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Effective time-independent analysis for quantum kicked systems
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We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent
approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution
is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final
kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained
does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is
used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy
levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective
system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit
of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding
to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves
as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.
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I. INTRODUCTION

Quantum systems driven periodically in time are known to
undergo remarkable alterations in their long-time dynamical
evolution [1–7]. This is an area of extensive study. External
driving is known to create nontrivial gauge structures [8,9]
and topological effects [10–14]. Modulated driving systems
have the potential to fabricate new materials and phases
of matter [10,11,15–21]. In this scheme, the modulation of
the driving system is used to recreate an effective static
Hamiltonian which is thereby investigated for interesting
features of time-independent systems [6,7,22,23].

Kicked Hamiltonian systems are widely studied as a
prototype model for classical and quantum chaos [24,25].
The traditional approach to such periodic systems uses the
Floquet analysis to obtain the quasienergies of the systems.
Earlier works [1,5,26] use the formulation based on the
Cambell-Baker-Hausdorff (CBH) expansion to provide an
effective time-independent Hamiltonian [23]. This method
has been used to explore nonchaotic regimes and study
critical quasienergy states [26]. A qualitative change in the
wave function of the ground state on changing one or more
parameters of the Hamiltonian of large systems characterizes
a quantum phase transition (QPT) [27]. However, nonanalytic
behavior of excited states has also been studied [26,28–30].
The clustering together of a whole branch of states implies that
the average local level spacing � becomes vanishingly small
leading to a divergence of local density of states (�−1). This is a
characteristic feature of excited state quantum phase transition
(ESQPT). The corresponding semiclassical Hamiltonian in
these cases indicate dynamical instability.

We claim that the traditional CBH approach to study
such a time-dependent problem has intrinsic flaws and an
alternative formulation [6,7] is more robust and accurate for
the study of kicked systems. In this paper, we have applied this
alternative formulation on quantum kicked systems where the
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time dependence of the Hamiltonian is in the form of a series of
Dirac-δ pulses. We have studied the specific case of the kicked
top model [24]. We show that this alternative formulation
allows the effective static Hamiltonian to accurately mimic the
exact evolution for a significantly large range of parameters
and the eigenvalues of the effective Hamiltonian faithfully
trace the exact quasienergies without any spurious divergences
(as observed in [26]) that are pathologies of the CBH based
formulation. In the absence of such singularities, the effective
Hamiltonian obtained in our method can be used to study
divergences in the density of states as a signature of ESQPT for
a much wider range of parameter values. We have also shown
a remarkable match between the phase-space dynamics of the
classical limits of the exact quantum map [24] and symplectic
evolution governed by the effective static Hamiltonian in the
nonchaotic regime.

II. FORMALISM

Generic time-dependent problems where Ĥ (t) = Ĥ0 +
V̂ (t) are tackled using the Floquet theory when V̂ (t) = V̂ (t +
T ) is time-periodic with period T . The Floquet operator F̂(t)
corresponds to the time-evolution unitary operator Û (t) after
one time period of the driving potential and has eigenvalues
of the form exp(−i φ T ) where φ are referred to as the
quasienergies of the system. In the traditional approach to
find an effective Hamiltonian for kicked systems where

V̂ (t) = V̂

∞∑
n=−∞

δ(t − nT ) (1)

the Floquet operator is factorized as

F̂ = exp(−iV̂ ) exp(−iĤ0T ) = exp(−iĤeffT ). (2)

In the formalism described in [23] and used in [26], the effec-
tive Hamiltonian Ĥeff is extracted using the CBH expansion
and truncated up to a certain order in T ∼ 1/ω. In the absence
of any unique prescription for splitting the Hamiltonian,
the Trotter-CBH method is sensitive to the initial phase of
the driving potential. It is evident that any shift of the initial
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time ti will lead to spurious artifact in Ĥeff . This ambiguity has
been discussed in the case of square two-phase modulation of
a static Hamiltonian [7]. The effective Hamiltonian obtained
for the kicked top system is also seen to exhibit unphysical
singularities for a class of parameters [26]. In view of such
criticisms of the earlier works that use the CBH expansion, to
find the effective static Hamiltonians, we adopt the alternative
formulation [6,7] to study Floquet systems.

