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Subcriticality of the zigzag transition: A nonlinear bifurcation analysis
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When repelling particles are confined by a transverse potential in quasi-one-dimensional geometry, the straight
line equilibrium configuration becomes unstable at small confinement, in favor of a staggered row that may be
inhomogeneous or homogeneous. This conformational phase transition is a pitchfork bifurcation called the zigzag
transition. We study the zigzag transition in infinite and periodic finite systems with short-range interactions.
We provide numerical evidence that in this case the bifurcation is subcritical since it exhibits phase coexistence
and hysteretic behavior. The physical mechanism responsible for the change in the bifurcation character is the
nonlinear coupling between the transverse soft mode at the transition and the longitudinal Goldstone mode linked
to the translational or rotational invariance of the zigzag pattern. An asymptotic analysis, near the bifurcation
threshold and assuming an infinite system, gives an explicit expression for the normal form of the bifurcation. We
establish the subcriticality, and we describe with excellent precision the inhomogeneous zigzag patterns observed
in the simulations. A direct test of the physical mechanism responsible for the bifurcation character evidences a
quantitative agreement.
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I. INTRODUCTION

The zigzag transition is a configurational phase transition
that happens when repelling particles in a plane are confined in
quasi-one-dimensional (quasi-1D) linear traps by a transverse
potential. When the transverse confinement potential is much
greater than the interparticle energy, all particles are aligned
along the trap axis at equilibrium. Below a critical transverse
confinement, the equilibrium pattern undergoes a transition
from a straight line toward a staggered row (homogeneous or
inhomogeneous), which is called “zigzag.”

The zigzag transition is easily described if one assumes a
perfect zigzag pattern. Let us consider identical point particles
of mass m located in the plane (xOy), transversally confined
in a quasi-1D geometry by a harmonic potential of stiffness
β, and interacting with a repulsive potential U (r). Here Ox is
the longitudinal axis of the cell and Oy is the transverse axis.
In an infinite system (or with periodic boundary conditions in
the longitudinal direction and an even number of particles),
the zigzag pattern corresponds to particles located at points
Ai of coordinates {2id, − h} and at points Bi of coordinates
{(2i + 1)d, + h}, where the zigzag height h is a constant (see
Fig. 1).

The potential energy of any particle in Fig. 1, up to second-
neighbor interactions, is

E = U [
√

d2 + 4h2] + U (2d) + β

2
h2

≈ U (d) + U (2d) + h2

[
β

2
+ 2U ′(d)

d

]
+ 2h4

d3
[dU ′′(d) − U ′(d)], (1)

where the rightmost member results from an expansion in h

up to h4. This energy is invariant toward the axial symmetry
y −→ −y. When we decrease β, the minimum of energy at
h = 0 becomes a local maximum, with two symmetric minima
±h with h > 0. The conformational transition takes place at
a critical value βZZ = −4U ′(d)/d. The energy landscape is

shown in Fig. 2 for β < βZZ . It exhibits the characteristic
features of a supercritical pitchfork bifurcation.

The zigzag transition has been observed with ions in Paul’s
trap [1–7], with plasma dusts [8–12], with colloids [13],
and with millimetric charged beads [14–16]. A supercritical
bifurcation has been observed in simulations of periodic
systems with Coulomb interaction [17–20] and also in some
periodic systems with short-range interactions [14,21]. Most
experiments have been done in linear traps of finite length, with
repulsive boundary conditions at the edges. In these traps, the
particles are not equidistant, and the simple expression (1)
is not strictly valid. The equilibrium pattern is spindle-
shaped, with the maximum zigzag height in the trap center.
Nevertheless, one may expect the same phenomenology, with
the uniform zigzag height h replaced by the maximum height.
In these finite systems, the bifurcation is always found to be
supercritical, for Coulomb systems [3,4,7,18] as well as for
systems with short-range interactions [11,13–15,22].

In contrast, other experimental evidence contradicts the
supercritical character of the bifurcation in periodic systems
with short-range interactions. With plasma dust confined in
an annulus, Sheridan [10] has observed a stable localized
zigzag pattern, surrounded by aligned particles. We have
also reported observations of inhomogeneous patterns and
demonstrated that, for short-range interactions, the zigzag
pattern in a periodic system is linearly unstable [16]. A
subcritical bifurcation diagram has also been exhibited in the
experiments of Straube et al. [13].

We can infer from the known literature that the character of
the zigzag bifurcation in periodic systems is not necessarily the
same as in finite systems with repulsive boundary conditions at
the edges. This phenomenon has already been observed in the
framework of instabilities, such as convection rolls [23–26],
surface waves [27], or solidification fronts [28–30] in extended
or annular geometries. In all of these systems, a supercrit-
ical pitchfork bifurcation was expected, while experiments
in extended periodic cells exhibited a subcritical behavior.
Because of the translational or rotational invariance of the
system, the nonlinearities induce a coupling between the soft
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FIG. 1. (Color online) A schematic illustration of the zigzag
pattern. The solid lines indicate the interactions that are taken into
account in the theoretical description.

mode due to the instability and the Goldstone mode due to the
continuous symmetry breaking and therefore the subcriticality
of the bifurcation [31–33].

In Ref. [32], the terms of the normal form of the bifurcation
are deduced from symmetry arguments, but with numerical
coefficients that are not explicitly given by the analysis. In our
approach, the underlying microscopic dynamics of the zigzag
transition is known from first principles, and the normal form is
obtained in a constructive way. The normal form fulfills all the
required symmetry properties, and it exhibits the subcritical
character of the bifurcation. Moreover, explicit expressions
are given for all coefficients of the normal form, which allow a
quantitative comparison between the observed inhomogeneous
zigzag patterns and the calculations based on the normal form.
The coupling between the soft mode at the bifurcation and the
phase mode due to the breaking of a continuous symmetry
induces a shift of the longitudinal interparticle distance. We
are able to test quantitatively this effect, and we find an
excellent agreement with our simulations, validating with great
precision the mechanism that traces back to the coupling
between the two soft modes.

