a critical
value may induce instability in a nutrient-phytoplankton
system.
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III. NUMERICAL RESULTS

A. Parameters and parameter space

In the previous sections, the effect of delay on the system
was analyzed in detail. To study how delay and flow influence
the instability of the system, numerical simulations were
carried out. Before the numerical simulations are presented,
the set and space of parameters will be described to show the
feasibility of the theoretical results. The following parameter
values were used: I = 0.075, q = 0, as in Ref. [31]. Therefore,
the positive homogeneous steady state was E∗ = (1,0.075).
The other parameters, v,τ,dN , and dp, will be discussed as
control parameters. Noting that the diffusion of nutrients and
phytoplankton is mainly induced by turbulence, and therefore
set dN = dP = D.

According to Eq. (11), the Hopf line τH = 1 can be
obtained; however, τ is assumed to be small as in previous
sections. Hence, the parameter τ will be discussed in the
range from 0 to 1. Previous analysis has shown that instability
does not occur when τ < τH and v = 0. In other words, the
occurrence of instability must be related to the speed of flow
when τ < τH . However, an analytical expression for critical
value of flow speed v cannot be obtained. In fact, it is easy
to get the critical value using numerical computation when
the parameters are given. Figure 1(a) presents a more indepth
analysis of the relationship among three parameters v,τ , and
D. It is clear from Fig. 1(a) that the system is unstable in
space I, whereas the homogeneous steady state is still stable in
space II. To validate this result further, the maximum value of
Re(λ) was calculated, as shown in Fig. 1(b) with v = 1.5 and
D = 0.1. Nonetheless, it is worth noting that Re(λ) is much
larger than zero when the value of the delay τ is larger than a
critical value, which means the appearance of instability and
agrees with the results shown in Fig. 1(a). These results in turn
confirm that all the theoretical analyses are feasible.

B. Numerical simulation

This subsection describes the numerical simulations per-
formed to illustrate the dynamics of system Eqs. (3) and (5)

in two-dimensional space. Using the Euler forward finite
difference method for time integration, the time step is �t =
0.01. For the spatial derivative, applying upwind method to
the flow term, the diffusion term based on the formulas in
Ref. [36], the spatial step is �h = 5/4. The system was solved
numerically in rectangular spatial grid consisting of 200 × 200
cells, with the flow in the y direction. It was assumed that the
simulated domain was a section of a real field observation area,
and therefore the periodic boundary condition was adopted in
the y direction, while the zero flux boundary condition was
employed in the x direction. In addition, the initial condition
was considered to be spatial perturbations around the positive
homogeneous steady state E∗.

The next step was to study how the delay strength τ and
the flow velocity v influenced the spatial distribution. It is
well known that flow is one of the important factors affecting
the form of Red Tide. Figure 2 depicts the relationships
among the characteristic structure of the spatial distribution,
the delay strength τ , and the flow velocity v. Specifically,
Fig. 2(a) shows the initial spatial distribution of phytoplankton,
which is heterogeneous. In order to investigate the effects
of τ and v on the spatial distribution of the phytoplankton
biomass, numerical simulations of phytoplankton biomass for
different values of τ and v at the same time t = 1100 are
shown in Figs. 2(b)–2(d). By comparing Figs. 2(b) and 2(d),
it is evident that the spatial distribution of the phytoplankton
gradually formed into strips over time, but the maximum value
of the phytoplankton biomass with v = 2 was greater than
with v = 1.5. This phenomenon suggests that a large value
of v can enhance the strength of phytoplankton accumulation.
However, it is regretful that the change in the value of v is not
much potential to influence the spatial distribution structure of
the phytoplankton. Based on a comparative analysis between
Figs. 2(d) and 2(c), it can be asserted that large values of
the delay τ can promote the accumulation of phytoplankton
because the maximum value of the phytoplankton biomass
with τ = 0.6 is greater than with τ = 0.5 and that the width of
the strip with τ = 0.6 is less than with τ = 0.5. These results
are consistent with observations: the clusters of phytoplankton

FIG. 1. (Color online) (a) Bifurcation diagram in the v − τ − D parameter space. The curved surface indicates the critical bifurcation point
vc as a function of τ and D. (b) An illustration of real part of λ, as defined in Eq. (13) for various τ , where D = 0.1, v = 1.5. The red curved
surface represents the real part of λ, and the gray plane is the zero plane.
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(a) 0.072

0.074

0.076

0.078

(b)
0.074

0.075

0.076

(c)
0.05

0.1

0.15

(d) 0.0749

0.075

0.0751

FIG. 2. (Color online) (a) The spatial distribution of phytoplankton biomass at t = 0; (b–d) The spatial distribution of phytoplankton
biomass with D = 0.1 at t = 1100, where τ = 0.5,v = 2 for (b); τ = 0.6,v = 1.5 for (c); τ = 0.5,v = 1.5 for (d).

become larger, and their average biomass increases. Thus,
it should be stressed that the delay strength τ and the flow
velocity v can seriously affect the spatial distribution of
phytoplankton biomass.

