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Microscopic instability in recurrent neural networks
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In a manner similar to the molecular chaos that underlies the stable thermodynamics of gases, a neuronal
system may exhibit microscopic instability in individual neuronal dynamics while a macroscopic order of the
entire population possibly remains stable. In this study, we analyze the microscopic stability of a network of
neurons whose macroscopic activity obeys stable dynamics, expressing either monostable, bistable, or periodic
state. We reveal that the network exhibits a variety of dynamical states for microscopic instability residing in
a given stable macroscopic dynamics. The presence of a variety of dynamical states in such a simple random
network implies more abundant microscopic fluctuations in real neural networks which consist of more complex
and hierarchically structured interactions.
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I. INTRODUCTION

While an animal is repeating a fixed action in response
to a given stimulus, individual neurons in the brain do not
necessarily reproduce identical activity [1–3]. The contrast
between the reliable animal behavior and the erratic activity
of single neurons may be compared with thermodynamics of
gases, in which macroscopic states obey thermodynamic laws
with small degrees of freedom, while individual molecules
obey chaotic dynamics involving large degrees of freedom. In
the thermodynamics, the difference in stability is resolved in
such a way that macroscopic thermodynamic laws are deduced
through the Boltzmann equation describing the microscopic
chaotic motion of simplistic model molecules [4]. It has
been one of the key objectives of statistical physics to relate
microscopic dynamics with macroscopic dynamics in diverse
phenomena, including populations of active elements [5–10]
and human activity [11–16].

For networks of randomly connected neurons, it has been
shown that a macroscopic order parameter represented by the
average neuronal activity obeys deterministic dynamics; in
particular, networks of McCulloch-Pitts binary neurons [17]
exhibit three distinct types of macroscopic dynamics, express-
ing either monostable, bistable, or periodic states [18]. By
contrast, in the same system, it was revealed that a microscopic
state specified by a set of individual neuronal states may
become unstable against microscopic perturbations, such as
flipping a single neuron state [19]. However, in that study,
the microscopic instability was verified solely by numerically
simulating small systems, and accordingly, the mechanism of
the instability was not examined thoroughly.

Here, we study the microscopic instability of neural net-
works in detail using analytical as well as numerical analysis
and reveal various types of microscopic dynamics residing in
stable macroscopic dynamics.
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II. RANDOM NEURAL NETWORK

We consider a network of McCulloch-Pitts binary neurons
interacting via random synaptic connections. Here, we adopt
a symmetric expression with active and inactive states respec-
tively represented as

si(t) =
{+1,

−1,
(1)

where i(= 1,2, . . . ,N) is the label of a neuron and t is the
discretized time given by an integer. In every time step,
all the states of an entire neuronal population are updated
synchronously, such that each neuron is either activated or
deactivated depending on whether the summed input exceeds
the threshold or not:

si(t + 1) = sgn

(
N∑

i=1

wij sj (t) + hi

)
, (2)

where sgn(x) is the sign function, N is the total number of
neurons, wij represents the synaptic connection from the j th
neuron to the ith neuron, and −hi is the threshold for the ith
neuron (Fig. 1).

The state evolution rule Eq. (2) is similar to the zero-
temperature relaxation dynamics for a spin glass given by
the exchange interactions wij and external fields hi . Char-
acteristics that distinguish our neural network model from
spin systems are as follows: (i) updates are synchronous,
(ii) connections wij are generally asymmetric, and (iii) self-
connections wii can be present. We denote synaptic connec-
tions as wij to distinguish from the exchange interactions of
spin systems, usually denoted as Jij .

Because the system evolves with the deterministic first-
order recurrence equation, Eq. (2), the microscopic state given
by (s1,s2, . . . ,sN ) eventually drops into a periodic orbit whose
period is less than or equal to 2N . While the macroscopic mean
activity may exhibit stable dynamics, as in the magnetization of
an equilibrium spin system, it may occur that the microscopic
state is changing in time by entering a cycle of an exponentially
long period and the system exhibits microscopic instability
with respect to a single neuron flip. In this study, we make a
stability analysis of this microscopic process.