This paper is organized as follows: Section II reports on
numerical simulations and provides evidence of a subcritical
zigzag transition in periodic systems with short-range interac-
tions. In Sec. III, we construct perturbatively the normal form
near the bifurcation in the thermodynamic limit. We identify
the range in the bifurcation parameter for which inhomoge-
neous zigzag patterns exist, and we calculate the shapes of
these patterns. In Sec. IV, we take into account the finite-size
effects and compare quantitatively the inhomogeneous zigzag
patterns observed in our simulations to the calculated patterns.
A conclusion in Sec. V summarizes our findings, and four
Appendixes are devoted to some technicalities.
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FIG. 2. (Color online) Schematic plot of the energy E(h) as a
function of the zigzag height h, for β < βZZ , with a sketch of the
relevant patterns [see Eq. (1)].

II. EVIDENCE OF A SUBCRITICAL ZIGZAG
BIFURCATION

A. Equilibrium configurations

To discuss the equilibrium configurations, it is convenient
to introduce the distance to threshold ε as β = βZZ(1 − ε). In
Fig. 3(a), we plot the maximum height h of the observed zigzag
pattern as a function of ε and compare it to the height h∗ that
minimizes the interaction energy (1) and corresponds to the
perfect zigzag. Three areas may be identified in this plot. Near
the threshold ε = 0, h is small, scales as ε1/2, and is accurately
given by the energy minimization [see Fig. 3(b)]. Increasing
ε, the equilibrium pattern becomes inhomogeneous, as shown
by the insets of Fig. 3(a), and the maximum zigzag height is
larger than for a perfect zigzag pattern: h > h∗. Then when ε

is further increased, a high height zigzag pattern is recovered,
of height h∗. The extension of the interval of ε values for
which inhomogeneous patterns are observed increases with
the system size (at constant density and interaction range).

B. Linear instability of the zigzag pattern

A linear stability analysis of the zigzag pattern has been
done in Ref. [16]. In the zigzag lattice, the longitudinal
and transverse vibrations both exhibit high-frequency op-
tical branches and low-frequency acoustical branches. For
finite range interactions, we have shown that, in an infinite
system, there is a whole band of small wave numbers for
which transverse acoustic vibrations have a pure imaginary
frequency, ωAT. The relevant parameters are the zigzag height
h and the interaction range λ0, expressed in units of the mean
interparticle distance d. For small enough λ0/d and small
enough wave number, we have exhibited a range in zigzag
height hC1 � h � hC2 for which the frequency ωAT is pure
imaginary. These limiting heights are shown in Ref. [16] to
bound the area of existence of the inhomogeneous patterns
(see the right plot of Fig. 3). The appearance of inhomogeneous
patterns is thus linked to a long-wavelength instability, which
explains why they are more easily observed in large systems.

The heights hC1 and hC2 depend on the wave number q,
with hC1 ∝ q when q → 0. In a finite periodic system, the
minimum nonzero wave number qmin scales as the inverse
of the system size L, thus hC1 ∝ 1/L. Near the transition,
the zigzag height scales as ε1/2, where ε is the distance to
threshold. There is therefore a range in ε that scales as 1/L2

for which the bifurcation is supercritical. This explains the
supercritical behavior evidenced by Fig. 3(b) and our previous
results in Ref. [14].

C. Hysteretic behavior

In Fig. 4, we plot the maximum zigzag height h as a function
of the ratio β/βZZ , for increasing and decreasing stiffnesses,
and several system sizes. The density and interaction potential
are kept constant. The evolution of the zigzag height clearly
exhibits an hysteretic behavior. For decreasing confining
transverse stiffness β, the bifurcation between a straight line
h = 0 and a state with localized bifurcated patterns always
happens at the same value, βdown. When β increases, the
transition toward the state h = 0 takes place at a value
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FIG. 3. (Color online) (a) Zigzag height h (mm) as a function of ε for 8 (thick red curve), 16 (thick green curve), and 32 (thick blue curve)
particles. The fine solid black line indicates the expected height for a zigzag pattern h∗. For inhomogeneous zigzag, h is the maximum height
of the pattern. In the insets, we show two typical inhomogeneous patterns. The dots are simulations data, while the lines are only guide to the
eyes. (b) Onset of the zigzag transition zoomed near the bifurcation threshold for 32 particles. The solid line is the theoretical height h∗ of a
zigzag pattern, while the dots are simulations data.

βup > βdown, and the greater the system size, the greater the
difference βup − βdown > 0.

In Fig. 5, we plot the evolution of βdown/βZZ and βup/βZZ

with the particles number N . This confirms that βdown is
basically independent of N . In contrast, βup increases and
tends toward a limit value β∞

up with β∞
up − βN

up ∝ 1/N . We
have done these measurements at two temperatures. There is
indeed no significant differences between the two sets of data,
which ensures that we actually observe equilibrium patterns.

D. Discussion

Under the assumption of a perfect zigzag pattern, with
equidistant particles alternately displaced from the bottom of
the transverse potential well, the zigzag transition is found
to be a supercritical pitchfork bifurcation. However, when an

even number of particles is placed in a periodic cell, the particle
distribution at equilibrium may be inhomogeneous. Moreover,
we have shown in [16] that the vibration modes of the zigzag
pattern exhibit a band of unstable acoustic modes.

The observation of inhomogeneous patterns evidences the
coexistence between bifurcated (h �= 0) and nonbifurcated
(h = 0) regions, which in the framework of Landau phase
theory takes place for first-order phase transitions and not for
second-order ones. Retranscribed in the language of bifurca-
tions, this evidences a subcritical behavior of the pitchfork
bifurcation for large systems. The subcritical character of the
bifurcation is also evidenced by the hysteretic evolution of
the maximum height of the equilibrium patterns when the
transverse confinement is varied. The domain of stability of
the inhomogeneous patterns (see Fig. 3) and the amplitude
of the hysteresis cycles (see Figs. 4 and 5) depend on the
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FIG. 4. (Color online) Evolution of the zigzag height h (mm) for increasing (orange points, see arrows) and decreasing (blue points, see
arrows) β/βZZ . The relevant particle number N is indicated in the upper right corner of each plot. The mean interparticle distance d is the
same in all plots.
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FIG. 5. (Color online) Reduced stiffness β/βZZ at which a tran-
sition between aligned particles and localized zigzag happens as
a function of the particle number N , at constant d . Blue dots
are the measured values βdown for decreasing β. Orange dots and
stars are the measured values βup for increasing β. The thermo-
dynamic temperature in the simulations (see Appendix A) is such
that U (d)/kBTb = 10−2 (dots) and U (d)/kBTb = 10−4 (stars). The
dashed line is the maximum height of the hysteresis calculated from
the normal form [see Eq. (11)]. The inset is a log-log plot of the
deviation to this maximum height as a function of N . The dotted line
is of slope −1.

system size, which implies that finite-size effects have to be
taken into account.

