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Breather-to-soliton conversions described by the quintic equation of the nonlinear
Schrödinger hierarchy
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We analyze the quintic integrable equation of the nonlinear Schrödinger hierarchy that includes fifth-order
dispersion with matching higher-order nonlinear terms. We show that a breather solution of this equation can
be converted into a nonpulsating soliton solution on a background. We calculate the locus of the eigenvalues
on the complex plane which convert breathers into solitons. This transformation does not have an analog in the
standard nonlinear Schrödinger equation. We also study the interaction between the new type of solitons, as well
as between breathers and these solitons.
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I. INTRODUCTION

Breathers introduce a new dimension into the seemingly
well-known world of solutions of integrable equations. They
have drawn much attention because of their interactions and
energy exchange with a constant background [1–3]. Such
interactions produce unique behaviors that are different from
the usual soliton dynamics. Breathers are solutions that are
periodic in space or in time and are classified as either
Kuznetsov–Ma solitons [4] or Akhmediev breathers [5,6].
Each of these has been considered as a candidate for describing
the notorious rogue waves [7]. The large-period limiting case
of each is a Peregrine solution [8–10], which is localized both
in space and time and which serves as a prototype of a rogue
wave [11]. As such, it is known as a wave that “appears from
nowhere and disappears without a trace” [12]. The Peregrine
solution has been observed both in water waves [13] and in
optics [14].

The nonlinear Schrödinger equation (NLSE) is a basic
model for the propagation and dynamics of waves, both in
optics [15,16] and in water [17,18]. However, upon increasing
the wave amplitude, we have to take into account higher-order
effects which are not present in the basic model. These effects
may add qualitatively new features to wave propagation phe-
nomena [19]. Various higher-order terms have been considered
[20–29]; they mostly result in nonintegrable equations which
then lack analytic treatment. The latter are fundamentally
important for understanding the wave propagation phenomena
and for further progress in the area.

In this paper, we extend our studies to the quintic equation
of the NLSE hierarchy. Preliminary analysis of this equation
and its soliton solutions have been presented in Ref. [30].
Here, we present first-, second-, and third-order breather
solutions of this equation, and the possibility of transforming
them into continuous (nonperiodic) solitons on a background.
The existence of such solutions is an unexpected feature of
breathers. Various examples of collisions of these solitons and
their interactions with ordinary breathers are given.

Painlevé analysis of modified NLS equations, which pro-
vides an indication of integrability, has been given in Ref. [31].
Preliminary analysis of this equation and its soliton solutions
have been presented in Ref. [30]. The integrable NLSE
with the addition of the third-order terms is known as the
Hirota equation [32,33]. The equation with fourth-order terms

is called the Lakshmanan–Porsezian–Daniel (LPD) equation
[34–36]. The coefficients of higher-order terms of the LPD
equation providing integrability were found by using the
Painlevé analysis. This equation appears in the analysis of the
Heisenberg spin chain. For an arbitrary combination of these
operators of up to fourth order, soliton solutions were given in
Ref. [37], while rogue waves were presented in Ref. [38].

The fifth-order equation of the NLSE hierarchy (QNLSH)
including the third-order and fourth-order equation can be
written in operator form as

iψx + S[ψ(x,t)] − iαH [ψ(x,t)] + γP [ψ(x,t)]

− iδQ[ψ(x,t)] = 0, (1)

where the second-order term S is the nonlinear Schrödinger
operator,

S[ψ(x,t)] = 1
2ψtt + ψ |ψ |2,

the third-order H is the Hirota operator (beginning with third-
order dispersion),

H [ψ(x,t)] = ψttt + 6|ψ |2ψt,

and the fourth-order P is the Lakshmanan–Porsezian–Daniel
(LPD) operator (beginning with fourth-order dispersion),

P [ψ(x,t)] = ψtttt + 8|ψ |2ψtt + 6ψ |ψ |4 + 4ψ |ψt |2
+ 6ψ2

t ψ∗ + 2ψ2ψ∗
t t .

