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Experimental investigation of the elastic enhancement factor in a transient region
between regular and chaotic dynamics
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We present the results of an experimental study of the elastic enhancement factor W for a microwave rectangular
cavity simulating a two-dimensional quantum billiard in a transient region between regular and chaotic dynamics.
The cavity was coupled to a vector network analyzer via two microwave antennas. The departure of the system
from an integrable one due to the presence of antennas acting as scatterers is characterized by the parameter
of chaoticity κ = 2.8. The experimental results for the rectangular cavity are compared with those obtained for
a microwave rough cavity simulating a chaotic quantum billiard. The experimental results were obtained for
the frequency range ν = 16–18.5 GHz and moderate absorption strength γ = 5.2–7.4. We show that the elastic
enhancement factor for the rectangular cavity lies below the theoretical value W = 3 predicted for integrable
systems, and it is significantly higher than that obtained for the rough cavity. The results obtained for the
microwave rough cavity are smaller than those obtained within the framework of random matrix theory, and
they lie between them and those predicted within a recently introduced model of the two-channel coupling
[V. V. Sokolov and O. V. Zhirov, arXiv:1411.6211 [nucl-th]].
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I. INTRODUCTION

The elastic enhancement factor was introduced more than
50 years ago by Moldauer [1], and since then it has been
frequently considered in nuclear physics [2–4] and in other
fields [5,6]. The elastic enhancement factor Wβ is the ratio
of variances of diagonal elements of the two-port scattering
matrix Ŝ to off-diagonal elements of this matrix [4–6]. From
an experimental point of view, the elastic enhancement factor
Wβ , where β = 1 or 2 is the symmetry index for systems with
preserved and broken time-reversal symmetry, respectively, is
especially interesting because it can be used to study realistic
open systems also in the presence of absorption. The properties
of the elastic enhancement factor Wβ have been studied in
several precisely controllable systems, such as microwave
cavities [7–10] and networks [11–13]. The conjecture on the
universality of the ratio of variances of the scattering elements
in electromagnetic fields in the mode-stirred reverberating
chambers (time-reversal invariant system) was put forward
by Fiachetti and Michelson [7]. The universality of the elastic
enhancement factor Wβ=1 was also tested in the wave scatter-
ing experiments with microwave cavities simulating chaotic
quantum billiards [8,9] in the presence of absorption. Dietz
et al. [9] studied the universality of the elastic enhancement
factor Wβ with microwave cavities in the case of preserved
and partially broken time-reversal symmetries. Quite recently,
an extensive study of the elastic enhancement factor Wβ=1 was
published by Yeh et al. [10]. In that paper, the authors were
also able to study the elastic enhancement factor for microwave
cavities with time-reversal symmetry in a low absorption
regime. The reciprocal quantity � = 1/Wβ=1 was considered
theoretically and measured as a function of frequency for a
chaotic microwave cavity with time-reversal symmetry [8,10].

The elastic enhancement factor Wβ has also been studied
for microwave irregular networks [14,15] simulating quantum
graphs with preserved and broken time-reversal symmetry
in the presence of moderate and large absorption strength
defined as follows: γ = 2π�/	, where � is the average

resonance width and 	 is the mean level spacing [5,6], 5 �
γ � 54.4 [11–13]. Microscopically, the absorption strength
γ = ∑

c Tc can be modeled by means of a huge number
of open, coupled to continuum channels “c,” where Tc =
1 − |〈Scc〉|2 and 〈Scc〉 stands for the average S matrix [6].
The recent paper of Kharkov and Sokolov [4] showed that the
elastic enhancement factor of open systems with a transient
from the regular to chaotic internal dynamics depends on both
the parameter of chaoticity κ and the openness η. The openness
η is formally described by the same formula as the absorption
strength γ [4].

It is important to point out that the elastic enhancement
factor for systems with absorption, in a transient region
between regular and chaotic dynamics, has not been studied
experimentally yet. In this paper, we present the results of an
experimental study of the elastic enhancement factor Wβ [5,6]
for microwave rectangular and rough cavities, coupled to
the vector network analyzer through antennas, simulating,
respectively, partially chaotic and chaotic two-dimensional
(2D) quantum billiards with preserved time-reversal symmetry
(β = 1) in the presence of moderate absorption.

