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Energy-driven pattern formation in planar dipole-dipole systems in the presence of weak noise
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We study pattern formation in planar fluid systems driven by intermolecular cohesion (which manifests as
a line tension) and dipole-dipole repulsion, which are observed in physical systems including ferrofluids in
Hele-Shaw cells and Langmuir layers. When the dipolar repulsion is sufficiently strong, domains undergo forked
branching reminiscent of viscous fingering. A known difficulty with these models is that the energy associated
with dipole-dipole interactions is singular at small distances. Following previous work, we demonstrate how
to ameliorate this singularity and show that in the macroscopic limit only the scale of the microscopic details
relative to the macroscopic extent of a system is relevant and develop an expression for the system energy that
depends only on a generalized line tension � that in turn depends logarithmically on that scale. We conduct
numerical studies that use energy minimization to find equilibrium states. Following the subcritical bifurcations
from the circle, we find a few highly symmetric stable shapes, but nothing that resembles the observed diversity of
experimental and dynamically simulated domains. The application of a weak random background to the energy
landscape stabilizes a wide range of domain morphologies recovering the diversity observed experimentally. With
this technique, we generate a large sample of qualitatively realistic shapes and use them to create an empirical
model for extracting � with high accuracy using only a shape’s perimeter and morphology.
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I. INTRODUCTION

A wide variety of two-dimensional systems driven by
competition between strong short-range attractive and long-
range dipolelike repulsive forces exhibit striking phenomeno-
logical similarities. This interplay leads to the formation
of intricate and treelike structures. Substantial work has
been done in characterizing the physics, dynamics, and
morphology of these systems [1–27]. Langmuir monolayers
[6–9,14–16,18,21,22,25] and ferrofluid confined to a Hele-
Shaw cell [1–5,10–13,16,19,20,23,24,26,27] are of particular
interest and shape formation and stability in these systems
have been studied extensively in experiment [see examples in
Figs. 1(a)–1(d)].

The inherent complexity of dipole-mediated systems
has also inspired numerical simulations using dynamic
evolution of some particular system’s equations of mo-
tion [5,11,13,16,19,20,23,25,28,29]. For example, Cebers and
co-workers [2,20] and Goldstein and co-workers [10,11] con-
sidered Hele-Shaw systems, providing analytic and asymptotic
expressions for the energy and stability of a variety of domain
structures, including circles and rectangles. McConnell and co-
workers built an effective theoretical formalism for describing
the energy of Langmuir domains and determined analytically
the stability of circular and stripe domains to harmonic pertur-
bations [7–9,15]. de Koker and McConnell were able to show
that the detailed physical parameters that describe Langmuir
systems can be reduced to a single parameter [30]. Though this
reduction greatly simplifies the state space of these systems, it
does not appear to have been used by other researchers after
McConnell and co-workers. The energy formalism that we
will introduce here, though different from the one used by
McConnell and co-workers, proceeds along nearly identical
lines to reduce the parameter space to one dimension. We use
this energy formalism numerically to realize static equilibrium
states via energy extremization. These methods can resolve
subcritical branches for harmonic bifurcations associated with

the hysteresis discovered by Cebers and Zemitis [5] and later
studied by Hillier and Jackson [26,27]. In the absence of
noise, we discovered that stable domains are characterized
by a few highly symmetric morphologies. We argue that
the rich qualitative structure seen in dynamic studies and
experiment is due to the presence of random imperfections
modeled as variations in the energy landscape and show that
a simple empirical rule exists for accurately determining the
state parameter of dipole-mediated systems.

II. ANALYSIS

Consider a compact region � ⊂ R2 that describes the
spatial extent of a dipole-mediated domain. The energy of
such a domain is given by [8,31]

E = αA + λ� + μ2

2

∫∫
�

∫∫
�

g(‖r − r′‖)

‖r − r′‖3
dA′dA

+
∫∫

�

V (r)dA. (1)