1539-3755/2015/91(3)/032921(8) 032921-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.032921


YAMANAKA, AMARI, AND SHINOMOTO PHYSICAL REVIEW E 91, 032921 (2015)

wiji i

jj

ji

FIG. 1. (Color online) A recurrent network of neurons. wij rep-
resents a synaptic connection from the j th neuron to the ith neuron.
Neurons update their states according to Eq. (2).

Note that the neuronal states can alternatively be ex-
pressed as 1 and 0, a straightforward representation of the
active and inactive states, respectively. This can be done
by transforming them as ui(t) = [si(t) + 1]/2. Accordingly,
the state evolution Eq. (2) may be rewritten as ui(t + 1) =
θ [

∑N
i=1 wijuj (t) + Ti], where θ (x) is the Heaviside step

function. In this case, the threshold Ti is given by [−hi +∑N
i=1 wij ]/2.

III. MACROSCOPIC DYNAMICS

One of the authors has shown that a macroscopic activity
of the neural network obeys deterministic dynamics in the
limit of a large number of neurons, N → ∞ [18]. Here, we
derive the evolution equation of a network whose synaptic
connections wij are drawn independently from an identical
Gaussian distribution with a mean of w̄/N and a variance of
1/N , whereas the threshold is chosen as a constant −hi = −h.

A. Evolution equation of macroscopic activity

Consider the situation in which a set of states {si(t)} is
selected randomly under a given mean activity:

m(t) ≡ 1

N

N∑
i=1

si(t). (3)

If the neuronal states are statistically independent of the synap-
tic connections {wij }, inputs to individual neurons, given as

vi ≡
N∑

j=1

wij sj (t) + h, (4)
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FIG. 2. (Color online) Phase diagram of the macrodynamics in a
plane of w̄ and h: P is the periodic state, Sm the monostable state,
and Sb the bistable state.

are expected to distribute normally with a mean of w̄m(t) + h

and a variance of 1. Thus, the total number of neurons that
will be activated in the next step will be

Q = N√
2π

∫ ∞

0
dv exp

(
− [v − w̄m(t) − h]2

2

)
, (5)

with possible fluctuations in O(
√

N ). In the limit of a large
number of neurons, N → ∞, the activity level in the next
step is determined as m(t + 1) = 2Q/N − 1 in terms of the
current activity level m(t), thus forming the evolution equation

m(t + 1) = erf

(
w̄m(t) + h√

2

)
, (6)

where erf(x) is the error function defined by

erf(x) ≡ 2√
π

∫ x

0
dve−v2

. (7)

Because neuronal states in the next step {si(t + 1)} are
determined by the set of synaptic connections {wij }, they are
generally not independent of the connections. Nevertheless,
the network activity keeps following the evolution of Eq. (6)
if the network is of a reasonably large size [18]. The evolution
equation may show three types of dynamics depending on the
macroscopic parameters w̄ and h: monostable (Sm), bistable
(Sb), or periodic (P) states (Fig. 2).

B. Stability of macroscopic dynamics

The evolution equation Eq. (6) may have a fixed point
m(t) = m that satisfies the self-consistent equation

m = erf

(
f√

2

)
, (8)

where f is the average input, given as

f ≡ w̄m + h. (9)
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The macroscopic activity is stable if the absolute slope of the
iteration map Eq. (6) at the point of intersection with the y = x

line is smaller than unity:∣∣∣∣w̄
√

2

π
e−f 2/2

∣∣∣∣ < 1. (10)

The system is called monostable if the evolution equation has
only one stable fixed point [Fig. 3(a)].