The elastic enhancement factor Wβ is defined by the
relationship [5,6]

Wβ =
√

var(Saa)var(Sbb)

var(Sab)
, (1)

where var(Sab) ≡ 〈|Sab|2〉 − |〈Sab〉|2 is the variance of the
scattering matrix element Sab of the two-port scattering matrix,

Ŝ =
[
Saa Sab

Sba Sbb

]
. (2)

For small and intermediate values of the parameter γ ,
the elastic enhancement factor Wβ might depend both on
the parameter γ and on the coupling to the system [8].
However, for large absorption strength γ � 1, the elastic
enhancement factor Wβ can be approximated by the formula
Wβ = 2/β [5,6,8]. Fiachetti [16] showed that in the case of a
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stochastic environment, which can be characterized by a sta-
tistically isotropic scattering matrix, the elastic enhancement
factor should have the universal value Wβ=1 = 2. Recently, the
two-channel problem (e.g., an experimental system with two
ports “a” and “b”) with internal absorption and time-reversal
symmetry has been numerically considered by Sokolov and
Zhirov [17]. It has been shown that for the equivalent channels
“a” and “b” with transmission coefficients Ta = Tb = T ,
0 � T � 1, the elastic enhancement factor Wβ=1 depends both
on the transmission coefficient T and internal absorption, and
it can take, respectively, values between 3 and 2. Hereafter, we
will use the abbreviation W ≡ Wβ=1.

II. MICROWAVE CAVITIES SIMULATING
QUANTUM BILLIARDS

In the experiment, we used a microwave rectangular cavity
to simulate a two-dimensional (2D) billiard in a transient
region between regular and chaotic dynamics. A quantum
chaotic billiard was simulating by a rough microwave cavity. If
the excitation frequency ν is below νmax = c/2d, where c is the
speed of light in the vacuum and d is the height of the cavity,
only the transverse magnetic TM0 mode can be excited inside
the cavity. Then, the analogy between microwave flat cavities
and quantum billiards is based upon the equivalency of the
Helmholtz equation describing the microwave cavities and the
Schrödinger equation describing the quantum systems [18,19].

Absorption of the cavities can either be changed by
changing the frequency range of the measurements, or more
effectively, by the application of microwave absorbers. In this
paper, we are only interested in moderate absorption, for which
W > 2 [5,6,8] and which can be controlled by the choice of
the microwave frequency range.

III. EXPERIMENTAL SETUP

Figure 1(a) shows the scheme of the rectangular microwave
cavity, which was used for measuring of the two-port scattering
matrix Ŝ. The scattering matrix Ŝ of the cavity was measured
in the frequency window 16–18.5 GHz. The vector network
analyzer Agilent E8364B was connected through the HP
85133-616 and HP 85133-617 flexible microwave cables to the
two microwave antennas that were introduced inside the cavity
[holes A1, A2, A3, A4, and A5 in Fig. 1(a)]. The antennas wires
(diameter 0.9 mm) were protruded 3 mm into the cavity. The
measurements were completed for 10 different positions of
the antennas. The width of the rectangular cavity was L2 = 20
cm. Different realizations of the cavity were created by the
change of its length from L1 = 41.5 to 36.5 cm in 25 steps of
0.2 cm length.

Figure 1(b) shows the scheme of the rough microwave
cavity [20]. The cavity is composed of the two side
wall segments. Segment (1) is described by the function
r(θ ) = r0 + ∑M

i=2 ai sin(iθ + φi), where the mean radius r0 =
20.0 cm, M = 20, and 0 � θ < π . The amplitudes ai and the
phases φi are uniformly distributed on [0.084,0.091] cm and
[0,2π ], respectively.

Both the rectangular and rough cavities had the same height
d = 8 mm, so that νmax = 18.7 GHz. Also, in the case of the
rough cavity, the two-port scattering matrix Ŝ was measured in

L1

L2A1

A2

A3

A4

A5

(a)

A1
A2

,,,     r( )θ

(1)

(b)

FIG. 1. (a) The rectangular microwave cavity and (b) the rough
cavity, which were used for measuring the two-port scattering matrix
Ŝ. The rough cavity side wall segments are marked by (1) and (2)
(see text). The scattering matrix Ŝ of the cavities was measured in
the frequency window: 16–18.5 GHz. The vector network analyzer
Agilent E8364B was connected to the microwave antennas, which
were introduced inside the cavities [holes A1, A2, A3, A4, and A5 in
(a) and A1 and A2 in (b)] through the flexible microwave cables HP
85133-616 and HP 85133-617. The width of the rectangular cavity
was 20 cm. The length of the cavity was changed from L1 = 41.5 to
36.5 cm in 25 steps of 0.2 cm length. To create different realizations
of the rough cavity, a metallic perturber [see panel (b)] was moved
inside the cavity.

the frequency range 16–18.5 GHz. The 3-mm-long antennas
were introduced inside the cavity through the holes A1 and A2.
To create different realizations of the rough cavity, a metallic
perturber with area Ap � 9 cm2 and perimeter Pp � 26 cm
[see panel (b)] was moved inside the cavity along the sidewalls
using an external magnet. The linear size of the perturber
Lp � 5 cm was more than 2.5 times bigger than the microwave
wavelength at 16 GHz.