The key ingredients for subcriticality, as will be shown in
Sec. III, are the invariance of the system with a continuous
symmetry, either translational or rotational, and the short
range of the interactions. Using techniques developed to
tackle instabilities in extended systems, we will describe the
inhomogeneous equilibrium patterns that we observe.

III. SUBCRITICAL ZIGZAG TRANSITION
IN THE THERMODYNAMIC LIMIT

Assuming the thermodynamic limit justifies a description
of the system as a continuous medium described by partial

differential equations. According to our simulations results,
the equilibrium patterns may be inhomogeneous, with a
zigzag height that depends on the particle position. Therefore,
a quantitative description of the inhomogeneous patterns,
including nonlinear corrections, may be feasible with slowly
varying space and time functions. This is done in this section,
using theoretical tools developed for instabilities in extended
systems [32].

A. Translational invariance and coupling
with the phase mode

A zigzag pattern is invariant under translations x −→ (x +
φ), where φ is a real constant. Thus, in the long-wavelength and
low-frequency limit, the energy required by a time- and space-
dependent field φ(x,t) vanishes. Indeed, the field φ(x,t) is
the Goldstone mode linked to the breaking of the translational
invariance by the actual zigzag pattern. Very near the pitchfork
bifurcation, there is also a soft mode linked to the bifurcation
itself. It is a modulated zigzag pattern h(x,t), slowly varying
with space and time. In Ref. [32], it was shown that the normal
form at the bifurcation results from the nonlinear coupling
between these two soft modes.

In our calculations, we assume the vicinity of the zigzag
transition, |ε| 	 1. This suggests that the zigzag height h

scales as ε1/2. We therefore write h = ε1/2H , where H is
of order 1. Then the slow time and space variables are
chosen to recover the acoustic modes in the low-frequency
and long-wavelength limit (see Appendix B). We thus take
T = ε1/2t and X = ε1/2x. The scale of the space variable
defines the scale of the field φ = ε1/2�, where � is of
order 1. The fields H and � depend on the slow variables
X and T . As in Ref. [32], we will call �(X,T ) the phase
field [34].

As shown in Fig. 1, we consider only interactions up to
second neighbors. It is the simplest model, since nearest-
neighbor interactions only are insufficient to stabilize the
zigzag pattern [16], while taking into account the second
neighbors prohibits the zigzag collapse. With this assumption
and our previous scaling choices, the relevant distances
read

A0B0 =
√

[d + ε1/2�(X + ε1/2d) − ε1/2�(X)]2 + ε[H (X + ε1/2d) + H (X)]2, (2)

A0A1 =
√

[2d + ε1/2�(X + 2ε1/2d) − ε1/2�(X)]2 + ε[H (X + 2ε1/2d) − H (X)]2. (3)

Expanding the interaction energy U (A0B0) + U (A0A1) up to ε2, and setting ∂�/∂X ≡ �X, we get

Ẽ ≈ U (d) + U (2d) + εH 2

(
β

2
+ 2U ′(d)

d

)
+ ε2

{[
U ′′(d) − U ′(d)

d

] (
2H 4

d2
+ 2H 2�X

)
+ HHXXdU ′(d) + �2

X

d2

2
[U ′′(d) + 4U ′′(2d)] + H 2

X

d

2
[U ′(d) + 2U ′(2d)]

}
. (4)

The interaction energy Ẽ gives the Lagrangian density L = mε2(�2
T + H 2

T )/2 − Ẽ. Notice that we have omitted a term
proportional to �X at order ε, and the two terms

ε3/2

[
2HHXU ′(d) + d2

2
(U ′(d) + 4U ′(2d))�XX

]
= ε3/2 ∂

∂X

[
H 2U ′(d) + d2

2
(U ′(d) + 4U ′(2d))�X

]
(5)
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and

ε2�XXX

d3

6
(U ′(d) + 8U ′(2d)) = ε2 ∂

∂X

[
�XX

d3

6
(U ′(d) + 8U ′(2d))

]
, (6)

because they all are exact X derivatives and thus do not contribute to the Lagrange equations [35]. The Lagrange equations for
the fields H (X,T ) and �(X,T ) are thus

mε2HT T = −ε

(
β + 4U ′(d)

d

)
H − ε2

[
U ′′(d) − U ′(d)

d

](
8

d2
H 3 + 4H�X

)
−ε2HXXd[U ′(d) − 2U ′(2d)], (7)

mε2�T T = ε2d2[U ′′(d) + 4U ′′(2d)]�XX + 4ε2

[
U ′′(d) − U ′(d)

d

]
HHX. (8)

This system of equations exhibits the coupling between the
soft zigzag mode H (X,T ) due to the vicinity of the pitchfork
bifurcation [14,16] and the phase mode �(X,T ) due to
translational invariance, according to the mechanism described
in Refs. [32,33]. It leads to the correct acoustic spectrum in
the long-wavelength limit (see Appendix B), which justifies a
posteriori the scaling choices for the slow scales X and T .

Note also that the terms in Eqs. (7) and (8) satisfy all
symmetry requirements [27,32,33,36,37]. The translational
invariance x −→ x + �0 is preserved since only the X

derivatives of � appear. The fact that all terms in (7) are odd in
H while all terms in (8) are even in H reflects the invariance of
the zigzag pattern under the transform (H,�) −→ (−H,�).
It is easily checked that the equations are invariant under the
X parity symmetry (H,X,�) −→ (H,−X,−�).