The periodic potential in Eq. (1) may be expanded in a
Fourier series as

V̂ (t) = V̂0 +
∞∑

n=1

(V̂ne
inωt + V̂−ne

−inωt ). (3)

The method expresses the evolution operator Û (ti → tf )
between initial time instant ti and final time instant tf =
ti + T , as a sequence of an initial kick followed by an evolution

under a static Hamiltonian and a final “micromotion” [7]

Û (ti → tf ) = Û †(tf )e−iĤeffT Û(ti), (4)

where Û(t) = eiF̂ (t) such that F̂ (t) = F̂ (t + T ) with zero
average over one time period. In our analysis with ti = 0 and
tf = T , we have F̂ (ti) = F̂ (tf ). Thus the effect of Û(ti) =
Û(tf ) is that of similarity transformation on exp(−iĤeff).
The eigenvalues of Ĥeff shall hence mimic the quasienergies
obtained from the Floquet operator. The operators Ĥeff and
F̂ (t) are expanded in a perturbation series in powers of 1/ω as

Ĥeff =
∞∑

n=0

1

ωn
Ĥ

(n)
eff , F̂ (t) =

∞∑
n=1

1

ωn
F̂ (n). (5)

Comparing this with Eq. (4), the perturbation series can
be obtained up to any desired accuracy. At each order of
perturbation, the averaged time-independent component is
retained in Ĥeff and all time dependence is pushed into the
operator F̂ (t). This yields up to O(1/ω2) for the Hamiltonian
Ĥ (t) [7]:

Ĥeff = Ĥ0 + V̂0 + 1

ω

∞∑
n=1

1

n
[V̂n,V̂−n] + 1

2ω2

∞∑
n=1

1

n2
([[V̂n,Ĥ0],V̂−n] + H.c.)

+ 1

3ω2

∞∑
n,m=1

1

nm
([V̂n,[V̂m,V̂−n−m]] − 2[V̂n,[V̂−m,V̂m−n]] + H.c.),

F̂ (t) = 1

iω

∞∑
n=1

1

n
(V̂ne

inωt − V̂−ne
−inωt ) + 1

iω2

∞∑
n=1

1

n2
([V̂n,Ĥ0 + V̂0]einωt − H.c.)

+ 1

2iω2

∞∑
n,m=1

1

n(n + m)
([V̂n,V̂m]ei(n+m)ωt − H.c.) + 1

2iω2

∞∑
n�=m=1

1

n(n − m)
([V̂n,V̂−m]ei(n−m)ωt − H.c.). (6)

For general quantum kicked systems with Dirac-δ forcing, V̂n = V̂ /T for all n = 0,±1,±2, . . . ,±∞. Therefore, the above
expression can be simplified as

Ĥeff = Ĥ0 + V̂

T
+ 1

ω2T 2
[[V̂ ,H0],V̂ ]

( ∞∑
n=1

1

n2

)
= Ĥ0 + V̂

T
+ 1

24
[[V̂ ,H0],V̂ ],

F̂ (t) = 2V̂

ωT

∞∑
n=1

sin(nωt)

n
+ 2

iω2T
[V̂ ,Ĥ0]

∞∑
n=1

cos(nωt)

n2
= V̂

π

∞∑
n=1

sin(nωt)

n
− i

T

2π2
[V̂ ,Ĥ0]

∞∑
n=1

cos(nωt)

n2
. (7)

It is evident that in the partitioning of the time-evolution
operator as in Eq. (4) the system is assumed to undergo an
initial kick exp[iF̂ (ti)] which is sensitive to the launching
time ti . This therefore has a long term bearing on the
dynamical evolution, though the evolution after the initial kick
is essentially dictated by the static effective Hamiltonian.

III. KICKED TOP MODEL

The kicked top model is representative of a host of such
kicked systems and manifests chaotic dynamics [31–33]. This
model is also known to have closed bearings with condensed
matter systems like the metal-topological insulator [34,35]
and has also been studied in the context of quantum critical

transition [26,36]. The study of the kicked top is also motivated
by recent experiments [37,38].