IV. THE NEAREST-NEIGHBOR SPACING DISTRIBUTIONS

The properties of microwave cavities were investigated
using the nearest-neighbor spacing distribution P (s). The dis-
tribution P (s) for the microwave rectangular cavity obtained
for the frequency range ν = 16–17 GHz is shown in Fig. 2(a)
(bars). The distribution P (s) was averaged over 30 microwave
cavity configurations. In this way, 2760 eigenfrequencies of the
cavity were used in the calculations of the distribution P (s).

Figure 2(a) shows that in spite of using short microwave
antennas, the experimental distribution P (s) departs from the
Poisson distribution (broken line), which is characteristic of
classically integrable systems. The distribution P (s) is also
different from the theoretical prediction for the Gaussian
orthogonal ensemble (GOE) in RMT (full line) characteristic

032925-2



EXPERIMENTAL INVESTIGATION OF THE ELASTIC . . . PHYSICAL REVIEW E 91, 032925 (2015)

FIG. 2. (a) The nearest-neighbor spacing distribution P (s) for
the microwave rectangular cavity coupled to the external channels via
antennas (bars) obtained for the frequency range ν = 16–17 GHz. The
experimental distribution P (s) is compared to the Poisson distribution
(broken line), which is characteristic for classically integrable
systems, and to the theoretical prediction for GOE in RMT (full
line). The inset shows the numerically reconstructed nearest-neighbor
spacing distribution P (s) for the chaoticity parameter κ = 2.8.
(b) The nearest-neighbor spacing distribution P (s) for the microwave
rough cavity obtained for the frequency range ν = 6–9 GHz (bars) is
compared to the theoretical prediction for GOE (full line) and to the
Poisson distribution (broken line).

of chaotic systems with time-reversal symmetry, showing the
transition between integrability and chaos. For 0.25 � s �
0.75, it is higher than the one for GOE in RMT, however for
s > 2.0 it is closer to the Poisson distribution. This behavior is
different from that investigated by Robnik and Veble [21] for
irrational and rational rectangles where huge fluctuations and
the departure of the distribution P (s) from the Poisson one
were reported for very small s.

The results obtained for the microwave rectangular cavity
should be contrasted with the results obtained for the nearest-
neighbor spacing distribution P (s) for the rough cavity [bars

(b)

(a)

FIG. 3. Typical spectra of the rectangular cavity in the frequency
range 16–17 GHz [panel (a)] and the rough cavity in the frequency
range 8–9 GHz [panel (b)].

in Fig. 2(b)], which shows much better agreement with the
theoretical prediction for GOE in RMT (full line). In the case
of the rough cavity, the distribution P (s) was calculated on
the basis of 3554 cavity eigenfrequencies. Some small dis-
crepancies in the experimental P (s) from the RMT prediction
for s � 2.25 may be connected with either some unresolved
resonances or fingerprints of nonuniversal behavior of the
rough cavity. Similar discrepancies in the nearest-neighbor
spacing distribution P (s) for s � 2.5 are also visible in the
experimental results presented in the paper by Poli et al. [22].
Typical spectra of the rectangular cavity in the frequency range
16–17 GHz and the rough cavity in the frequency range 8–
9 GHz are shown in Figs. 3(a) and 3(b), respectively.

V. EXPERIMENTAL AND NUMERICAL RESULTS FOR
THE ELASTIC ENHANCEMENT FACTOR

In Fig. 4(a), the elastic enhancement factor W of the
two-port scattering matrix Ŝ of the microwave rectangular
cavity is shown as a function of microwave frequency ν =
16–18.5 GHz (full circles). Due to significant fluctuations
of the enhancement factor W , the experimental points were
obtained by averaging W over 250 different realizations of
the cavity length and the antenna positions in the frequency
window (ν − δν/2,ν + δν/2), where δν = 0.5 GHz. The two
black broken lines W = 2 and 3 show, respectively, the RMT
limits for very strong and very low absorption.

The parameter γ for the microwave rectangular cavities
depends on the microwave frequency, and it was changed from
5.2 to 7.4 with the increase of frequency ν from 16 to 18.5 GHz.