As a consistency check, we may also verify that these
equations include the dependency of the transition threshold
on the interparticle distance. We remark that Eq. (7) admits
the special solution �X = �0

X = Cste and HX = 0, which
corresponds to a renormalization of the mean interparticle
distance, which becomes deff = d + ε�0

Xd. By considering
the terms of (7) that are proportional to H , we see that their
physical significance is indeed that the instability threshold
has changed, to become

βZZ(deff) = −4U ′(d + ε�0
Xd

)
d + ε�0

Xd

= −4U ′(d)

d
− 4ε�0

X

[
U ′′(d) − U ′(d)

d

]
+ O(ε2).

B. Subcritical normal form of the bifurcation

Most importantly, Eqs. (7) and (8) provide the nonlinear
mechanism responsible for the change in the character of the
bifurcation. Searching for a stationary solution HT = 0, �T =
0, Eq. (8) is readily integrated to give

�X = − 2[dU ′′(d) − U ′(d)]

d3[U ′′(d) + 4U ′′(2d)]
H 2 ≡ −α

H 2

d2
with α > 0.

(9)

Injecting this expression in (7), and recalling β + 4U ′(d)/d =
[4U ′(d)/d]ε, we get that the height of a zigzag pattern

H = Cste is given by

U ′(d)︸ ︷︷ ︸
<0

H

d
= −4 [dU ′′(d) − U ′(d)]︸ ︷︷ ︸

>0

(2 − α)
H 3

d3
≡ 1

4
g3

H 3

d3
.

(10)

Without the coupling with the phase field �, α = 0, and
we recover the supercritical pitchfork bifurcation that can
be deduced from (1). When the coupling is taken into
account, the coefficient (2 − α) may change sign, so that the
pitchfork bifurcation becomes subcritical. This happens when
the interaction potential is of short range (see Appendix C).
For the modified Bessel interaction used in our simulations,
we have (2 − α) < 0 when d/λ0 > 1.58. Our simulations (see
Sec. II) are done with d/λ0 ≈ 3.92. It is thus possible to
observe a change in the character of the bifurcation because
of the coupling with the phase field, and in Sec. IV we will
show that this is indeed the case. In Appendix C, we also show
that for the Coulomb potential g3 < 0, which is consistent
with the fact that the zigzag pattern is stable in a Coulomb
system [16,17].

When g3 > 0, the bifurcation is subcritical and it becomes
necessary to calculate higher-order terms in Eq. (7) in order to
get stable solutions above the bifurcation threshold and thus
saturate the instability. We thus carry on the expansion of the
energy (4) to higher-order terms. We find a ε5/2 term that is a
total X derivative, and it may thus be dropped [38]. Then the
ε3 term is rather complicated. We keep only the terms in H 5,
H 3�X, and H�2

X. When gathered with the help of Eq. (9),
they give a single term in H 5. Higher derivatives of H happen,
but for the sake of simplicity we neglect them. We will see in
the next section that this crude approximation is numerically
excellent.

We now turn back to the original variable h, and we use the
interparticle distance d as the unit length. The normal form of
the bifurcation is thus

mhT T = βZZεh + g3h
3 − g5h

5 + g1hXX, (11)

where the coefficient g3 is defined in (10), and where

βZZ ≡ −4U ′(d) > 0,

g1 ≡ −[U ′(d) − 2U ′(2d)] > 0,
(12)

g5 ≡ 2{2(6 − 6α + α2)[U ′(d) − dU ′′(d)]

+ (2 − α)2d2U ′′′(d)} > 0.
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FIG. 6. (Color online) (a) In red (dark gray), we show the bifurcation diagram corresponding to (13). Solid (dotted) lines represent stable
(unstable) solutions. In cyan (light gray), we sketch an hysteresis cycle. (b) : Homogeneous zigzag height h (for h > 0 only) as a function of the
distance to threshold ε. Red solid line, stable solutions h = 0 and h = h+. Red dotted line, unstable solution h = h− [see (13)]. Dashed black
line, maximum height of bubbles solutions h = hbubble [see (18)]. The intersection of the lines hbubble and h+ corresponds to a wall solution and
is emphasized by the large black dot.

The signs of the coefficients are valid for the conditions of
our simulations (their respective numerical values are βZZ =
115.8, g1 = 28.2, g3 = 208, and g5 = 1489). The coefficient
g3 is positive, so that the normal form (11) describes a
subcritical pitchfork bifurcation. The sign of the coefficient
g5 ensures the stability of the bifurcated solution.

The homogeneous patterns are such that hX = 0. With this
assumption, the equilibria of (11) are readily found to be

h = 0, stable when ε < 0,

h2
± = 1

2g5
(g3 ±

√
g2

3 + 4εβZZg5). (13)

The solutions ±h− exist if εcoex ≡ −g2
3/(4βZZg5) � ε � 0,

while the solutions ±h+ are defined for εcoex � ε. The linear
stability analysis is straightforward, and it shows that the
solutions ±h− are unstable whereas the solutions ±h+ are
stable. The bifurcation diagram for the normal form (11)
is that of a subcritical pitchfork bifurcation, as shown in
Fig. 6. It allows for the coexistence between bifurcated and
nonbifurcated solutions and the hysteresis cycles for εcoex �
ε � 0, in agreement with the simulation results of Sec. II.

C. Stationary inhomogeneous patterns

Here we search for stationary inhomogeneous patterns. The
stationary solutions of Eq. (11) are such that hT = 0 and are
thus solutions of

g1hXX = −dW

dh
= − d

dh

[
1

2
εβZZh2 + 1

4
g3h

4 − 1

6
g5h

6

]
.

(14)

This equation is similar to the conservative equation of motion
of a fictitious particle of mass g1 in the potential W (h), with
the variable X playing the role of time [39].

For εcoex � ε � 0, several inhomogeneous solutions hX �=
0 exist. They may be described with the help of the plots of
W (h) as a function of h, shown in Figs. 7, 8, and 9. For all
values of ε, we have W (0) = 0, and under the assumption

εcoex � ε � 0 this is a local maximum of W (h) because the
aligned particles (h = 0) are a stable homogeneous solution
of (11). The unstable homogeneous solution h− corresponds,
in the mechanical analogy, to a local minimum of W (h),
and the stable homogeneous solution h+ corresponds to a
local maximum. An inhomogeneous pattern is defined, in the
mechanical analogy, by its conserved “energy” W0.