The first two terms are proportional to the area A and the
perimeter � of � respectively, where λ is the line tension.
Since we only consider domains constrained to have constant
area, the first term is irrelevant to system behavior and will
henceforth be neglected. The third term is the energy due to
the dipole-dipole interaction, a continuum approximation of
mutually interacting dipole pairs. The fourth term is the energy
due to an arbitrary static external potential. The constant μ is
an effective dipole density and the function g(r) is the pair
correlation function for the system, which gives the probability
distribution that a dipole is displaced from another by r . In
disordered systems, like the ones we consider, g must be
isotropic (and therefore radially symmetric), have g(0) = 0
(as particles cannot exist atop each other), and g(r) must
be well approximated by 1 if r > � for some interparticle
length scale � [32]. In order for (1) to converge, g(r) must
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FIG. 1. Examples of two-dimensional dipole-mediated systems
in experiments. (a) and (b) Ferrofluid enclosed in a Hele-Shaw
cell. (Images provided by D. P. Jackson [10–12].) (c) and (d)
Octylcyanobiphenyl Langmuir films, or monolayers of polymer
molecules, condensed into their fluid phase. (Images provided by
E. K. Mann [21].) (e) and (f) Results of our numeric simulations.

vanish at least as quickly as r2 as r tends to zero. For different
physical systems g(r) can take on a variety of forms, all of
which are highly dependent on the microscopic details of
the particular system. As we will see presently, the particular
form of g(r) is unimportant to the behavior of the domain
when the microscopic parameter � is much smaller than the
characteristic length scale of that domain, e.g., �.

Using Green’s theorem, we may convert (1) to a line integral
over the domain’s boundary ∂� in an analogous fashion to that
done by McConnell and co-workers [6,9]. In this case, we have
for the energy

E = λ� − μ2

2

∮
∂�

∮
∂�

	(‖r − r′‖)(n̂ · n̂′)ds ′ds

+
∮

∂�

�(r) · n̂ ds. (2)

Here n̂ is the unit normal to the parametrization s, 	(r) is such
that ∇2	(r) = g(r)r−3, and �(r) is such that ∇ · � = V . We
find via direct integration of the Laplacian that

	(r) =
∫ ∞

r

1

r ′

∫ ∞

r ′
r ′′

[
g(r ′′)
r ′′3

]
dr ′′dr ′

= g(r)

r
+

∫ ∞

r

[
g′(r ′)

r ′ + 1

r ′

∫ ∞

r ′

g′(r ′′)
r ′′ dr ′′

]
dr ′, (3)

where we have integrated by parts twice to reach the final
expression. We note that 	(r) may have a logarithmic
singularity at r = 0 that is harmless as it is integrable. We
would like to simplify this expression by considering the limit
of small �. Let the double integration in (2) be represented by

I ≡ 1

2

∮
∂�

∮
∂�

	(‖r − r′‖)(n̂ · n̂′)ds ′ds.

We may now explicitly parametrize the line integral by arc
length, yielding

I = 1

2

∫ �

0

∫ �

0
	(‖r(s) − r(s ′)‖)[n̂(s) · n̂(s ′)]ds ′ds.

Defining σ ≡ s ′ − s, we now reparametrize the integral to the
form

I = 1

2

∫ �

0

∫ �/2

−�/2
	(‖r(s) − r(s + σ )‖)[n̂(s) · n̂(s + σ )]dσ ds.

(4)

Consider some function j (r,�) with the following two
properties:

lim
�→0

j (r,�) = 1

r
, J (�) ≡ 1

2

∫ �/2

−�/2
j (|σ |,�)dσ < ∞. (5)

Adding and subtracting the same quantity involving j (r,�)
from (4) yields

I = 1

2

∫ �

0

∫ �/2

−�/2
{	(‖r(s) − r(s + σ )‖)[n̂(s) · n̂(s + σ )]

− j (|σ |,�)}dσ ds + J (�)�. (6)

Now take the limit as � → 0 in the integrand of (6). The
function j (r,�) behaves as described in (5). Since, as � → 0,
g(r) tends to unity for all r ∈ (0,∞), it follows that g′(r) 
 0
in this range as well and (3) yields

lim
�→0

	(r) = 1

r
.

Carrying this limit through within the integral, we find

I 
 1

2

∫ �

0

∫ �/2

−�/2

[
n̂(s) · n̂(s + σ )

‖r(s) − r(s + σ )‖ − 1

|σ |
]

dσ ds + J (�)�.