We consider the Hamiltonian for the kicked top

Ĥ (t) = α

2jT
Ĵ 2

z + βĴx

∞∑
n=−∞

δ(t − nT ), (8)

where Ĵi denotes the components of the angular momentum,
j (j + 1) is the eigenvalue of Ĵ 2. The operators Ĵz and Ĵx are
the z and x components of the angular momentum operator,
respectively. Three components of the angular momentum
operator satisfy the standard commutation relation [Ĵi ,Ĵj ] =
iεijkĴk . The Floquet operator for the above Hamiltonian is
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given by

F̂ = exp(−iβĴx) exp

(
−i

αĴ 2
z

2jT

)
. (9)

The first factor in F̂ describes a rotation operator around the
x axis by the angle β. The second factor corresponds to a
nonuniform rotation or torsion around the z axis. This term
consists of a rotation angle which is itself proportional to the
angular momentum component Jz. Therefore, the parameter α

measures the torsional strength.
The perturbation expansion is tracked using the tracking

parameter 1/ω. Evaluating the commutators in Eq. (6), we have
the expressions for the truncated Ĥeff and F̂ up to O(1/ω2)
given by

Ĥeff = α

2j
Ĵ 2

z + βĴx − αβ2

24j

(
Ĵ 2

z − Ĵ 2
y

)
,

(10)
F̂ (ti) = F̂ (tf ) = − αβ

24j
(Ĵy Ĵz + ĴzĴy).

Here we have truncated the perturbation series at the second
order and subsequently used the units of time such that
ω = 2π .

We note that Ĥeff does not show any singularities for any
values of the parameters α and β. This feature differs crucially
from the results obtained earlier [26] where the effective
quasienergies showed divergence when α(2m + 1) = 4j lπ

where l ∈ Z and m denotes the eigenvalues of Ĵz. We claim
that these singularities are an artifact of the naive use of the
CBH formula.

A. Quasienergy spectrum

Figure 1 shows the numerically obtained eigenvalues of
the Floquet operator F̂ and the effective Hamiltonian Ĥeff for
β = 0.1. We note that the former is nonintegrable whereas the
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FIG. 1. (Color online) Quasienergy spectrum (solid line) of the
Floquet operator F̂ and the energy eigenvalues (solid square) of the
effective Hamiltonian Ĥeff are compared as a function of α. Upper
window shows the result for β = 0.1, and the lower window shows the
same for β = 0.5. Whereas the integrable Ĥeff shows level crossing,
the quasienergy spectrum indicates level repulsion (see inset).

later is static, approximate, and integrable. The figure shows
the eigenvalues ε of Ĥeff mapped into the first Brillouin zone. A
remarkable match of ε with the quasienergies φ is obtained for
broad range of values of α. The agreement of the approximate
eigenvalues with the exact quasienergies at a very high level of
precision is noticed even in the domain of the parameters α for
which the system approaches a chaotic regime. This is different
from the results obtained in an earlier work [26] where such
agreement is noticed for a very small range of values of α.

The alternative formulation yields physical insight re-
garding the use of approximate methods to deal with time-
dependent systems. The splitting of the time-evolution opera-
tor into an initial kick, a final kick, and an intermediate time
evolution dictated by a stationary Hamiltonian is expected to
give better results if the original time-dependent Hamiltonian
itself is comprised of periodic kick pulses as in the present
case of the kicked top. The idea has been to shift the effects of
these kicks to the initial and final moments of time evolution
by means of a unitary transformation. The success of this
formulation implies that the method should be used for the
generic class of kicked systems as against the CBH based
method.

The fundamental departure in the approximate analy-
sis adopted here occurs around regions where the exact
quasienergy spectrum shows level repulsion which is char-
acteristic of nonintegrable systems. In the eigenspectrum of
Ĥeff which is an integrable system there is manifestation
of degeneracy. The actual quasienergy spectrum avoids such
crossings [39]. The situation gets worse for higher values of β

where more of such spurious crossings appear.
To investigate the nature of critical quasienergy states for

a much wider range of parameters in the Hamiltonian we
compare the density of states (DOS) for the quasienergy
spectrum and that of the eigenspectrum of Ĥeff . The parameter
values for which the energy spectrum indicates a tendency of
clustering is also expected to manifest as divergence in the
density of states,