1. Walls

The simplest inhomogeneous pattern to calculate is a wall,
which links an homogeneous solution h = 0 to a bifurcated
solution h = h+, where h+ is given by (13). A necessary
condition for this coexistence is thus W (h+) = W (0) = 0,
which is only possible for a particular value εwall [see Fig. 6(b)],
which is easily found to be

εwall = − 3

16

g2
3

βZZg5
, hwall ≡ h+(εwall) =

√
3g3

4g5
. (15)

0 h h

0

h

W
h

FIG. 7. (Color online) Plot of the dimensionless potential W (h),
Eq. (14), as a function of the dimensionless zigzag height h. We
indicate the location h− of the local minimum and the location h+ of
the local maximum. The plot is done for the particular value ε = εwall,
such that W (h+) = W (0) = 0.
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0 hbubble

0

h

W
h

FIG. 8. (Color online) Plot of the dimensionless potential W (h)
for εwall < ε < 0 [see Eq. (14)], as a function of the dimensionless
zigzag height h. The line W (h) = 0 defines a bubble of height hbubble.

Translating the mechanical analogy in the context of patterns,
we see that h → 0 for X → −∞ and h → hwall for X → +∞,
which justify calling this pattern a wall. Knowing two double
roots of W (h), we rewrite it in a particularly simple form,

Wwall(h) = −g5

6
h2

(
h2

wall − h2
)2

. (16)

The function Wwall(h) is plotted in Fig. 7. Equation (14) is
then readily integrated to give the wall solution as

h(x)

d
=hwall

exp(κx/d)√
1 + exp(2κx/d)

, where κ ≡
√

3

4

g3√
g1g5

,

(17)

where we have restored the physical units, and we choose for
the wall the position x = 0. A single wall cannot be observed in
periodic systems because it obviously violates the periodicity
condition.

2. Bubbles

When εwall < ε < 0, the maximum of W (h) is strictly
positive (see Fig. 8). Let us consider the “trajectory” that
corresponds to the constant “energy” W (0) = 0. In this case,

0 h1 h2 h3

0

W0

h

W
h

FIG. 9. (Color online) Plot of the dimensionless potential W (h)
for εwall < ε � 0, Eq. (14), as a function of the dimensionless zigzag
height h. The straight line of ordinate W0 defines a nonlinear
modulation between the minimum height h1 and the maximum
height h2.

the fictitious particle takes an infinite “time” to get away from
the unstable equilibrium position h = 0, then a finite “time” to
reach a maximum height hbubble such that W (hbubble) = 0, then
an infinite “time” to come back to its initial position h = 0.
In the framework of the zigzag transition, it corresponds to
a localized zigzag of height hbubble surrounded by aligned
particles with h(X → ±∞) → 0. We call this pattern a
bubble.

The bubble height hbubble is the solution of W (hbubble) = 0.
The real nonzero roots of this equation are

h2
b± = 3

2g5

(
g3

2
±

√
g2

3

4
+ 4

3
εg5βZZ

)
. (18)

We have hb− � hb+, the equality corresponding to the case
of a wall. The bubble height is thus hbubble = hb−, as shown
in Fig. 8. In Fig. 6(b), we display the evolution of the bubble
height with ε.

The potential W (h) may be written

Wbubble(h) = g5

6
h2

(
h2 − h2

b−
)(

h2
b+ − h2

)
. (19)

A bit of algebra is sufficient to integrate (14) with this potential,
giving

h(x)

d
= hb− hb+√(

h2
b+ − h2

b−
)

cosh2(κ ′x/d) + h2
b−

, (20)

where

κ ′ ≡ hb− hb+
√

g5

3g1
=

√
−εβZZ

g1
. (21)

When ε → εwall, it is easy to see that κ ′ → κ , which means
that the spatial variation of height for a bubble becomes equal
to that for a wall. In this limit, the bubble height becomes
independent of ε, but the bubbles are more and more flat [40].
An example is shown in the second plot of Fig. 10.

3. Modulated zigzag patterns

The minimum of W (h) corresponds to the unstable homo-
geneous solution ±h− [see Eq. (13)]. Let W0 be a negative
constant such that 0 > W0 > W (±h−). The equation W (h) =
W0 thus admits three real and positive solutions h1 < h2 < h3,
defined graphically in Fig. 9. In the mechanical analogy, it
corresponds to a nonlinear periodic motion around ±h−, and
it describes a nonlinear modulation of the zigzag pattern. Its
minimum height is given by h1 and its maximum height is
given by h2.

In Appendix D, we show that the modulated patterns may
be expressed in terms of Jacobi elliptic functions, as

h(x)

d
= h1h2√

h2
2 cn2

(
x−�K(Q)

d�
,Q

) + h2
1 sn2

(
x−�K(Q)

d�
,Q

) ,

(22)
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FIG. 10. (Color online) Comparison between simulations (blue points) and theoretical predictions (thick solid lines) for localized zigzag
equilibrium patterns (bubbles). From top to bottom and left to right, N = 32 and εnum = 0.07, N = 32 and εnum = 0.48 [see the lower inset in
Fig. 3 (a)], N = 64 and εnum = 0.0264, and N = 64 and εnum = 0.261. For clarity, the patterns maxima are placed at the center of the frame
even if they can be anywhere in the periodic cell.

where K(·) is the complete elliptic integral of the first kind,
and where

� ≡
[(

h2
3 − h2

1

)
h2

2
g5

3g1

]−1/2

, Q ≡
h3

√
h2

2 − h2
1

h2

√
h2

3 − h2
1

. (23)

The solution (22) is such that the maximum height takes
place at x = 0, and 2�K(Q) is the wavelength of the spatial
modulation. As explained in Appendix D, the modulated
pattern is fully determined by the two parameters ε and h2,
which is particularly well suited to our analysis.

IV. FINITE-SIZE EFFECTS

In the preceding section, we found a mechanism that
explains why the zigzag transition actually is a subcritical
bifurcation in translationally invariant infinite systems with
short-range interactions. The key phenomenon is the nonlinear
coupling between the soft mode at the zigzag transition and
the phase mode linked to the translational invariance. This
phenomenon also happens in finite systems with periodic
boundary conditions because of their rotational invariance.