In the present work, we are mainly focusing on the fifth-
order equation of the NLSE hierarchy. Taking only the quintic
operator [Q[ψ(x,t)]] from Eq. (1) with fifth-order dispersion,
the equation of interest becomes

iψx + S[ψ(x,t)] − iδQ[ψ(x,t)] = 0, (2)

and the fifth-order quintic operator can be given as

Q[ψ(x,t)] = ψttttt + 30|ψ |4ψt + 10|ψ |2ψttt + 10ψψtψ
∗
t t

+ 10ψψ∗
t ψtt + 20ψ∗ψtψtt + 10ψ2

t ψ∗
t . (3)

Here, x is the propagation variable and t is the transverse
variable (time in a moving frame), with the function |ψ(x,t)|
being the envelope of the waves. We note that each term in
Eq. (3) has an odd number of time derivatives. For example,
the last term contains three first-order derivatives. This
equation is part of the NLS hierarchy [39]. Selected solutions
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of this equation have been analyzed earlier in Ref. [40].
The Lax pair, conservation laws, and N -soliton solutions
for a significantly restricted version of this equation, with
real ψ , have been given in Ref. [41]. In this particular case,
it is simply an extended Korteweg–de Vries equation, also
applicable to surface waves in shallow water. In contrast, here
we are dealing with complex ψ .

In optics, higher-order terms become progressively more
important when we consider pulses of shorter duration propa-
gating along a fiber. The general governing equation for pulse
propagation in a fiber is given by [42]

iψx = −
∞∑

m=1

imβm

m!

∂mψ

∂tm

− γ

(
1 + is

∂

∂t

)(
ψ

∫ ∞

0
R(t ′)|ψ(t − t ′)|2dt ′

)
, (4)

where the first term on the right-hand side is the Taylor
series expansion for linear dispersion, with corresponding
coefficients βm, while the second term describes the nonlinear
terms, taking into account their dispersion. Here, s is the
self-steepening coefficient, the nonlinear term γ depends on ef-
fective core area, and R(t) includes instantaneous (electronic)
and delayed nuclear (Raman) contributions of the nonlinear
material response.

The integral in Eq. (4) is often approximated by taking the
series to first order only, viz. |ψ |2 − τR

∂
∂t

(|ψ |2), for Raman
delay τR . However, in reality, we need higher-order terms, and
these involve higher-order time derivatives of intensity, |ψ |2.
In particular, ψ ∂3

∂t3 (|ψ |2) produces terms similar to those in Q.
The coefficients for each term depend on the function R(t ′)
that, in turn, depends on the material parameters.

The quintic operator Q contains all essential terms that may
appear when we move beyond the basic NLSE approximation.
The first term in Eq. (3) describes the linear fifth-order
dispersion with δ = β5/120. The other six terms describe the
nonlinear dispersion. There is no clear way to associate any
individual term in this equation with a single isolated physical
phenomenon, as can be done for the third-order equation.
Moreover, these terms can be rearranged in various forms.
However, Eq. (3) contains the complete set of terms describing
physical phenomena appropriate to that order. The relevance
to a particular physical situation is also restricted by the choice
of fixed coefficients in the operator. In reality, the coefficients
may differ from those in Eq. (3). However, the coefficient δ

in front of the whole operator can be varied and set close
to an experimental value. This flexibility allows us to make
reasonable adjustments for the actual physical phenomenon to
be approximated in future experiments.

Importantly, the whole equation (1) is integrable and admits
exact solutions. However, dealing with several free parameters
at the very beginning is a cumbersome exercise. Therefore, we
take a more cautious approach and first consider solutions
with each operator separately before dealing with the whole
equation, as it may produce excessively complicated solutions.

Considering the quintic term separately may be a reasonable
approach, even from a practical point of view. As we know,
modern optical fibers can be designed with various dispersion
characteristics, and the lowest-order dispersion terms can be

suppressed, making higher-order terms pivotal. Thus, the idea
that certain predictions may allow experimental confirmations
is not as outrageous as it may initially appear. Talking
realistically, fifth-order dispersion does play a significant role
in present laser experiments when pulses are close to 20 ps in
duration [43].