(7)

This integral, which without the addition of j (r,�) would be
singular, now converges. This can be seen by examining the
behavior of the integrand as σ → 0, or

n̂(s) · n̂(s + σ )

‖r(s) − r(s + σ )‖ − 1

|σ | = 1 + O(σ 2)

|σ | + O(σ 3)
− 1

|σ | = O(σ 2).

We have been able to completely remove the dependence on
g(r) from the integration. This may seem worrisome, since
g(r) implicitly contained information about the microscopic
parameters of the system, like the length scale �. This
parameter still enters the energy, but now through the function
J (�), which we have yet to choose. If we pick j (r,�) =
[�(r − �/2) + �(−r − �/2)]/r , where � is the Heaviside
function, it follows immediately from (5) that J (�) = ln �

�

and we have

I = 1

2

∫ �

0

∫ �/2

−�/2

[
n̂(s) · n̂(s + σ )

‖r(s) − r(s + σ )‖ − 1

|σ |
]

dσ ds + � ln
�

�
.

This choice of j (r,�) is motivated mostly by its simplicity.
Many other options are available, though for consistency with
the small-� approximation one usually must then expand J (�)

032919-2



ENERGY-DRIVEN PATTERN FORMATION IN PLANAR . . . PHYSICAL REVIEW E 91, 032919 (2015)

about �
�

= 0 and use the highest-order term. In any such case,
given the asymptotic behavior of j (r,�) as defined above,
the highest-order term will be proportional to ln �

�
and the

particular choice of j will only modify the proportionality
constant. The error due to taking this macroscopic limit in (7)
goes as �3 [31].

We are now able to write a more explicit form of the energy
function (2),

E = λ� − μ2

2

∮
∂�

∫ �/2

−�/2

[
n̂(s) · n̂(s + σ )

‖r(s) − r(s + σ )‖ − 1

|σ |
]

× dσ ds − μ2� ln
�

�
+

∮
∂�

�(r) · n̂ ds. (8)

To fully describe a system we are modeling, one must also
enforce that the area of the domain is constant, or

A =
∫∫

�

dA = 1

2

∮
∂�

ẑ ·
(

r × ∂r
∂s

)
ds. (9)

Note that, in the absence of the last term describing an
auxiliary field, (8) is precisely what was found by de Koker
and McConnell [30]. However, in that study, the expression
is derived for a particular g(r), while we have now shown
that any typical g(r) will lead to a system described by
the same energy. It will be convenient to nondimensionalize
this system for ease of analysis and numerics. First, define
R ≡ √

A/π , the characteristic radius of the domain. Then
define

F ≡ E

μ2R
, L ≡ �

R
, � ≡ λ

μ2
− ln

R

�
,

ρ ≡ r
R

, � ≡ �

μ2R
.

Upon substitution of these quantities into (8) and simplifica-
tion, the nondimensional energy is

F = �L − 1

2

∮
∂�

∫ L/2

−L/2

[
n̂(s) · n̂(s + σ )

‖ρ(s) − ρ(s + σ )‖ − 1

|σ |
]

× dσ ds − L ln L +
∮

∂�

�(s) · n̂(s)ds. (10)

When nondimensionalized, the area constraint (9) becomes

π = 1

2

∮
∂�

ẑ ·
(

ρ × ∂ρ

∂s

)
ds.

These expressions only depend on a single parameter � and on
the shape of the domain �. The parameter � can be interpreted
physically as as an effective line tension, normalized by the
dipole density μ2 and shifted by the logarithm of the ratio of the
microscopic and macroscopic length scales of the system. An
interesting but perhaps nonintuitive feature of this is that the
instabilities we observe occur when � is negative, a situation
physically obtainable due to the shift.

In the limit of large �, the energy minimization problem is
dominated by perimeter minimization and circular domains
are the stable minimizer in this regime. The value of �

at which circular domains become unstable is of interest
because it marks the transition from this simple regime

to one characterized by more interesting structure. Setting
ρ(s) = x̂ cos s + ŷ sin s, one can use (10) to determine the
energy of a circular domain explicitly, yielding

F◦(�) = 2π (� + 2 − ln 8),

matching the known result from McConnell and Moy [6] and
equivalent to similar calculations by Cebers and Maiorov [2,3].
Define �n as the critical value of � at which a circular domain
becomes unstable to nth-order sinusoidal perturbations of
the type δρn(θ ) = ε cos(nθ )ρ(θ ). These critical values of �

are given by �n = ln 8 − Zn, where the first few Zn are
tabulated in [8] and an explicit form is given in [12]; details
of our calculation can be found in [31]. We use these critical
instabilities to verify the accuracy of our numeric simulations.