The subcritical bifurcation diagram of Fig. 6 is also
relevant for periodic systems with short-range interactions.
It is consistent with the observations reported on in Sec. II.
The agreement is also quantitative. For instance, the hysteresis
cycles displayed in Fig. 5 are consistent with a limiting value
of the stiffness gap βup − βdown equal to εcoex(d)βZZ(d) when
N → ∞.

In the simulations, the inhomogeneous patterns are ob-
served when the stiffness βnum of the confining potential is such
that βnum < βZZ(d). This defines a positive parameter εnum

as βnum = βZZ(d)(1 − εnum). In contrast, the inhomogeneous
patterns are predicted for negative values of ε. In this section,
we will explain how to get rid of this apparent discrepancy by
taking into account finite-size effects.

A. Localized zigzag patterns

Let us first focus on the bubbles. In these patterns, we can
measure the distance between any two aligned particles. This
distance deff is found to be constant, and such that deff > d

because the particles in the localized zigzag allow the others to
expand. From this interparticle distance, we define an effective
bifurcation parameter εeff ,

εeff = 1 − βnum

βZZ(deff)
. (24)

We will interpret a bubble observed in the finite periodic
system as a bubble in an infinite system, with an interparticle
distance deff , when the distance to threshold is εeff .

Notice that for consistency εeff must be negative, with
εwall(deff) < εeff � 0, because it is a necessary condition for
the existence of bubbles in infinite systems. This is indeed
what happens, as shown by the data summarized in Table I.
The effective bifurcation parameter becomes negative because
deff > d and the zigzag threshold βZZ(d) = −4U ′(d)/d is a
strongly decreasing function of d. So, once the value of deff

is measured on the simulation data, the bubble is completely
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TABLE I. Summary of the effective distance to the threshold,
εeff, and of the relative discrepancy |L − L̃|/L corresponding to
several localized excitations. The theoretical expectation L̃ is given
by Eq. (25) in all cases except the last one, which concerns two
identical bubbles (see Fig. 10), thus requiring the change α → 2α.
For the sake of comparison, d = 1.875 mm.

deff |L − L̃|/L (Ndeff − L)/L
N (mm) εnum εeff (%) (%)

16 1.967 0.206 −0.037 0.17 4.9
32 1.910 0.070 −0.0230 0.02 1.9
32 1.929 0.110 −0.042 0.09 2.9
32 2.120 0.480 −0.052 0.04 13.1
64 1.897 0.0284 −0.036 0.01 1.2
64 1.893 0.021 −0.032 0.05 1.0
64 1.996 0.261 −0.050 0.30 6.5

determined with the help of Eqs. (20) and (18), where all
coefficients gi , defined in Eqs. (10) and (12), are calculated for
an infinite system in which the aligned particles are separated
by deff .

This analysis is done on several simulations data, and
the results are shown in Fig. 10. In each case, the effective
distance deff is easily measured, and the comparison between
the simulations and the bubbles expected from the theoretical
analysis evidences an excellent agreement [41]. In the last plot
of Fig. 10, the same value of deff is used for both bubbles,
which have the same height. Equilibria with several bubbles
are sometimes observed, and in all cases all bubbles have the
same height, which is consistent with our analysis.

The comparison illustrated in Fig. 10 provides a quantitative
test of the mechanism expressed by Eq. (9). The physical
significance of the phase field � is a shift in the interparticle
distance, which becomes deff (1 + �X). Equation (9) relates the
phase gradient �X to the local zigzag amplitude. Physically, it
expresses that the dilatation of the aligned particles is compen-
sated by the height h(X) of the bubble. This provides a second
quantitative test of the coupling between the soft mode at the
bifurcation and the Goldstone mode linked to rotational sym-
metry breaking that is at the basis of the calculations of Sec. III.

Indeed, the total length L̃ occupied by a bubble is

L̃ = deff

(
N − α

∫ ∞

−∞

h(X)2

d2
eff

dX

)
= deff

[
N − 2αhb−hb+

κ ′ arctanh

(
hb−
hb+

)]
. (25)

For consistency, this length L̃ has to be identical to the period
L of our simulated cell. In Table I, we calculate |L − L̃|/L for
several bubbles, and we see that it is indeed very small. Since
deff is rather close to d, we compare it to (Ndeff − L)/L. We
see that the calculated longitudinal width L̃ is a much better
estimate of the bubble width than the rough approximation
Ndeff . The last line of Table I corresponds to the two-bubble
excitation of Fig. 10, so that we have consistently doubled the
contribution of the integral in (25) in this last case.

B. Modulated zigzag patterns

We also observe modulated patterns, for which the zigzag
height varies from a minimum h1 > 0 to a maximum value

TABLE II. Summary of the effective distance to the threshold,
εeff, and of the relative discrepancy |L − L̃|/L corresponding to
several modulated excitations. The theoretical expectation L̃ is given
by Eq. (26). For the sake of comparison, d = 1.875 mm.

deff h2 |L − L̃|/L (Ndeff − L)/L
N (mm) εnum εeff (mm) (%) (%)

16 1.932 0.132 −0.0257 0.306 0.35 3.1
16 1.943 0.150 −0.0351 0.398 0.87 3.6
16 1.962 0.187 −0.0463 0.500 2.26 4.6
32 1.897 0.050 −0.0137 0.239 0.12 1.2
64 1.881 0.017 −0.0012 0.058 0.18 0.34
64 1.882 0.018 −0.0019 0.085 0.19 0.38
64 1.884 0.021 −0.0047 0.137 0.18 0.47

h2 (see the upper inset in Fig. 3). For modulated patterns,
it is impossible to measure directly the parameter deff , since
no particles in the cell are along a straight line. In contrast,
the height h2 is easily measured from the simulation data.
Then the unknown parameter deff is determined numerically
from a consistency condition, requiring the spatial period of
the modulation to be equal to the length L of the periodic
box. The effective distance deff is thus the real root of the
equation L = 2�(h2,deff)K[Q(h2,deff)]. With the help of (D2)
and (24), this equation involves only the unknown parameter
deff . This is a formally complicated equation that is easily
solved numerically. Once deff and h2 are known, the modulated
pattern is completely determined. In Table II, we summarize
the calculated values of deff and εeff , defined in Eq. (24).
For consistency, the parameter εeff must be negative since
modulated zigzag patterns happen only when the unstable
homogeneous solution ±h− exists. This is indeed the case
for all patterns listed in Table II.