II. BREATHER SOLUTION WITH
COMPLEX EIGENVALUE

The breather solutions of the fundamental NLSE have been
analyzed in detail in Refs. [2,44–50]. The breather solution for
the next-higher-order NLSE, which is well known as the Hirota
equation, has been given in Ref. [3]. The fundamental property
of this special solution, known as the Akhmediev breather, is
that it is localized in “x” and periodic in “t .” It describes
the complete nonlinear evolution of an initial state that starts
with modulation instability [48–50]. Solutions that have a
small nonzero velocity have been dubbed “quasi-Akhmediev
breathers” [47].

In the case of the NLSE, these solutions have a complex
eigenvalue λ of the inverse scattering transform theory, where
the real part of the eigenvalue is responsible for the velocity,
while the imaginary part characterizes the frequency of the
modulation. Simple solutions like single-soliton or single-
breather solutions have one eigenvalue, while higher-order
solutions may involve several eigenvalues. When using Dar-
boux transformation schemes, each step adds one additional
eigenvalue to the complex solution.

The periodicity plays an important role in the dynamics of
the breather solution. The addition of higher-order odd terms to
the NLSE results in oblique propagation of waves. Effectively,
these terms change the velocity of the waves. The velocity
change is proportional to the coefficient δ in the equation.
Thus, a breather is subjected to reorientation in the (x,t)
plane. Below, we explicitly demonstrate how higher-order
terms, specifically, the “quintic” operator, change the overall
profile of breather solutions. The details of the mathematical
calculations are given in Appendix.

To begin with, we present the first-order breather solution
with complex eigenvalue λ = a + ib:

ψ1 =
[

1 + 2b
G1 + iH1

D

]
eix . (5)

Here, the functions G1, H1, and D are combinations of
trigonometric and hyperbolic functions:

G1 = cos(xVT + tκr ) cosh(2χi) − cosh(xVH + tκi) sin(2χr ),

H1 = cos(2χr ) sinh(xVH + tκi) + sin(xVT + tκr ) sinh(2χi),

D = cosh(xVH + tκi) cosh(2χi) − cos(xVT + tκr ) sin(2χr ),

with

κ = 2
√

1 + λ2 = κr + iκi,

χ = 1

2
cos−1

(
κ

2

)
= χr + iχi,
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FIG. 1. (Color online) First-order quintic breather solution given
by Eq. (5) with complex eigenvalue λ = 0.08 + 0.9i and δ = 1

64 .

and

� = 16ab(1 − 4a2 + 4b2),

� = 2[3 + 8a4 + 4b2 + 8b4 − 4a2(1 + 12b2)],

VT = −bκi + aκr + δ(�κi + �κr ),

VH = aκi + bκr + δ(�κi − �κr ).

This solution, for a fixed set of parameters, λ = 0.08 + 0.9i

and δ = 1
64 , is illustrated in Fig. 1. As we will see in the next

section, the actual value of the parameter δ does not change the
effects that we observe qualitatively. It has to be sufficiently
small in order to reflect the smallness of the higher-order terms
in the QNLSH. Just as in the NLSE case, the imaginary part of
the eigenvalue λ is responsible for the period of the breather
along the t axis. This real part a of the eigenvalue is equivalent
to the velocity in the case of a soliton and thus induces a
rotation of the total pulse train in the (x,t) plane. The quintic
terms controlled by the parameter δ introduce skewing of each
individual peak profile in the breather. In the limiting case
δ = 0, Eq. (2) reduces to the NLSE and the solution Eq. (5)
reduces to the breather solution of the NLSE with a complex
eigenvalue. As the equation we are dealing with is of fifth
order with higher-order derivative terms in it, the solutions are
extremely sensitive to the coefficient δ. Therefore, we choose
a fairly small δ, e.g., 1

16 or 1
64 , to generate visible effects in the

solution.