By increasing the mean synaptic connection w̄ from the
monostable regime, the fixed point loses stability when the
slope of the iteration map Eq. (6) at the intersection becomes
greater than 1. The system then becomes bistable through a
pitchfork bifurcation, which involves a pair of stable fixed
points appearing on both sides of the destabilized fixed point
[Fig. 3(b)]. The boundary between the monostable and bistable
regimes is obtained by solving w̄ = √

π/2 exp (f 2/2), with m

satisfying Eq. (8).
On the contrary, by decreasing w̄ from the monostable

regime, the single fixed point loses stability when the slope
of the iteration map Eq. (6) at the intersection becomes
smaller than −1. The system then begins to oscillate through a
period-doubling bifurcation [Fig. 3(c)]. In this periodic state,
the macroscopic activity m(t) oscillates between the two newly
appearing stable fixed points of the iterated map:

m = erf

(
w̄ erf

(
w̄m+h√

2

) + h
√

2

)
. (11)

IV. MICROSCOPIC DYNAMICS

While the macroscopic order parameter m(t) exhibits
stable dynamics following the simple iteration map Eq. (6),
it is possible that a set of neuronal states {si(t)} are
dynamically changing in time within the given constraint,
m(t) = (1/N )

∑N
i=1 si(t) ± O(1/

√
N ). One of the authors has

numerically examined the possibility that the system may
be microscopically unstable due to the state flipping of one
neuron [19]. In the present study, we analytically estimate the
parameter range of the microscopic instability.

A. Microscopic instability in the macroscopically stable regimes

We first examine the microscopic stability of the macro-
scopically stable regime, including the monostable and
bistable states. While microscopic states evolve with the
individual neuronal dynamics of Eq. (2), we consider flipping
a single neuron state and examine whether the flipping spreads
over the network or not. By flipping the state of the pth neuron,
input to the ith neuron is altered from vi = ∑N

j=1 wij sj + h to

v
p

i =
N∑

j=1

(−2δjp + 1)wij sj + h, (12)

where δjp is the Kronecker delta. The state of the ith neuron
will be altered in the next step if the sign of the input is reversed:

viv
p

i =
⎛
⎝ N∑

j �=p

wij sj + h

⎞
⎠

2

− w2
ip < 0. (13)
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FIG. 3. (Color online) Examples of the three types of dynamics
of the macroscopic activity: (a) monostable (w̄ = 1, h = 0.5), (b)
bistable (w̄ = 2, h = 0), and (c) periodic state (w̄ = −2, h = 0).

Under the assumption that {wij } and {sj } are independent, the
probability P at which the above-mentioned inequality holds
is obtained analytically. Because the first and the second terms
in the right-hand side of Eq. (13) are distributed normally, the
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probability P is given as

P = N

2π
√

N − 1

∫
|x|>|y|

dxdy exp

(
−N

(
x − w̄

N

)2

2

)

× exp

(
−N

(
y − f + w̄sp

N

)2

2(N − 1)

)
. (14)

In the limit of a large number of neurons, P is approximated as

P ≈ 1

2

√
N

2π

∫ ∞

−∞
dx exp

(
− Nx2

2

)

×
[

erf

( |x| − f√
2

)
− erf

(−|x| − f√
2

)]
, (15)

≈ 2

π
√

N
exp

(
− f 2

2

)
. (16)

The system is microscopically unstable if the flipping spreads
from a single neuron to more than one neuron, i.e., if NP > 1.
This implies that the microscopic state remains unstable under
a given stable macroscopic order. This instability condition is
summarized in terms of average input f ≡ w̄m + h as

|f | � Ic ≡
√

2 log

(
2
√

N

π

)
. (17)

With this condition, the macroscopically monostable
regime can further be classified into two regimes on the basis
of whether the system is microscopically unstable or stable.
In the bistable regime, in which the system may perform an
alternative mean activity, the microscopic instability of the
system depends on the macroscopic state. Thus, the bistable
parameter regime can be further classified into four regimes
on the basis of whether individual macroscopic states are
microscopically unstable or stable. The categorized areas are
depicted in Fig. 4.