Another important previous result is the calculation of
the energy of a rectangular domain, which was computed
previously by McConnell and Moy [6] and Langer et al. [10].
If a is the aspect ratio of a rectangular domain, then the x and
y dimensions of that domain are dx = √

aπ and dy = √
π
a

,
respectively. In the limit of large a, or high aspect ratio, we
find

Frec = 2
√

πa

(
� − 1

2
ln

π

a

)
+ O(a−1/2).

The value of the aspect ratio at which the above energy is
minimized is a(�) = πe−2(�+1). This corresponds to a domain
perimeter of Lrec(�) = 2πe−�−1 and a rectangle energy of
Frec(�) = −2πe−�−1. Here we find that as � decreases, the
aspect ratio of rectangular domains grows exponentially and as
a result so do their perimeters. We also find that the minimum
energy of a rectangle increases exponentially with decreasing
�. Because the energy of a rectangular domain decreases so
quickly, it becomes lower than that of a circular domain when
Frec(�) = F◦(�). This transition happens at � 
 −1.374.
Comparing this with �2 = −1.254, the point at which the
circle first becomes unstable, we see that the transition to
lower rectangle energy may be related to the transition away
from circles. Our numeric simulations will corroborate this,
as rectanglelike domains do indeed dominate in this regime.
Finally, it is important to note previous calculations of the
stability of isolated stripes [2,15,23]. In our terms, they found
that the critical width of a stripe, that is, the largest width
for which an infinite stripe becomes unstable, is given by dy =
e�+γ+2, where γ is Euler’s constant. For an energy-minimized
rectangle in the high-aspect-ratio limit, its width is given by
wrec = dy = e�+1, which is strictly less than the critical value
for all values of �. This suggests that the stripelike portions
of branching structures observed in these systems are stable to
perturbation.

Some researchers studying thin ferromagnetic layers use a
different set of parameters than those used here [2,13]. For a
magnetic fluid layer with thickness h, surface tension σ , and
magnetic charge density M , our parameters translate as μ =
Mh, λ = σh, and � ∼ e−3/2h in the limit of small thickness
h. The generalized line tension � is given, in terms of these
parameters, as

� = 3

2
+ σ

M2h
− ln

R

h
= 3

2
+ 2

NB

− ln
R

h
,

where NB ≡ M2h/σ is the magnetic bond number [13].
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III. NUMERICS

In order to perform numeric simulations of dipole-mediated
domains, we discretized the boundary ∂� in the energy
expression (10). Consider a set of N points xi = (xi,yi), each
equidistant to its adjacent neighbors. Adjacent points are kept
equidistant to ensure that they are uniformly spread along
the domain’s perimeter. This equidistance condition can be
expressed by the N consistency equations

L

N
= ‖xi+1 − xi‖. (11)

Define ρi ≡ 1
2 (xi+1 + xi) and ti ≡ 1

2 (xi+1 − xi) to approxi-
mate the midpoint and tangent vectors of the polygonal sides.
The normal vector ni is defined to be the outward facing
vector orthogonal to ti and of the same length. The simplest
discretization of the energy integration given this boundary
discretization is

F = �L − 1

2

N∑
i=1

N/2−1∑
j=−N/2

(
t̂i+j · t̂j

‖ρi+j − ρj‖ − 1

(L/N)|j |
)

L2

N2

−L ln L +
N∑

i=1

�(xi) · n̂i

L

N
,

where the carets on some vectors denote that they have been
normalized to unit length. Using (11), for instance, one can
see that ti = L/N t̂i . The expression above can be simplified
considerably by computing the sum over the second term in
the summand, yielding

F =
(

� + HN/2−1 + 1

N

)
L − 1

2

N∑
i=1

N∑
j = 1
j �= i

ti · tj
‖ρi − ρj‖

−L ln L +
N∑

i=1

�(xi) · ni , (12)

where Hm = ∑m
j=1

1
j

is the mth harmonic number. In order to
ensure that the area of a domain stays constant, the boundary
points must fulfill the consistency expression