III. BREATHER-TO-SOLITON CONVERSION
OF THE QNLSH SOLUTIONS

In the NLSE case, Kuznetsov–Ma solitons (b > 1) and
Akhmediev breathers (0 < b < 1) can be transformed into
each other by a change of the eigenvalue λ. Solutions stay
periodic unless the period itself is taken to infinity; this occurs
for λ = i, i.e., a = 0 and b = 1. In this case, each of these
solutions is transformed into a Peregrine rational solution [51].
There are no solutions that describe continuous nonperiodic
soliton propagation similar to standard solitons on a zero
background. The situation changes when we add the quintic
terms into equation. Then, specific values of the eigenvalue
may transform a breather into a solution which is similar to
an ordinary soliton solution. An example of such solution is
shown in Fig. 2.

FIG. 2. (Color online) A breather transformed into a soliton. This
solution is given by Eq. (5), with the eigenvalue λ= −1.34329 + 0.9i.
The propagation direction is x.

Below, we refer to all solitary waves which continuously
propagate in t as “solitons.” In terms of collisions, they have
the same properties as ordinary solitons of the NLSE. As will
be shown in the following sections, they maintain the same
velocity after a collision as they had before the collision.
However, we should keep in mind that the solutions are
on a constant background. The plane-wave background is
modulationally unstable and a perturbation may distort the
solutions formed on top of it. A complete study of the stability
of such composite solutions is an issue that requires special
investigation.

A transformation of a QNLSH breather, Eq. (5), into a
continuous soliton occurs when we take

VH

κi

= VT

κr

. (6)

In this case, the extrema of “cosine” and “cosh” functions in
Eq. (5) are located along the same straight lines in the (x,t)
plane causing transformation of the breather into a continuous
soliton.

Solutions of Eq. (6) can be represented on the complex
plane (a,b) for any particular δ. After a simple calculation, we
find that the condition of Eq. (6) can be reduced to a polynomial
equation in a and b:

16aδ(1 − 4a2 + 4b2) = 1, (7)

i.e., �δ = b. For an arbitrary real parameter δ, Eq. (7) defines
curves on the complex plane of λ, so that any point on these
curves corresponds to a breather-to-soliton conversion. The
easiest way to plot these curves is to take a as the independent
variable and find the solution for b:

b = ±
√

a2 − 1

4
+ 1

64aδ
. (8)

Curves calculated for positive b for three different values of δ

are presented in Fig. 3.
Alternatively, we can take b as the independent variable

and find the possible values of a by solving a cubic algebraic
equation Eq. (8). There are three branches of solution if b is
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FIG. 3. (Color online) Solutions of Eq. (7) on a complex plane
of λ for (blue solid curves) δ = 1/64, (red long-dashed curves)
δ = 1/32, and (green dotted curves) δ = 1/16. When a > 0, part
of a branch moves into the region of breathers (b < 1) when δ >

3
80

√
3
5 = 0.029 · · · . The large (red rectangle and green triangle) points

on solution curves are the specific points where breathers become
solitons. The (orange dotted) curve is the locus of the bifurcation
points when δ changes [see Eq. (9)].

above the bifurcation point:

a(1) = −8 3
√

3(4b2 + 1)δ2 − 3
√

2m2/3

4 × 62/3δ 3
√

m
,

a(2) = 8(
√

3 + 3i)(4b2 + 1)δ2 + 3
√

2 6
√

3(1 − i
√

3)m2/3

8 × 22/335/6δ 3
√

m
,

a(3) = 8(
√

3 − 3i)(4b2 + 1)δ2 + 3
√

2 6
√

3(1 + i
√

3)m2/3

8 × 22/335/6δ 3
√

m
,

where m = δ2[
√

81 − 768(4b2 + 1)3δ2 + 9]. Only one of
these solutions, namely a(1), is real if b is below the bifurcation
point.

At the bifurcation point, the value of b is

b0 = 1

2

√
3

4(2δ)2/3
− 1.