For τ = 0, according to the analysis in Sec. II, the positive
homogeneous steady state E∗ is linearly stable. This result
is confirmed in Figs. 3(a) and 3(b). Figure 3(b) shows
the spatiotemporal evolution of phytoplankton biomass at
x = 126.25, and Fig. 3(a) shows the spatial distribution of
phytoplankton biomass at t = 1100. It is obvious that the
biomass eventually reaches the positive homogeneous steady
state E∗. In addition, by Fig. 1(a), it can be seen that the positive
homogeneous steady state E∗ is stable when (τ,v,D) is in
space II. For this reason, the corresponding numerical results
are given, as is shown in Figs. 3(c) and 3(d), which confirm that
the phytoplankton biomass indeed tends to E∗. The results of
numerical simulations agree well with the analysis in Sec. II. In
particular, from Figs. 2(b)–2(d), it is clear that the long-term
solutions are traveling waves, in which patterns of different

speed coexist. Based on the above analysis, delay can induce
instability in the system directly and encourage it to form a
banded pattern.

C. Analysis of sensitivity

By the previous results, it is not difficult to find that the
parameters, the delay τ , and the flow velocity v can influence
dynamics of system Eqs. (3) and (5). Hence, we further did an
analysis of sensitivity to the parameters τ and v responsible
for stability of the positive homogeneous steady state using
numerical technique in system Eqs. (3) and (5). This is through
changing the delay τ and the flow velocity v to observe their
effects on the peak value and minimum value of population
biomass. Figure 4 shows effects of the parameters τ and v on
the sensitivity for the stability of the positive homogeneous
steady state.

Figure 4 indicates that there is a critical value in the delay
τ and the flow velocity v, respectively. When the values

(a)
0.0749

0.075

0.0751

(b)

(d)(c)
0.0749

0.075

0.0751

FIG. 3. (Color online) (a,c) The spatial distribution of phytoplankton biomass at t = 1100; (b,d) The Space-temporal evolution of
phytoplankton at x = 126.25, where D = 0.1, v = 1.5, and τ = 0 for (a,b); τ = 0.3 for (c,d).
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1.4 1.6 1.8 2
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0.2
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P

(b)

0 0.7 1.4
0.073
0.075

0.49 0.53 0.57 0.6
0

0.1

0.2

τ

P

(a)

0 0.2 0.49
0.073
0.075

FIG. 4. (Color online) Analysis of sensitivity in system Eqs. (3) and (5) based on spatial solutions. The solid magenta lines represent the
stable positive homogeneous steady state, and the dashed magenta lines represent the positive homogeneous steady state where it is unstable
to spatially heterogeneous perturbations. The red lines with solid cycle and the blue lines with solid cycle represent maximum and minimum
amplitude of phytoplankton biomass in the simulated domain. (a) The effect of delay on the system with v = 1.5; (b) The effect of flow on the
system with τ = 0.5.

of τ and v are less than their corresponding critical value,
the positive homogeneous steady state is stable. In contrast,
the positive homogeneous steady state will lose its stability.
That is, with the increases of the parameter τ and v, the
positive homogeneous steady state will become unstable, and
the corresponding banded pattern will appear. These results
show that the stability of the positive homogeneous steady
state is sensitivity for variations of the parameter τ and v. In
addition, it is also worthwhile to point out that the results in
Fig. 4 based on system Eqs. (3) and (5) are consistent with
the results obtained using approximative method in Fig. 1, this
means that the method used in this paper is feasible to study the
effects of time delay in advection-reaction-diffusion equations
under some conditions.

IV. CONCLUSION

The system proposed in Ref. [31] has been extended in this
research into a spatial one with delay, which was addressed
by a couple of advection-reaction-diffusion equations with
time delay. Using the approximation method described in
Refs. [32–34], a spatial system with delay was investigated.
The analysis focused on the effects of delay and flow on
instability of the system. Simple linear analysis revealed
that the positive homogeneous steady state E∗ in system
Eqs. (3) and (4) was locally linearly stable. However, it became
unstable when time delay was present. If only flow velocity or
delay was beyond some critical value, then a banded pattern
could emerge. In other words, delay and flow could result in
the formation of symmetry-breaking structures in the form of
a banded pattern via a Turing-like instability.

A banded pattern has been obtained in others re-
searches [4,13,14,16], and it also has been found in field
observations [18,37]. In particular, in Ref. [37] the authors
observed the banded distribution of phytoplankton in some
seas, lakes, and rivers. These observations are very similar
to our simulated results. Indeed, due to some factors such as
noise, internal factors, and physical factors, etc., a constant
population density may not even exist, even if uniform
oscillations of cyclic population are not the case, which
has been reported in Ref. [38]. In contrast, the population
density may be different at different locations, while a banded
pattern shows this point. Hence, the banded pattern may be
a suitable explanation of a real-world natural phenomenon.
Since time delay appears as an important component in bio-
and ecosystem, we believe that these results of delay- and
flow-induced banded pattern are likely to be important in
studies of nutrient-phytoplankton systems, and the method of
using the advection-diffusion-reaction equation with delay to
study the evolutionary mechanism of phytoplankton such as
Red Tide is feasible.
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