(b)

(a)

FIG. 4. (a) The elastic enhancement factor W of the two-port
scattering matrix Ŝ of the rectangular cavity coupled to the external
channels via antennas simulating a quantum system with the chaotic-
ity parameter κ = 2.8 ± 0.5 (full circles). The RMT results [5,6]
are shown by empty circles. (b) The elastic enhancement factor W

of the two-port scattering matrix Ŝ of the microwave rough cavity
simulating a quantum chaotic system (full black rhombi). The RMT
results are shown by empty rhombi. The measurements were done in
the frequency window ν = 16–18.5 GHz. The two black broken lines
W = 2 and 3 show, respectively, the RMT limits for very strong and
very low absorption. The latter limit W = 3 is also expected for the
integrable systems.
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According to Kharkov and Sokolov [4], the elastic enhance-
ment factor Wβ of the two-port scattering matrix Ŝ evaluated
within the framework of RMT can be expressed by

Wβ = 2 + δ1β − γ

∫ ∞

0
dτ e−γ τ b2,β (τ,κ), (3)

where b2,β (τ,κ) is the spectral form factor. The parameter
of chaoticity κ changes from κ = 0 for classically integrable
systems to κ → ∞ for chaotic systems. It is important to
note that in the transition region 0 < κ < ∞, the spectral
form factor b2,β (τ,κ) is currently known only for systems
with broken time-reversal symmetry. For integrable systems
with time-reversal symmetry, b2,1(τ,κ = 0) = 0, which im-
mediately leads to W = 3.

Figure 4(a) shows that the elastic enhancement factor
W of the two-port scattering matrix Ŝ of the rectangular
cavity is below the theoretical value W = 3. This result,
together with the complementary one for the experimental
distribution P (s) [see Fig. 2(a)], strongly suggests that the
system simulated by the two-port microwave rectangular
cavity due to scattering on the antennas departs from the
integrable one. This phenomenon was predicted by Seba [23]
and then thoroughly analyzed by Tudorovskiy et al. [24].
The influence of antennas on the widths of resonances in
a two-dimensional rectangular microwave cavity, in a much
lower frequency range than that investigated in this paper
(i.e., from below 1 GHz up to 5.5 GHz), was studied by
Barthélemy et al. [25]. In this experiment, relatively short
(2-mm-long) antennas were used. To give an idea about
the antennas’ performance, 3-mm-long antennas used is our
experiment were characterized in the frequency range 16–
18.5 GHz by the antenna coupling 1

2 (Ta + Tb) � 0.75. In
the frequency range 4.5–5.5 GHz, which was considered in
Ref. [25], the same antennas were characterized by much
smaller antenna coupling, 1

2 (Ta + Tb) � 0.15.
To estimate the chaoticity parameter κ for such a system,

we reconstructed the nearest-neighbor spacing distribution
shown in Fig. 2(a) using the random matrix Potter-Rosenzweig
model described in Ref. [26], where the matrix aij is defined
as follows:

aij = gij [δij + λ(1 − δij )], (4)

where gij denotes a symmetric matrix that belongs to GOE ma-
trices. λ is the transition parameter. The off-diagonal elements
gij are independently Gaussian-distributed with the same vari-
ance var(gij ) = 1 and the mean zero. The diagonal elements gii

are independently distributed with the variance var(gii) = 2.
For the matrices aij of the size N × N , we found out that

the parameter λ can be approximated by λ = κ/N . The fit
of the numerical nearest-neighbor spacing distribution P (s),
calculated on the basis of 100 realizations of 200 × 200 ma-
trices, to the experimental one yields the chaoticity parameter
κ = 2.8 ± 0.5. The inset in Fig. 2(a) shows the numerically re-
constructed nearest-neighbor spacing distribution P (s). Unfor-
tunately, even knowing the chaoticity parameter κ , we are not
able to compare our experimental results with the theoretical
ones since the explicit form of the spectral form factor b2,1(τ,κ)
is not known. Though the paper [4] suggests that the behavior
of the enhancement factor for systems with time-reversal
symmetry should be similar to the behavior for systems with

broken time-reversal symmetry, this has yet to be proven. Just
for completeness of the presentation in Fig. 4(a), we also show
the RMT results predicted by Eq. (3) (empty circles) with the
spectral form factor b2,1(τ,κ → ∞) defined by Eq. (6).