This is the point where db/da = 0 from Eq. (8), and also
a(2) = a(3). The value of a at this point is

a0 = 1

4(2δ)1/3
.

The curve giving the locus of bifurcation points, as δ changes,
is

3a2
0 − b2

0 = 1
4 . (9)

For the particular value of δ = 1/64, the bifurcation point is
given by a0 = 0.793 701 and b0 = 1.280 58. This is the lowest
point on the (blue) right-hand-side solid curve in Fig. 3.

To give an example, using the above solutions, we find
that, for the same imaginary part as in Fig. 1, i.e., b = 0.9,
and for the same δ = 1/64, the real part of the eigenvalue
is a = −1.343 29 · · · . This point is indicated by the lower
solid-red rectangle on the left-most (blue) branch of the curves
shown in Fig. 3. For this point (λ) on the complex plane, a
breather becomes a continuous soliton on a background. This
soliton is shown in Fig. 2.

For a better understanding of this phenomenon, let us start
with a simple case. When a = 0, the velocity is zero for the

FIG. 4. (Color online) A breather given by Eq. (5) with the
eigenvalue λ = 0 + 0.9i and δ = 1/16. The propagation direction
is x.

entire breather. The breather is parallel to the t axis, while
individual peak profiles can be skewed when δ is nonzero. An
example is shown in Fig. 4. Here, in order to see more clearly
the skewed position of each component, we have chosen a
higher value, viz. δ = 1/16.

Deviations of “a” from zero change the angle at which
the breather as a whole is positioned relative to the t axis.
These deviations can be positive or negative. When this angle
is equal to the angle of skewness of each peak, the breather
becomes a soliton. For the parameters b = 0.9 and δ = 1/64
this happens when a = −1.343 29 · · · . This is exactly the case
shown in Fig. 2. Here, only one central peak of the periodic
sequence remains. It becomes infinitely stretched along the
direction of propagation. This stretched pulse appears as a
soliton, as can be seen from Fig. 2. In this example, the soliton
profile is symmetric. However, introducing translations which
change the phase of the trigonometric functions may change
the shape into an asymmetric or double-peak profile.

The cosine function provides oscillations of the envelope
across the soliton, thus resulting in the oscillating tails in
the orthogonal direction. Consequently, the soliton has tail
oscillations in the form of a modulation of the background, as
is clearly visible in Fig. 2. These oscillations form a distinctive
feature of the solution, being different from the features of
ordinary solitons of the NLSE on a zero background.

When δ → 0, Eqs. (6) and (7) do not have any solutions,
showing that the NLSE does not allow conversion of breathers
into new types of solitons. Only higher-order equations of the
NLSE hierarchy admit such solutions. All of our examples
are presented for the value of δ = 1/64 (except for the one in
Fig. 4). This is a representative case that allows us to illustrate
new solutions in the best way. Higher values of δ do not bring
any new features in comparison to those shown in the plots
given in this work.

IV. SECOND-ORDER BREATHER-TO-SOLITON
CONVERSIONS

If a first-order solution admits a breather-to-soliton trans-
formation, we can expect similar transformations occurring in
second-order solutions. Indeed, all the higher-order solutions
are nonlinear superpositions of first-order solutions. Thus,
if one or two components are transformed into solitons, we
should obtain patterns similar to soliton interactions.
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FIG. 5. (Color online) Two-breather solution with complex
eigenvalues λ1 = 0.05 + 0.9i and λ2 = −0.05 + 0.9i, with δ = 1

64 .
Here, x is the propagation direction.

For the second-order solution, we need two complex eigen-
values, λj = aj + ibj , where j = 1,2. Details of the calcula-
tion are given in Appendix. We use the same representation of
the Lax pair and the Darboux scheme for the QNLSH, Eq. (2),
as in our previous work [30]. Figure 5 shows an example,
with δ = 1/64, of a two-breather collision. In the particular
case δ = 0, the solution reduces to the two-breather solution
of the NLSE given previously in Ref. [2] by equation (22)
of Appendix B. For comparison, the two-breather collision
described by the NLSE can be found in Fig. 10 of Ref. [2].