ρ(E) = 1

2j + 1

∑
r

δ(E − Er ), (11)

where E = φ and E = ε for the quasienergy spectrum and
the eigenvalues of Ĥeff , respectively. This can alternatively be
written as

ρ(E) = 1

2π
+ 1

π (2j + 1)
Re

{ ∞∑
n=1

ξne
inE

}
, (12)

where ξn = ∑
r exp(−inEr ). We note that Eq. (12) uses the

Fourier representation of Dirac δs in Eq. (11).
The DOS given in (11) or (12), for a discrete spectrum

would yield a series of jagged vertical lines corresponding to
the Dirac δs. Binning these discrete distributions would yield a
histogram. We have numerically obtained the smoothed DOS
by considering the Gaussian representation of the Dirac δs
and obtaining a continuous curve by summing these Gaussian
functions centered at different values of Er . The widths of the
normalized Gaussians are kept at ∼10% of the mean spacing
to ensure smooth and continuous DOS. The same numerics are
used to obtain both the DOS for exact quasienergy spectrum
and the eigenvalues of Ĥeff . The parameter of the Hamiltonian
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FIG. 2. (Color online) Density of states of the exact quasienergy
spectrum of F̂ and of the energy spectrum of Ĥeff are compared. Here
the parameter β = 0.1.

for which there is a clustering tendency of the levels shall also
reflect as the critical transition point where the DOS is likely
to diverge.

Figure 2 compares the DOS for the exact quasienergy
spectrum and the energy spectrum of Ĥeff . The strong
resemblance of these spectra (see Fig. 1) indicates that their
DOS should also match. We find that the two are indeed found
to match to a high degree of accuracy for different values of the
parameter α, and also for different spin. The sharp peak feature
that appears in the DOS for α = 0.2 for spin j = 40 indicates
quantum criticality as suggested in an earlier work [26]. At the
critical quasienergy, a clustering of states occurs leading to the
tendency of DOS to diverge.

The feature however is sensitive to α and flattens out at
larger values of α. The position of the peak is seen to shift as j

increases. This is quite expected since the DOS is closely
related to the degeneracies of the energy levels which in
turn depends on j . The claim for the indication of quantum
criticality as reflected in logarithmic divergence of the DOS
is noted in an earlier work [26]. This result is vindicated
by our present analysis which uses an effective Hamiltonian
intrinsically differing from the one used earlier but however
does not suffer from mismatches in the spectrum at larger
values of α.

B. Classical limit

Using the Heisenberg equation of motion, we find the
following quantum dynamical map for the angular momentum
operator:

Ĵn+1 = F̂† Ĵn F̂ . (13)

The classical limit of this map can be achieved by first rescaling
the operator Ĵ as X = Ĵ/j , i.e., {X,Y,Z} = {Ĵx,Ĵy,Ĵz}/j ,
where the commutators of the different components of the
rescaled angular momentum operators take the form [X,Y ] =
iZ/j , and so on. This shows that, in j → ∞ limit, components
of this rescaled angular momentum operator will commute and
become classical c-number variables, and we get the classical

limit of the quantum dynamical map as

Xn+1 = X̃ cos αZ̃ − Ỹ sin αZ̃,

Yn+1 = X̃ sin αZ̃ + Ỹ cos αZ̃,

Zn+1 = Z̃, where

X̃ = X,

Ỹ = Y cos β − Z sin β,

Z̃ = Y sin β + Z cos β.

(14)

The above map satisfies the condition X2 + Y 2 + Z2 = 1. This
suggests that the classical phase-space dynamics of the kicked
top lies on the surface of a unit sphere, and each point on that
surface is represented by two canonically conjugate dynamical
variables Z = cos θ and ψ = tan−1(Y/X).