π = 1

2

∥∥∥∥∥
N∑

i=1

xi+1 × xi

∥∥∥∥∥ = 1

2

∣∣∣∣∣
N∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣ . (13)

We are now looking at a problem of constrained optimization;
we use Lagrange multipliers to minimize (12) under the con-
straints (11) and (13). The Lagrangian for such a constrained
system is given by

L = F − λ0

[
π − 1

2

∣∣∣∣∣
N∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣
]

−
N∑

i=1

λi

[
L2

N2
− ‖xi+1 − xi‖2

]
,

where λ0, . . . ,λN are the Lagrange multipliers. We minimize
the energy of this discrete system to investigate stable domain
configurations using a modified version of the Levenberg-
Marquardt algorithm (LMA). Normally the LMA corresponds

to a modified Newton method where a multiple of the identity
matrix is added to the Hessian before solving for the step
size. When this multiple is very large, the algorithm acts like
gradient following, minimizing energy as opposed to Newton’s
method, which converges to any critical point. However,
in a system containing Lagrange multipliers as variables,
minimization of the energy with respect to all variables is
impossible since the multipliers can increase without bound
and drive the algorithm to diverge. Therefore, we use the LMA
where, instead of an identity matrix, we add a block identity
matrix to the Hessian so that the Lagrangian is minimized
with respect to the physical variables while respecting the
constraints associated with the Lagrange multipliers. If z =
[x1, . . . ,xN ,y1, . . . ,yN ,�] is the vector of physical variables
and λ = [λ0, . . . ,λN ] is that of Lagrange multipliers, the
system is described by the state vector [z,λ]. In our modified
algorithm, a step is given by

[
�z
�λ

]
= α

(
HL + η

[
I2N+1 0

0 0

])−1

∇L,

where HL and ∇L are the Hessian and gradient of the
Lagrangian at the previous state, In is the n × n identity matrix,
and α is chosen using the Armijo rule [33]. The parameter η

is set to some initial value η0 and then is decremented as the
gradient of L dips below some preselected value.

In the absence of an external potential [�(r) = 0], we
used continuation in � to examine the domain shapes that
are stable, i.e., energy minimizers. For sufficiently large � the
circular domain is the unambiguous global minimizer. Once
� 
 �2, the phase space becomes far more interesting. We
were able to follow the harmonic bifurcations from a circular
domain onto their solution branches. The first five harmonic
bifurcations can be seen in Figs. 2(a)–2(f) and their branches
as represented by the perimeter L are plotted in the same
figure. Notice that all harmonic bifurcations exhibit the same
subcritical branching behavior. Stability is recovered for the �2

branch, which corresponds to the circle to dogbone transition
(see Fig. 3). This subcritical behavior observed previously by
Cebers and co-workers [5,20] and studied in detail by Jackson
and his collaborators [26,27] is responsible for the hysteresis
in dogbone formation. We find that the value of � at the tip
of the upper branch is � 
 −1.227. Numerically, the circle
appears to be the global attractor above this point. Harmonic
branches of fourfold and higher symmetries have been shown
by Cebers and Drikis to decay into lower-symmetry shapes
in magnetohydrodynamic simulations as a result of so-called
vertex splitting instability [19,20]. Our eigenvalue analysis
confirms that these domains are unstable. We also found that
the branch of threefold symmetry is unstable, despite the fact
that it has not decayed in previous magnetohydrodynamic
simulations [5,20]. This inconsistency is due to the fact that
the decay mechanism for the threefold symmetry is not vertex
splitting, which is geometrically forbidden, and is instead
caused by the atrophy of one or two of the arms, which
(as we will discuss below) is a much weaker instability and
would manifest itself on a much larger time scale than the
vertex splitting in dynamic simulation. Moreover, previous
simulations use different strategies for regularizing the dipole
energy; it is plausible that this these changes effect the
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18

L

FIG. 2. Shown on the bottom is a plot of the perimeters of the
first five harmonic bifurcations from a circular domain. The black
dots represent the theoretical bifurcation points �n, the solid lines
denote stable numeric solutions, and the dashed lines denote unstable
numeric solutions. The top shows a circular domain alongside those
bifurcations. These shapes were taken with � values of (a) −1.2, (b)
−1.38, (c) −1.52, (d) −1.65, (e) −1.69, and (f) −1.77.

observed stability for, say, a small but finite magnetic layer
thickness.