In order to convert a two-breather solution into a two-soliton
solution, we choose two arbitrary points λ1 = (a1,b1) and λ2 =
(a2,b2) on the curves in Fig. 3. In the following numerical
example, we take as the first point λ1 = −1.343 29 + 0.9i,
as already used in the previous section. Then, we take as the
second point λ2 with b2 = 0.8 and a2 = −1.2903. We have
chosen λ2 different from λ1. Equality would give a degenerate
case which introduces additional complications which we do
not want at the moment. An example of a breather collision
converted to a soliton collision with these eigenvalues is shown
in Fig. 6. This plot is indeed a two-soliton collision with the
collision point located at the origin. The two solitons propagate
in slightly different directions, due to the differences in λ.

FIG. 6. (Color online) Contour plot of a second-order breather-
to-soliton transformation. Here, the eigenvalues are λ1= −1.343 29 +
0.9i and λ2 = −1.2903 + 0.8i, while δ = 1

64 .

FIG. 7. (Color online) Collision between a breather with λ2 =
0.2 + 0.8i and a soliton with λ1 = −1.343 29 + 0.9i, when δ = 1

64 .

Each soliton has an oscillating tail, thus creating a complicated
collision pattern.

We also have the choice of converting only one of the
components into a soliton, while allowing the other component
to remain as a breather. Then we choose only one λ located on
a curve in Fig. 3, while the second λ can be chosen arbitrarily
on the complex plane. An example of a mixed collision of a
breather and a soliton is shown in Fig. 7. The relative positions
of the soliton and the breather can be controlled, not only by
the eigenvalues, but also by translations of each component
and changes in the phase of the breather. We omitted these
from our calculations for simplicity. The highest amplitude,
|ψ2|, reached in the collision is |ψ2(0,0)| = 4.4. It is the same
in both Figs. 6 and 7. In our examples, the maximum is located
at the origin.

V. HIGHER-ORDER SOLUTIONS

Continuing the process of constructing higher-order
breather-to-soliton converted solutions requires additional
eigenvalues λj located on any of the curves in Fig. 3. For
example, in order to build a three-breather solution converted
to a three-soliton solution, we have to choose three points on
the curves in Fig. 3 or, equivalently, solve algebraic equations

FIG. 8. (Color online) Contour plot of a third-order breather-to-
soliton converted solution with three eigenvalues λ1= −1.3432+0.9i,
λ2 = −1.2903 + 0.8i, and λ3 = −1.316 16 + 0.85i, with δ = 1

64 .
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FIG. 9. (Color online) Contour plot of a fourth-order breather
converted to four-soliton collision for λ1 = −1.3432 + 0.9i, λ2 =
−1.2903 + 0.8i, λ3= −1.3161 + 0.85i, and λ4= −1.300 51 + 0.82i

with δ = 1
64 .

(7) for three different eigenvalues. To be specific, if we have
a1 with b1, and a2 with a different b2, we should generate one
more a3 with a different b3. The choice of all three of these
specific eigenvalues converts the three-breather solution into
a three-soliton solution. Again, none of the eigenvalues can
be identical if we want to avoid degenerate cases. The latter
requires special consideration [1,52] that is not presented here.

An example of a three-soliton collision built this way
is shown in Fig. 8. This plot is constructed for three
complex eigenvalues, λ1 = −1.3432 + 0.9i, λ2 = −1.2903 +
0.8i, and λ3 = −1.316 16 + 0.85i. The highest amplitude at
the point of collision here is ψ3(0,0) = 6.1. For a fourth-order
soliton solution, we choose one more eigenvalue, λ4 with b4 =
0.82 and a4 = −1.300 51, located on a curve in Fig. 3. Using
the previous three eigenvalues, and this fourth eigenvalue, we
can produce a fourth-order soliton solution from the four-order
breather solution. It is presented in Fig. 9.