This classical map is to be compared with the dynamical
solution in the phase space corresponding to the classical limit
of the effective Hamiltonian Ĥeff in Eq. (10). We use the
following prescription to find this classical limit designated
by Hcl:

Hcl = lim
j→∞

〈γ |Ĥeff|γ 〉
j

, (15)

where |γ 〉 is the spin coherent state [24]. From Eq. (10), this
yields

Hcl = αZ2

2
+ β

√
1 − Z2 cos ψ + αβ2

24
sin2 ψ

− αβ2

24
(1 + sin2 ψ)Z2. (16)

This classical Hamiltonian represents the effective integrable
model corresponding to the original Floquet system. The form
of this Hamiltonian shows that it is nonseparable. The terms
contain the canonical variables (Z,ψ) in a manner which
does not allow a separation of Hcl into a purely position
or momentum dependent components. Hamilton’s canonical
equations are given as follows:

Ż = −∂Hcl

∂ψ
= β

√
1 − Z2 sin ψ − αβ2

24
(1 − Z2) sin 2ψ,

ψ̇ = ∂Hcl

∂Z
= αZ − βZ√

1 − Z2
cos ψ − αβ2

12
Z(1 + sin2 ψ).

(17)

The symplectic evolution for this dynamical system mimics the
map in Eq. (14) despite the fundamental difference between the
two situations. The former represents conservative evolution
satisfying Liouville’s theorem without any signature of chaos
for any values of the parameters α and β. The latter, on the
contrary, is a well studied candidate of quantum and classical
chaos for large α,β 
 1.
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FIG. 3. The upper panel shows the phase space corresponding to
the nonintegrable evolution governed by the map given in Eq. (14)
for parameter β = 0.1. The lower panel shows the corresponding
phase for the effective time-independent integrable Hamiltonian in
Eq. (18). The parameter α is increasing from left to right as α = 0.2
(left column), 1.0 (middle column), and 6.0 (right column). From left
to right, the upper panel shows the system evolving towards chaotic
regime. There is no such indication for the integrable system depicted
in the lower panel.

Equation (17) can be also recast in terms of the variables
{X,Y,Z} as

Ẋ = −
(

α − αβ2

6

)
YZ,

Ẏ =
(

α − αβ2

12

)
XZ − βZ,

Ż = βY − αβ2

12
XY.

(18)

We note that this equation can be obtained as the large j limit
of the quantum Hamiltonian

Ĥ /j = (α/2)Ẑ2 + βX̂ + (αβ2/24)(Ẑ2 − Ŷ 2) (19)

using Heisenberg’s equation of motion for the operators
{X̂,Ŷ ,Ẑ}, and subsequently replacing the quantum commu-
tators by classical Poisson brackets.

Figure 3 shows the phase space for the dynamical systems
represented by Eq. (17) and the classical map obtained for the

actual time-dependent Floquet system described in Eq. (14).
In the predominantly nonchaotic regular regime for small α,β

values, the phase space trajectories agree to a very high degree
and the effective time-independent classical Hamiltonian mim-
ics the actual system for most purposes pertaining to dynamics.
The departure begins to show up as the actual time-dependent
system approaches the chaotic regime, and the trajectories,
despite reflecting the same generic form, do not quite follow
the same path. As the actual nonintegrable system approaches
the chaotic regime the phase space shows the formation of
islands which eventually break into further substructures.
Expectedly, this feature is completely missing in the dynamics
of the effective integrable Hamiltonian, where the phase space
always remains regular and thereby cannot represent the actual
time-dependent system for large parameter values. We note
that there are studies indicating the disappearance of islandlike
features in certain time-independent nonintegrable systems
when they are approximated by integrable models [40].

IV. CONCLUSION

We conclude by noting that introducing a unitary transfor-
mation that pushes the time dependence of a time-periodic
system to the initial time and final time instants in the form of
kicks leads to an effective time-independent Hamiltonian that
governs evolution for the bulk of the time. The energy spectrum
of this effective Hamiltonian matches the exact quasienergies
of the actual Floquet operator in the near integrable regime
with deviations due to avoided crossings. We also find that the
classical limit mimics the phase-space dynamics of the actual
time-dependent nonintegrable Hamiltonian in the nonchaotic
regime.

The CBH based method has been used extensively in the
scientific literature without any concerns about its validity
in a given context. The present work illustrates the fact that
there are situations where the indiscriminate use may lead to
incorrect conclusions. We also establish that the formulation
adopted by us is probably a more appropriate approximate
analysis of classical and quantum systems involving short
duration pulse driving.
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