B. Microscopic instability in the macroscopically periodic
regime

Next, we examine the microscopic instability of the system
whose macroscopic activity is oscillating with period two. In
the first half of the period two, m is mapped to m′ = erf(f/

√
2)

through mean inputs f ≡ w̄m + h. In the second half, m′
returns to m through mean inputs g ≡ w̄m′ + h as m =
erf(g/

√
2). Accordingly, g and f are mutually bounded as

g = w̄ erf(f/
√

2) + h, (18)

f = w̄ erf(g/
√

2) + h. (19)

It follows from Eqs. (18) and (19) that

w̄ = f − g

erf(g/
√

2) − erf(f/
√

2)
, (20)

h = f erf(f/
√

2) − g erf(g/
√

2)

erf(f/
√

2) − erf(g/
√

2)
. (21)

The system exhibits microscopic instability if both aver-
age inputs |f | and |g| are smaller than the critical value
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FIG. 4. (Color online) Microscopic stability of the macroscopi-
cally stable states (N = 1000). A: Both macroscopically stable states
are microscopically stable. B and B′: One of two macroscopically sta-
ble states is microscopically unstable. C: Both macroscopically stable
states are microscopically unstable. D and D′: The macroscopically
monostable state is microscopically stable. E: The macroscopically
monostable state is microscopically unstable.

Ic ≡
√

2 log( 2
√

N
π

). The microscopically unstable regime of
parameters (w̄,h) is obtained by searching them under the
constraints |f | < Ic and |g| < Ic in Eqs. (20) and (21). In
addition to this perfect instability regime, there are regimes in
which either of the two states m and m′ is unstable, such that
|f | < Ic < |g| or |g| < Ic < |f |. The categorized regimes are
depicted in Fig. 5.

Notably, the microscopic instability defined by the stability
against a one-neuron flip is dependent on the number of neu-
rons N , as in Eq. (17), and the microscopic instability region
may expand without bound. However, the dependence follows
the square root of a logarithm,

√
log N , and accordingly, the

instability range stays in a small range even in a large network
consisting of O(103) − O(106) neurons (Fig. 6).

V. NUMERICAL SIMULATION

A variety of microscopically unstable phases revealed by
the current analytical consideration were not observed by the
previous simulations of small networks, which ranged from
N = 20–200 [19]. The advancement of computers in recent
decades has enabled us to simulate the larger networks. Here,
we show the results of simulating a network of size N = 1000.

Using a simplified model, we simulated the evolution
equation, Eq. (2), of neurons interacting through synaptic
connections distributed normally. Given an initial condition,
we iteratively applied the evolution equation for 5000 steps,
expecting that the system would attain macroscopically stable
activity. Then the system, starting with the final state, was
iterated for one more step. In addition, we flipped a single
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FIG. 5. (Color online) Microscopic stability of macroscopically
periodic states (N = 1000). F: Both macroscopic states are micro-
scopically unstable. G and G′: One of two macroscopic states is
microscopically unstable. H: Both macroscopic states are microscop-
ically stable.

neuron from the final state and iterated the system for one step.
We decided whether the system was microscopically stable or
unstable on the bases of whether the neuronal states of these
two systems were entirely identical or not.

Figure 7 represents the parameters that make the system
unstable. In the macroscopically monostable regime, the nu-
merically verified range of microscopic instability is consistent
with the theoretical range. We also tested other choices of
flipping a single neuron, but the results were robust against
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FIG. 6. (Color online) Boundaries of microscopic stability. The
boundaries for N = 1000,10 000, and 100 000 are depicted in red
(solid), brown (dashed), and purple (dotted), respectively. Regions
A–H correspond to the respective regions given in Figs. 4 and 5.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

h

w-

A
B

C

D

EH

G

F
B’

D’G’

FIG. 7. (Color online) Microscopic instability obtained by nu-
merical simulation of the networks of N = 1000. A set of parameters
(w̄,h) with which the network exhibits instability is depicted as a dot.
Initial states of neurons were chosen at random, si = ±1.

the choice of a neuron. In the bistable regime, microscopic
stability depends on an alternative macroscopic state. The
macroscopic state may be suitably selected by choosing a
proper initial condition. For instance, a macroscopic state
of higher activation would likely be selected if we choose
the initial condition with all the neurons activated, {si = 1}.
Figure 8 depicts the microscopically unstable regime obtained
from this all-active initial condition, which is consistent with
the analytical result.