VI. KUZNETSOV-MA BREATHER
CONVERSION TO SOLITON

In the previous sections, we mainly presented the con-
version of Akhmediev breathers to soliton solutions for the

FIG. 10. (Color online) A Kuznetsov–Ma breather to soliton
conversion for λ = 0.432 32 + 1.5i with δ = 1

64 .

FIG. 11. (Color online) Collision of two solitons with eigenval-
ues λ1 = 0.432 32 + 1.5i and λ2 = 0.374 57 + 1.6i, when δ = 1

64 .

parameter range 0 < b < 1. Apart from Akhmediev breathers,
the conversion scenario also holds for Kuznetsov–Ma solitons
when b > 1. In this case, solving Eq. (7) leads to three real
solutions for a. For given b1,2,3 = 1.5, the solutions are a1 =
−1.752 33, a2 = 0.432 32, and a3 = 1.320 01. These eigen-
values are shown in Fig. 3 by the large green triangle located
at b = 1.5: one on the left branch (solid blue line) and the other
two on the right branch (solid blue line). Each eigenvalue pro-
duces a continuous soliton. For example, the choice a = a2 =
0.432 32 produces the soliton which is shown in Fig. 10. This
soliton has only one, infinitely stretched, peak. Two of these
solitons propagate to the right while the one with a = a2 =
0.432 32 propagates to the left. Tail oscillations are damped
for the latter case, and only one zero remains on each side of
the soliton. This is clearly seen in Fig. 10. For lower values of
δ, the right-hand-side branch of the solutions in Fig. 3 moves
down and three eigenvalues can exist, even for the case b < 1.

Solitons of the right-hand-side branch can collide with each
other or with solitons of the left-hand-side branch. An example

FIG. 12. (Color online) Three-soliton collision, where the eigen-
values are on a right-hand-side branch in Fig. 3: λ1 = 0.432 32 + 1.5i

and λ2 = 0.374 57+1.6i, λ3=0.4131 93 + 1.53i. Here, δ= 1
64 .
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of a collision of two solitons of the right-hand-side branch is
shown in Fig. 11. Comparing this case with the plot in Fig. 8,
we can notice that, first, the solitons propagate in a direction
different from the one in Fig. 8. Second, the oscillatory tails
are less visible. These features are in accordance with the
properties of single solitons discussed above. The highest
amplitude of the collision here is 7.2 at (x,t) → (0,0).

An example of a three-soliton collision is shown in Fig. 12.
All eigenvalues here also belong to the right-hand-side branch
of eigenvalues in Fig. 3.

VII. CONCLUSION

We have derived first-order breather solutions of the
QNLSH and have shown that they can be converted into soli-
tons. The reasons and the conditions for conversion have been
given explicitly. We calculated the locus of eigenvalues on the
complex plane which convert the breathers into solitons. The
solitons with these eigenvalues can collide as normal solitons
on a zero background. We have provided several illustrations
of such special solitons and patterns of their collisions.
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APPENDIX: DETAILS OF CALCULATIONS
FOR THE FIRST- AND SECOND-ORDER BREATHER

SOLUTIONS WITH COMPLEX EIGENVALUES

Here, we follow our previous calculations, given explicitly
in Appendices A and B of [2], except that the notation is ad-
justed to the present work. We separate the real and imaginary
parts of κ and χ , so that κ = κjr + iκji and χ = χjr + iχji .
We can express the linear r and s functions of Ref. [2]
either in terms of exponential functions or trigonometric
functions. To be specific, we will follow the latter case.

Then λj = aj + ibj , κj = 2
√

1 + λ2
j , and χj = cos−1( κj

2 ).

We define κjr = Re(κj ), κji = Im(κj ), χjr = Re(χj ), χji =
Im(χj ). Then linear functions r and s are

r1,1 = 2ie−ix/2 sin(G),

s1,1 = 2eix/2 cos(H ).