If the dogbone is allowed to adiabatically evolve with
decreasing �, it becomes long and stripelike, very much like
the rectangle we considered in Sec. II. In particular, the stripe

1.28 1.27 1.26 1.25 1.24 1.23 1.22

6.5

7.0

7.5

8.0

L

FIG. 3. Subcritical bifurcation of the dogbone (stripe) from the
circle. The solid lines denote stable numeric solutions and the dashed
lines denote unstable ones. The subcritical branch of solutions regains
stability in a fold bifurcation at � 
 −1.227.

a b c

FIG. 4. Representatives of (a) stripe, (b) forked, and (c) doubly
forked domain morphologies at � = −2. These appear to be the only
stable morphologies in the range of � we have investigated in the
absence of a random energy background.

is stable and we suspect it is the global minimizer in the regime
where the circle is no longer stable. Through bifurcation
following on higher harmonic branches, we found two other
stable morphologies: the forked and doubly forked domains.
These are represented in Fig. 4. Notice that all three of these
solutions appear like rectangles with various modifications to
their ends. In fact, all three stable morphologies evolve in
a similar way, becoming very long and stripelike with large
−�. The perimeter of these domains as a function of � can
be seen in Fig. 5(a). The perimeters of all three increase
exponentially and in fact almost identically to the analytic
rectangle perimeter Lrec(�). The close connection between
the perimeters of these stable shapes and that of Lrec(�) can
be seen in Fig. 5(b), which shows the relative error between
the perimeters of each stable shape and Lrec(�). As can be
seen from that figure, the difference between the perimeters

a

Dogbone or Stripe
Singly Forked
Doubly Forked

0

10

20

30

40

50

L

b

3.0 2.5 2.0 1.5 1.0

6

4

2

0

2

10
2

L
re

c
L

L
re

c

FIG. 5. Asymptotic behavior of the perimeter of the three stable
domain morphologies for N = 8196. (a) Perimeter of each morphol-
ogy as a function of �. (b) Relative error between the perimeter of
each morphology and Lrec, the asymptotic rectangle perimeter.
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of these shapes and the analytic rectangle becomes less than
2% for � 
 −2 and less than 1% at � 
 −2.5. In fact,
even the unstable higher harmonic bifurcations behave like
this, approaching asymptotically the rectangle perimeter as �

becomes more negative.
Note further that the stripe has a slightly lower perimeter

than the rectangle, while the forked and doubly forked domains
have progressively higher perimeters. The central bulk of
the stripe is geometrically identical to the rectangle in all
respects. Therefore, the curved ends of the stripe domain
must be responsible for the deviation. These ends have a
size proportional to the width of the stripe, which is in turn
proportional to wrec(�), the asymptotic rectangle width. The
difference between the perimeters of the stripe domain and
the rectangle should likewise be proportional to the size of the
anomalous ends. Hence, in the limit of large negative �, the
expressions

Lstripe − Lrec

wrec
,

Ldouble − 2Lforked − Lrec

wrec
(14)

should go to the same constant c, loosely the energy cost per
end cap. This is a nontrivial statement since wrec decreases
exponentially as � becomes more negative, so Lstripe − Lrec

will have to decrease equally exponentially in order for c

to converge. However, this is exactly what we see. Both
expressions in (14) can be seen plotted as a function of �

in Fig. 6(a). The constant itself can be roughly determined by
sampling along the relatively constant region between −2.8
and −3.1 and averaging, yielding c = −0.482 ± 0.001.
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FIG. 6. Ratios of the rectangle width wrec to linear combinations
of the stable perimeters that correspond, in the limit of negative �, to
the constants (a) c and (b) m.

In addition, we need to account for the perimeter differences
of the forked and doubly forked domains. When a junction is
added to a stripelike shape, another anomalous end is added.
Like the ends, the size of the junction itself also scales with the
width of the domain. Therefore, we should expect that there is
a cost per threefold junction that scales like wrec(�), so that in
the limit of large negative �, the expressions

Lforked − Lstripe

wrec
,

Ldouble − Lforked

wrec
,

Ldouble − Lstripe

2wrec

should go to the same constant m. As can be seen in Fig. 6(b),
this is indeed the case. All three ratios tend to the same
constant, which can be determined to be m = 0.819 ± 0.001
(see [31] for details).