The comparison between the observed modulated patterns
and the theoretical predictions of Eqs. (22) and (23) is done in
Figs. 11 and 12. For the larger systems (32 and 64 particles),
the agreement is excellent, and we are able to reproduce the
strongly nonsinusoidal pattern in all cases. We display also in
Fig. 12 the data for a small system of only 16 particles. Even
in this rather unfavorable case, there is a very good agreement
between the patterns calculated for an infinite system and
the simulation results. It is of interest to emphasize that for
the highest value εnum = 0.206 in Fig. 12, it is impossible
to describe the pattern as a modulation, because there is no
real solution to the numerical equation L = 2�K(Q). It is
nevertheless possible to describe it as a bubble, with a slightly
different method from the one mentioned in Sec. IV A. We
determine the parameter deff from the measurement of the
pattern height, through Eq. (18).

The same consistency check of Eq. (9) as for bubbles may
be done. The total length L̃ of a modulated pattern, following
the same reasoning that led to (25), is

L̃ = deff

(
N − 2α

∫ L/2

0

h(X)2

d2
eff

dX

)
= deff

[
N − 2αh2

1 �

(
1 − h2

1

h2
2

,Q

)]
, (26)
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FIG. 11. (Color online) Modulated zigzag patterns. From top to bottom and left to right: N = 32 and εnum = 0.05, and then N = 64 and
εnum = 0.0173, 0.0185, and 0.0207. Blue points denote simulation data, while the thick red solid line represents the theoretical prediction,
Eq. (22).

where we have used the fact that the spatial period of a
modulated pattern is L, the symmetry of the pattern, and
where we have introduced the complete elliptic integral
of the third kind �(.,.) [42]. The results are summa-

rized in Table II. We see that for these patterns also the
error made on the estimated longitudinal width of the
pattern is small, and much smaller than the rough estimate
Ndeff .
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FIG. 12. (Color online) Modulated zigzag patterns for N = 16. From top to bottom and left to right: εnum = 0.132, 0.150, 0.187, and 0.206.
Blue points denote simulation data, while the thick red solid line represents the theoretical prediction, Eq. (22). The thick green solid line is
the theoretical prediction (20), because this pattern cannot be described by a nonlinear modulation.
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V. CONCLUSION

In this paper, we discuss the zigzag transition in systems of
particles with short-range interactions, which are either infinite
or with periodic boundary conditions in the longitudinal
axis. With numerical simulations, we give evidence that the
equilibrium patterns are not necessarily homogeneous. In
sufficiently large systems, the zigzag transition is a first-order
configurational transition. The relevant physical mechanism
has been identified for instabilities in extended systems, and
it results from the nonlinear coupling between the soft mode
due to the zigzag transition and a Goldstone mode due to the
breaking of the translational or rotational invariance of the
system by the zigzag pattern.

In the framework of instabilities in extended systems, the
subcritical normal form has been obtained phenomenologi-
cally by taking into account the symmetries of the system. In
the case of the zigzag transition, the underlying dynamics is
explicitly known. It allows us to obtain the normal form in a
constructive way, as a systematic asymptotic expansion in the
thermodynamic limit, near the bifurcation threshold. We pro-
vide analytical expressions of the normal form coefficients and
establish the subcritical character of the pitchfork bifurcation.

At the end of the calculation, there is no free fitting pa-
rameter, and we are able to perform a quantitative comparison
between our simulation data and the theoretical analysis. We
describe with excellent precision the inhomogeneous zigzag
patterns exhibited in the simulations. The physical significance
of the coupling between the soft mode and the phase mode is a
shift of the longitudinal interparticle distance, which depends
on the local zigzag height. A direct and quantitative test of this
mechanism is done and evidences a very good agreement.
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APPENDIX A: NUMERICS

The details on the numerical algorithm can be found in
Ref. [43]. For the sake of completeness, we give a short
summary below.

We simulate identical point particles located in the plane
(xOy), submitted to a thermal bath at temperature Tb. The
thermal bath is accounted for by a damping constant γ ,
and by random forces applied on each particle, with the
statistical properties of uncorrelated white Gaussian noise.
As for most of the experimental configurations for which the
zigzag transition is relevant [3,5,7–11,13,18,44], the particles
interact with a repulsive potential. We use in all simula-
tions a screened electrostatic interaction U (r) = U0K0(r/λ0)
with energy scale U0, with a characteristic length λ0 and

where K0 is the modified Bessel function of index 0. To observe
equilibrium patterns, the temperature of the thermal bath is
such that U (d)/(kBTb) < 0.01 in all simulations.

The particles are transversally confined in a quasi-1D
geometry by a harmonic potential of stiffness β, whereas
periodic boundary conditions are applied in the longitudinal
direction. The dynamics of the system is then simulated by the
numerical integration of the coupled Langevin equations. Let
L be the length of the simulation cell, and let N be the number
of particles. In all simulations, the mean distance d ≡ L/N is
kept constant, with a length of L = 60 mm for N = 32. The
influence of the potential range λ0 has been discussed in [16].
We set λ0 ≈ d/4 in order to have a linearly unstable zigzag
pattern. In some simulations, we vary the stiffness β by steps.
The typical duration of a stiffness step is 104 time steps, and
we make typically 103 stiffness steps (sometimes up to 105

steps) with a relative stiffness variation of 10−3.
The simulations are done at finite (nonzero) temperature,

hence the observed patterns are stable under the thermal
fluctuations. To obtain the equilibrium patterns, we average the
system motions on a time scale that is intermediate between
the time step and the duration of a simulation run. Since this
latter is never less than 106 time steps, the typical averaging
time for an equilibrium pattern is 103 time steps.

APPENDIX B: ACOUSTIC MODES OF
THE ZIGZAG PATTERN

In this appendix, we show that Eqs. (7) and (8) correctly
describe the acoustic modes of the chain. We recover only the
long-wavelength limit, because it is assumed at the beginning
of the calculations of Sec. III A that X is a slow variable.