We can split the argument of the trigonometric functions
as G = Ar + iAi and H = Br + iBi , where the real and
imaginary parts are

Ar = χ1r + 1

2
(κ1r t + d1rx) − π

4
,

Ai = χ1i + 1

2
(κ1i t + d1ix),

Br = −χ1r + 1

2
(κ1r t + d1rx) − π

4
,

Bi = −χ1i + 1

2
(κ1i t + d1ix).

Here d1 = d1r + id1i is the coefficient of x in the argument.

Unlike the case of the NLSE, for the quintic equation d1r

and d1i can be written in the form

�1 = 16a1b1
(
1 − 4a2

1 + 4b2
1

)
,

�1 = 2
[
3 + 8a4

1 + 4b2
1 + 8b4

1 − 4a2
1

(
1 + 12b2

1

)]
,

d1r = −b1κ1i + a1κ1r + δ(�1κ1i + �1κ1r ),

d1i = a1κ1i + b1κ1r + δ(�1κ1i − �1κ1r ).

Thus we obtain the solution

ψ = eix

[
1 + 8

D1
ib1 cosh(Bi − iBr ) sinh(Ai + iAr )

]
, (A1)

where D1 = cos(2Br ) + cosh(2Ai) + cosh(2Bi) − cos(2Ar ).
The form of this solution looks similar to Eq. (18) of
Appendix A in Ref. [2]. However, the arguments of the
functions are quite different.

Similarly, for the second-order solution, the linear functions
r1,2 and s1,2 are r1,2 = 2ie−ix/2 sin(C), s1,2 = 2eix/2 cos(D),
where

d2 = d2r + id2i ,

Cr = χ2r + 1

2
(κ2r t + d2rx) − π

4
,

Ci = χ2i + 1

2
(κ2i t + d2ix) ,

Dr = −χ2r + 1

2
(κ2r t + d2rx) − π

4
,

Di = −χ2i + 1

2
(κ2i t + d2ix) .

Here, d2 is the coefficient of x in the argument of the cos
and sin functions in r1,2 and s1,2, while the arguments are
separated into real and imaginary parts: C = Cr + iCi and
D = Dr + iDi .

Now, in order to derive the second-order quintic breather
solution, we finally need to derive r2,1 and s2,1 in terms of r1,1,
s1,1, r1,2, and s1,2. The coefficient of x, which is d2, will have
the same set of variables �2 and �2 in its real and imaginary
parts (d2i ,d2r ), as in the first-order solution:

�2 = 16a2b2
(
1 − 4a2

2 + 4b2
2

)
,

�2 = 2
[
3 + 8a4

2 + 4b2
2 + 8b4

2 − 4a2
2

(
1 + 12b2

2

)]
,

d2r = −b2κ2i + a2κ2r + δ (�2κ2i + �2κ2r ) ,

d2i = a2κ2i + b2κ2r + δ (�2κ2i − �2κ2r ) .

On taking these variables into account, the new linear
functions r∗

2,1 and s2,1 are

r∗
2,1 = − 2

D1
eix/2[4ib1 cosh (Bi − iBr ) cosh (Di + iDr )

× sinh (Ai + iAr ) + sinh (Ci + iCr )

×{cosh (2Ai) [−a1 + a2 + i (b1 − b2)]

+ cos (2Ar ) [a1 − a2 − i (b1 − b2)]

+ [cos (2Br ) + cosh (2Bi)] [−a1 + a2 − i (b1 + b2)]}],
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s2,1 = − 2

D1
eix/2[4ib1 cosh (Bi − iBr ) sinh (Ai + iAr ) sinh (Ci − iCr ) + cosh (Di − iDr ) {cosh (2Ai) [a1 − a2 − i (b1 + b2)]

+ cos (2Ar ) [−a1 + a2 + i (b1 + b2)] + [cos (2Br ) + cosh (2Bi)] [a1 − a2 + i (b1 − b2)]}].
By using a recurrence relation for higher-order solutions in the Darboux scheme, we can derive the second-order quintic breather
solution, including the real part of the eigenvalue. With δ = 0, this solution is a direct analog of the solution given in Appendix B,
Eq. (22) of Ref. [2].
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