In the periodic regime, microscopic instability may depend
on the timing of flipping occurrences. The system remains
stable if a neuron is flipped in the stable phase of the oscillation.
The microscopic states may deviate if a neuron is flipped in
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FIG. 8. (Color online) Microscopic instability obtained from the
set of initial states of {si = +1} (N = 1000).
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the unstable phase, but these systems may merge in the next
step. The numerically obtained unstable regime is similar to
the range in which both states m and m′ are unstable.

VI. EVOLUTION OF THE MICROSCOPIC DISTANCE
BETWEEN TWO STATES

Dynamical aspects of microscopic states may also be
captured by analyzing the evolution of the distance between
two microscopic states. The map of the distance has been
obtained for a specific case of w̄ = 0 and h = 0 [20–24]. Here
we extend the analysis to general cases of arbitrary w̄ and h.

Consider the situation that the two states

sA = {
sA

1 ,sA
2 , . . . ,sA

N

}
, (22)

sB = {
sB

1 ,sB
2 , . . . ,sB

N

}
, (23)

which possess the identical macroscopic activities m = mA =
mB , expressing the identical macroscopic dynamics, obeying
Eq. (6). Because of the huge amount of combinations of
the individual neuronal states, the two states can possibly
remain microscopically unidentical. We estimate the evolution
of the microscopic distance of two states measured with the
normalized Hamming distance:

d ≡ 1

2N

N∑
i=1

∣∣sA
i − sB

i

∣∣. (24)

Here, we consider the case in which the macroscopic
activity m = mA = mB is stable. We assemble all possible
microscopic states sA(t) and sB(t) where macroscopic activity
is m and the mutual distance is d, and estimate the distribution
of the distance in the next time step:

d ′
i ≡ 1

2

∣∣sA
i − sB

i

∣∣, (25)

d ′ ≡ 1

2N

N∑
i=1

∣∣sA
i (t + 1) − sB

i (t + 1)
∣∣

= 1

N

N∑
i=1

d ′
i . (26)

The mean distance in the next step is obtained as a function of
the distance in the current step:

uα
i =

N∑
j=1

wij s
α
j + h α = A,B , (27)

u = uA
i + uB

i

2
√

(1 − d)
, (28)

v = uA
i − uB

i

2
√

d
, (29)

ϕ(d) ≡ 〈d ′
i〉 = Prob

[
uA

i uB
i < 0

]
= Prob

[
|u| <

√
d

1 − d
|v|

]
. (30)
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FIG. 9. (Color online) Distance maps ϕ(d) for various h (w̄ = 0).

Under the assumption that wij and sα
i are independent and

wij are normally distributed, the right-hand side of Eq. (30) is
obtained in an integral formula as

ϕ(d) = 1

2π

∫
|u|<

√
d

1−d
|v|

dudv

× exp

⎛
⎝−

(
u − f√

1−d

)2 + v2

2

⎞
⎠ (31)

= 1

2
√

2π

∫ ∞

−∞
dv exp

(
− v2

2

)

×
{

erf

(√
d |v| − f√
2(1 − d)

)
− erf

(−√
d |v| − f√
2(1 − d)

)}
. (32)

Note that the microscopic distance is bounded as d � dmax ≡
1 − |m| for m = mA = mB .

Figure 9 represents the evolution map of the distance ϕ(d)
for several values of h with w̄ kept at a value of 0. The map
of the case w̄ = h = 0 is ϕ(d) = 2

π
sin−1

√
d , as has been

obtained in Refs. [20] and [21].
When

√
d � f ,

ϕ(d) ≈ 1

π

∫ ∞

−∞
dv

√
d |v| exp

(
− v2 + f 2

2

)

= 2
√

d

π
exp

(
− f 2

2

)
. (33)

The microscopic distance of d = 1/N corresponds to flipping
a single neuron. In this case, the average distance in the next
step ϕ(1/N) represents the probability of any other single
neuron flipping due to the first single neuron flipping. Thus,
the condition for microscopic instability discussed in the last
section, NP > 1, is identical to the condition of

ϕ

(
1

N

)
>

1

N
. (34)

Figure 10 represents the manner in which the mapping ϕ(d)
varies as the parameters cross the microscopic instability line.
It was found from the distance mapping ϕ(d) that the instability
of this system is not the linear instability, in which the gradient
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FIG. 10. (Color online) Change in the distance map ϕ(d) across
the microscopic stability line (N = 1000): (a) three kinds of distance
maps and (b) model parameters for the three distance maps.

of the mapping exceeds unity, but is simply caused by the
inequality equation, Eq. (34).