Taking H = 0, and linearizing (8), we get the sound
velocity c2

s = d2[U ′′(d) + 4U ′′(2d)]/m of the rectilinear chain
when nearest-neighbor and next-nearest-neighbor interactions
are taken into account [43]. Taking � = Cste, and lineariz-
ing (7) for β = βZZ , we recover the velocity of transverse
oscillations c2

⊥ = d[2U ′(2d) − U ′(d)]/m as in Ref. [14].
In the general case, we linearize around the bifurcated

homogeneous state H0, which from Eq. (1) is seen to
be H 2

0 = βZZd2/(8[U ′′(d) − U ′(d)
d

]). Assuming H (X,T ) =
H0 + η(X,T ) with |η| 	 1 and |�X| 	 1, we obtain from (7)
and (8)

mηT T = −2βZZη − d[U ′(d) − 2U ′(2d)]ηXX

− 4

[
U ′′(d) − U ′(d)

d

]
H0�X,

m�T T = d2[U ′′(d) + 4U ′′(2d)]�XX

+ 4

[
U ′′(d) − U ′(d)

d

]
H0ηX. (B1)

Searching the solutions in the form (η,�) = (η0,�0)ei(qX−ωT ),
we find the eigenfrequencies as the eigenvalues of the matrix,

1

m

(
2βZZ − d[U ′(d) − 2U ′(2d)]q2 4iq

[
U ′′(d) − U ′(d)

d

]
H0

−4iq
[
U ′′(d) − U ′(d)

d

]
H0 d2[U ′′(d) + 4U ′′(2d)]q2

)
. (B2)
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FIG. 13. (Color online) Plot of α(u) (linear scale) as a function
of u (log scale) for the modified Bessel function potential (blue curve)
and the Yukawa potential (red curve).

This has to be compared with the calculations of Ref. [16],
restricted to the second neighbors only, in the long-wavelength
limit ψ = qd → 0, and where all coefficients have to be
expanded up to first order in h0 only. The acoustic spectrum is
then consistently recovered.

The scaling h0 = H0
√

ε is imposed by the pitchfork
bifurcation, and we see that the acoustic modes are recovered
if ω2, q2, and h2

0 all are of order ε, which is ensured by
the scalings of the slow variables T = ε1/2t , X = ε1/2x as
announced in the beginning of Sec. III A.

APPENDIX C: NUMERICAL ESTIMATES OF α

In this appendix, we discuss the numerical value of the
parameter α defined in Eq. (9), which is directly linked to
the subcritical or supercritical character of the bifurcation in
infinite or periodic systems. Let us first consider short-range
potentials, such as the modified Bessel function used in the
simulations (see Appendix A) and the Yukawa potential. Let
u ≡ d/λ0. For the modified Bessel potential, we get

α(u) = 2u [K0(u) + K2(u)] + 4K1(u)

u{K0(u) + K2(u) + 4 [K0(2u) + K2(2u)]} . (C1)

Since Kn(u) ∼ e−u/
√

2πu for large u, we easily see that
limu→∞ α(u) = 2. The function α(u) is plotted in Fig. 13.
We find that α � 2 for d/λ0 � 1.58, and that the maximum
value of α is 2.33.

For the Yukawa potential, we get

α(u) = 2(u2 + 3u + 3)

u2 + 2u + 2 + e−u(2u2 + 2u + 1)
, (C2)

which also gives limu→∞ α(u) = 2. The function α(u) is
plotted in Fig. 13. We find that α � 2 for d/λ0 � 0.61, and
that the maximum value of α is 2.32.

The numerical value of α for the modified Bessel potential
explains an observation made in Ref. [16]. Here it was
shown that if we consider a bubble pattern, the distance
between nearest neighbors in and outside the bubble was
almost constant. In our description, the particles outside the
bubble are at a distance deff , while those inside the bubble
are separated from

√
(deff − αh2)2 + 4h2. Since (α − 2) is

positive but small, and since h/d is also small, the difference
between these two distances is less than 1.5%.

It is of interest to consider also the case of the Coulomb
potential. It is not difficult to extend our calculations to more
than second-neighbor interactions. If we take into account the
nth cell after the tagged one, one has to expand A0Bn and
A0An. This amounts to replacing d in Eq. (2) by (2n + 1)d,
and 2d in Eq. (3) by 2nd, and to sum on all interacting particles.
The expansion in powers of ε is consistent if nε 	 1, which
excludes an infinite system. Let us therefore consider a finite
periodic system of Nmax cells. The coefficient g3 is now found
to be

g3

8
=

( ∑Nmax
n=0

(2n+1)dU ′′[(2n+1)d]−U ′[(2n+1)d]
(2n+1)d

)2∑Nmax
n=1 n2d2U ′′(nd)

−
Nmax∑
n=0

(2n + 1)dU ′′[(2n + 1)d] − U ′[(2n + 1)d]

(2n + 1)3d3
.

(C3)

For the Coulomb potential, U (r) ∝ 1/r , the sums in the
numerators converge rapidly at large Nmax while the sum in
the denominator diverges. Hence g3 � 0 (with the equality
for Nmax = 1) and the bifurcation is always supercritical,
which is consistent with the linear stability analysis of zigzag
patterns [16,17].

APPENDIX D: NONLINEAR MODULATED ZIGZAG

When εwall < ε < 0, the potential W (h) has a minimum
Wmin < 0. Let W0 be a constant such that Wmin < W0 < 0.
Then the equation W (h) = W0 has three real roots h2

1 < h2
2 <

h2
3, so that we may write

W0 − W (h) = g5

6

(
h2 − h2

1

)(
h2 − h2

2

)(
h2 − h2

3

)
. (D1)

This configuration corresponds to a (spatially) periodic non-
linear modulation between the heights h1 and h2. The algebra
is then somewhat tedious, but with the help of Refs. [45,46]
we find Eqs. (22) and (23) given in the text.

The roots hi are complicated expressions of ε and W0, but
two of them are easily expressed as a function of the third, as
h1 = hm− and h3 = hm+, where

hm± = 1

2

⎡⎣3g3

2g5
− h2

2 ±
√(

h2
2 − 3g3

2g5

)2

− 4

(
h4

2 − 3g3

2g5
h2

2 − 3εβZZ

g5

)⎤⎦ . (D2)

This is very well suited to our analysis, because h2 is the maximum height of the modulated pattern, and thus directly measured.
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