Given this description, one might imagine that the perimeter
of any simply connected domain with n threefold junctions
(and no junctions of higher order) will be

L 
 Lrec + (c + mn)wrec (15)

for � sufficiently negative. This is a remarkably simple charac-
terization of complicated domain structure, but, as we will see,
it indeed holds for domains that resemble the intricate structure
of those seen in experiment. Though this model necessarily re-
stricts itself to domains with threefold junctions, recall that we
only found stable shapes with threefold junctions. As it turns
out, junctions of higher order are never seen in stable shapes
in our numerics and rarely seen in experimental domains due
to the vertex splitting instability, which highly disfavors vertex
symmetries of fourfold symmetry and higher [19,20].

Unfortunately, the stable domain structures seen in Fig. 4
lack many of the qualitative properties seen in experiment,
e.g., branching structure, asymmetry, and snaking behavior.
We suspect that this is because, in experimental settings,
there is a nonzero effective background potential V (r). This
could come from small inhomogeneities of the substrate or
imperfect applied fields. These imperfections can pin nearly
stable domains. We can estimate the size of the potential
needed for this pinning by considering two branches of a
typical structure, like those in Fig. 7. Our analysis of the
threefold harmonic shape suggests such a configuration is
unstable and will decay by shortening one branch down into
the other. We wish to find the energy gradient associated with
this decay. Consider a small cross section of the upper branch
and compute the energy it takes to move this piece onto the
lower branch. Since such a move conserves the perimeter of
the shape, the line tension and logarithmic terms in the energy

Bulk

FIG. 7. Example of two branches in a more complex branching
domain.
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do not change. The dipole energy of the small section with
respect to the bulk scales like the area of the section wrec�x

over the cube of the mean distance of that section from the
rest of material, which we expect to scale like Lrec. There is a
scaling constant c1 that depends on the geometry of the bulk
relative to the upper branch. Upon moving to the lower branch,
the scaling behavior is identical, but the bulk relation constant
changes to c2. Therefore, we have

�F = wrec�x

L3
rec

(c2 − c1).

Using the known scaling behavior of Lrec and wrec, this can be
written

�F

�x
∼ e4(�+1).

Thus, as � becomes negative, like it does in the regime where
we see branching structures emerge, the energy gradient that
destroys branching structures becomes smaller exponentially.
In this regime, we should expect to see branching structures
begin to emerge over random backgrounds of even modest
amplitude.

The form of our random energy background is as follows.
First, we choose positive real numbers k0 and a0 to characterize
the scale of the noise and an integer M to give the number of
modes included. Then we create a set of vectors {ki} and sets
of scalars {ai} and {φi}, where i = 1, . . . ,M . The ki are taken
from a uniform distribution in the circle of radius k0 centered
at the origin, the ai are taken uniformly from the interval
[0,2a0/M], and the φi are taken uniformly from the interval
[0,2π ]. The background energy is then given by the density

V (ρ) =
M∑
i=1

ai cos(ki · ρ + φi).

Consider the function � : R2 → R2 defined by

�(ρ) = 1

2

M∑
i=1

ai sin(ki · ρ + φi)

[
1

kix

,
1

kiy

]
.

It follows that ∇ · � = V . This is precisely the condition we
have on the external line potential �. Therefore, the numerical
approximation to the energy is given by

Frand =
∮

∂�

� · n̂ ds =
∮

∂�

ds(�xn̂x + �yn̂y)

= 1

2

∮
∂�

M∑
i=1

ai sin(ki · ρ + φi)

(
t̂y

kix

− t̂x

kiy

)
ds,

where we have used n̂x = t̂y and n̂y = −t̂x , true for the
tangents and normals of positively oriented domains. This
means that, given the discretization of the domain boundary
we used before,

Frand = 1

2

N∑
j=1

M∑
i=1

ai sin(ki · ρj + φi)