VII. THE PERIOD OF THE MICROSCOPIC STATE
ATTRACTOR

Because the total number of microscopic states is of finite
2N , and the dynamics of individual neurons, described in
Eq. (2), are deterministic, the system eventually enters a cyclic
orbit. It has been numerically determined that the period of the
attractor cycle of the random neural network of (w̄,h) = (0,0)
increases exponentially with N , on average [19]. By simulating
systems of a size larger than that of the previous study, we
confirmed that the logarithm of the periods fits to a linear

 10
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 16  18  20  22  24  26  28  30

T

N

FIG. 11. (Color online) Period of microscopic states and the
number of neurons.

function of N fairly well (Fig. 11):

〈log T 〉 ≈ γN + c, (35)

where log is the natural logarithm. The linear regression
analysis applied to the simulation data of N = 15–31 gives
the coefficient γ ≈ 0.216 ± 0.002. Note that this period is
significantly shorter than the average period of the random
Boolean map, also called the Kauffman map, which is obtained
analytically as T ∼

√
2N , and the Boolean map’s exponent

is γB = (log 2)/2 ≈ 0.347 [25]. Thus, the period of the
microdynamics of the random neural network of (w̄,h) = (0,0)
typically grows exponentially with N but is shorter than that
of the random Boolean map.

We now examine how the exponent γ changes with the
model parameters. Figure 12 represents the manner in which
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FIG. 12. (Color online) Dependence of the exponent γ on the
model parameter h (w̄ = 0, N = 30). γB is the exponent estimated
by the Boolean random map given a typical number of microscopic
states.
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the exponent γ changes with h, while w̄ is kept at 0. In
the microscopically stable regime, |h| > Ic, where ϕ(1/N) <

1/N or the fixed point of the distance map satisfying ϕ(d∗) =
d∗ is less than 1/N , the period of the microscopic attractor T

is expected to be unity, implying the average log T is close to
zero.

Contrariwise, in the microscopically unstable regime, |h| <

Ic, where the fixed point in the distance map d∗ is greater
than 1/N , the microscopic state is expected to meander in
state space and the period of the microscopic attractor T is
exponentially large. The number of microscopic states given
in the range of the distance d∗ is roughly estimated as

W =
�Nd∗�∑
k=0

(
N

k

)
, (36)

where �x� represents the floor of x. When considering the
random Boolean map among W states, the typical length of
the attractor period is

√
W , and accordingly, the exponent γB

is given as

γB = 1

2N
log W. (37)

Figure 12 compares γB and the real exponent γ estimated by
numerical simulation. Though the exponent γB on the basis
of the random Boolean map overestimates the actual exponent
γ , the dependence on the model parameter h is qualitatively
reproduced.

VIII. DISCUSSION

We have analytically and numerically examined the mi-
croscopic dynamics of randomly connected neural networks
and revealed a variety of microscopic dynamics. A network
that exhibits stable dynamics in its macroscopic activity may
show instability in its microscopic state, as is suggested by
the real neural irregular activity in a fixed behavioral context.
The analysis of a simplistic system could provide a possible
link to the real system. In other words, the real neural network
expressing the nonreproducible activity of individual neurons
in a fixed behavioral response may represent microscopic
instability in the macroscopic stable dynamics.

It should be noted that a neural network expresses mi-
croscopic instability in the entire parameter region in the
limit of a large number of neurons, which corresponds to
the thermodynamic limit of gases. Thus the coexistence of
microscopic instability with macroscopic stability is expected
to play an important role in the information processing of real
neuronal circuitry consisting of a huge number of neurons.
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