In Fig. 4(b), the elastic enhancement factor W of the two-
port scattering matrix Ŝ of the microwave rough cavity simu-
lating a quantum chaotic system is shown (full black rhombi)
as a function of microwave frequency ν = 16–18.5 GHz.
The results were averaged over 105 different perturber po-
sitions in the frequency window δν = 0.5 GHz. It is important
to note that the theoretical and experimental investigations
of rough billiards (cavities) [27–29] showed that for lower
energies (frequencies) there exist regimes of localization and
Wigner ergodicity, and only for higher energies (frequencies)
do billiards (cavities) become fully chaotic. This fully chaotic
regime is called the regime of Shnirelman ergodicity. For the
rough cavity used in the experiment, the regime of Shnirelman
ergodicity extends for ν > 9.9 GHz. The presence of the
perturber causes that even for lower frequencies ν = 6–9 GHz,
the nearest-neighbor spacing distribution P (s) is close to the
theoretical prediction for GOE in RMT.

The parameter γ = 1
2 (γ (a) + γ (b)) was estimated by adjust-

ing the theoretical mean reflection coefficients parametrized by
the parameters γ (j ),

〈R〉(j )
th =

∫ 1

0
dR RP (R), (5)

to the experimental ones 〈R〉(j ) obtained after eliminating
the direct processes [30,31]. The index j = a,b denotes
the port a or b. In the calculations of 〈R〉(j )

th , we used the
analytic expression for the distribution P (R) of the reflection
coefficient R given in Ref. [32]. We found out that using the
same antennas, 3 mm long, as in the case of the rectangular
cavity, the value of the parameter γ was changed from 5.3 to 6.8
with the increase of microwave frequency ν from 16 to 18.5
GHz, respectively. Taking into account that the microwave
antennas act as single scattering channels, the absorption
strength γ can be expressed as a sum of the transmission
coefficients: γ = ∑

c Tc = Ta + Tb + α, where α represents
the internal absorption of the cavity [9]. The values of the
absorption strength γ and the transmission coefficients Ta , Tb,
and α are shown in Table I.

Figure 4(b) shows that the experimental results obtained for
the rough cavity are below the theoretical ones predicted for W

by Eq. (3) within the framework of RMT (empty rhombi). For
chaotic systems (κ → ∞) with the symmetry index β = 1,
the spectral form factor b2,1(τ,κ → ∞) in Eq. (3) has the

TABLE I. The absorption strength γ , the transmissions coef-
ficients Ta,Tb, and the internal absorption of the cavity α in the
frequency range δν.

δν (GHz) γ Ta Tb α

16.0–16.5 5.32 0.57 0.61 4.14
16.5–17.0 5.82 0.67 0.64 4.51
17.0–17.5 6.29 0.61 0.78 4.90
17.5–18.0 6.55 0.73 0.84 4.98
18.0–18.5 6.82 0.74 0.84 5.24
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form [5,6]

b2,1(τ,κ → ∞) = [1 − 2τ + τ log(1 + 2τ )]�(1 − τ )

+
[
τ log

2τ + 1

2τ − 1
− 1

]
�(τ − 1), (6)

where �(·) is the Heaviside step function.
It is important to point out that the recent numerical results

presented in Ref. [17] for the two-channel problem with
absorption give better agreement with the experimental ones.
In the case of the two equivalent channels with 0.6 � T � 0.8
and the internal absorption α = 3, the theory predicts W to
be between 2.08 and 2.03 (see Figure 5 in Ref. [17]). In
the experiment, the internal absorption α � 5 was larger than
those considered in the theoretical calculations, therefore one
should expect even smaller theoretical values of the elastic en-
hancement factor W . For comparison, the experimental elastic
enhancement factor W is scattered between 2.1 and 1.95.

VI. CONCLUSIONS

The elastic enhancement factor W was experimentally stud-
ied for microwave rectangular and rough cavities simulating

partially chaotic (characterized by the transient parameter κ =
2.8) and chaotic two-dimensional quantum billiards, respec-
tively. Both systems were characterized by similar, moderate
absorption strengths, γ = 5.2–7.4 and 5.3–6.8, respectively.
We show that the results obtained for the rectangular cavity lie
below the theoretical prediction for integrable systems, W =
3, however they are significantly higher than those obtained
for the microwave rough cavity. The results obtained for the
microwave rough cavity are smaller than those obtained within
the framework of RMT, and they lie between them and the
results predicted within a model of the two-channel coupling
recently introduced by Sokolov and Zhirov [17]. Our experi-
mental results suggest that the elastic enhancement factor can
be used as a measure of internal chaos that can be especially
useful for systems with significant absorption or openness.
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