×
(

yj+1 − xj

kix

− xj+1 − xj

kiy

)
,

lo g 10 a0

1.3

1.6

2

2.3

2.6

2.9

10 8 6 4 2 0

FIG. 8. Sampling of stable solutions to our numeric model
over random external potentials. Traveling down the vertical axis
corresponds to decreasing � and traveling to the right on the
horizontal axis corresponds to increasing background intensity.

where the first sum is over the points making up the sides of
the domain and the indices are defined cyclically. We can now
simulate domains over such backgrounds in precisely the same
way as we did in the case without the background.

a

10

20

30

40

50

L

6

4

2

0

b

3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6
6

4

2

0

2

10
2

L
re

c
L

L
re

c

6

4

2

0

FIG. 9. (Color online) (a) Perimeter L of stable domains as a
function of �. The color of each point denotes the value of log10(a0),
the order of magnitude of the random background, as detailed by the
legend. The solid black line is a plot of Lrec(�). (b) Relative error of
each perimeter from Lrec.
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FIG. 10. Average number of junctions in numeric domains as a
function �. The error bars denote standard error.

With this modification, we are able to recover many of the
qualitative features seen in experiment that were not seen for
the minimizers we observe in the absence of noise. See, for
instance, Fig. 8, which shows samples of these shapes at a
variety of � values and background intensities. Moreover,
we found that the perimeters of these shapes continue to
correspond, to a large degree, with the rectangle relationship
Lrec(�) that we found before. In Fig. 9, we have plotted
the perimeter of arbitrary shapes over a random background
as a function of �. The color of each point corresponds to
the intensity of the random background it was generated in.
Notice first that the nature of the background does not seem to
influence domain perimeter in a regular way. Next notice that
despite the relative complexity of these shapes, their perimeters
remain very close to the rectangular idealization. However,
there is an upward trend with increasing negative �.

A similar upward trend exists in another shape-relevant
morphological parameter: the number of junctions in the
domain. This trend is shown in Fig. 10. Given the simple
model (15), one would expect a greater number of junctions
to correspondingly cause inflation in the observed perimeter
from that of the rectangle. By inverting that model, we can
make a prediction �′ of a domain’s true value of �, i.e., that

3. 0 2. 8 2. 6 2. 4 2. 2 2. 0 1. 8 1. 6

1. 0

0. 5

0. 0

0. 5

1. 0

10
2

'

FIG. 11. Difference between the generating value � and the mean
predicted value �′ for sets of 50 domains. The error bars denote
standard error.

at which it was generated. This prediction is given by

�′ = ln

[
L −

√
L2 − 8π (c + mn)

2(c + mn)

]
− 1.

We tested this model at values of � between −3 and −1.6
for sets of 50 domains minimized over random backgrounds.
Figure 11 shows the error in those predictions. As can be seen
there, for all � tested the error in our model was less than
1%. The upward trend for � ∼ −3 may be due to numerical
underresolution [31].

IV. CONCLUSION

In this work, we have developed a way to express the
energy of a dipole-mediated system that depends only on
a single nondimensional parameter �. Numeric simulations
using energy minimization were developed. We used these
simulations to track the bifurcations of domains from a circle
and resolve subcritical branches for the first five harmonic
bifurcations and in particular for that of the circle to dogbone
transition. Using the same methodology, we found three stable
domain morphologies beyond the circle, all of which resemble
a rectangular domain in appearance and behavior. Among
these, the stripe, which evolves from a dogbone, is suspected
to be the global energy minimizer in the unstable-circle
regime.

The fact that these observed domains lack the qualitative
features of experimental domains led to the conclusion that
those features necessarily depend on the presence of an
imperfect background energy landscape and we confirmed
this by recovering those features in our numerics. Using
these domains, we found that a simple model suggested
by the stable domains continues to work well in deriving
the value of � from the shape of an arbitrary domain.
This model is especially powerful, because it only relies
on the area-normalized perimeter and number of junctions
present in the shape. These features can be extracted from
photographs of experiments and so recovery of �, which
contains ratios of physical variables, is straightforward in
practice. An experimentalist could use this technique while
varying some known parameter, e.g., the magnetic field or
domain area, to work out other, unknown parameters by a fit of
the system’s � dependence. We hope to explore the possibility
of our model being used in this way through collaboration with
experimentalists.
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