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This paper presents a nonparametric modeling approach for forecasting stochastic dynamical systems on
low-dimensional manifolds. The key idea is to represent the discrete shift maps on a smooth basis which can
be obtained by the diffusion maps algorithm. In the limit of large data, this approach converges to a Galerkin
projection of the semigroup solution to the underlying dynamics on a basis adapted to the invariant measure.
This approach allows one to quantify uncertainties (in fact, evolve the probability distribution) for nontrivial
dynamical systems with equation-free modeling. We verify our approach on various examples, ranging from
an inhomogeneous anisotropic stochastic differential equation on a torus, the chaotic Lorenz three-dimensional
model, and the Niño-3.4 data set which is used as a proxy of the El Niño Southern Oscillation.
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A significant challenge in modeling is to account for
physical processes which are often not well understood but
for which large data sets are available. A standard approach is
to perform regression fitting of the data into various parametric
models. While this approach is popular and successful in many
applied domains, the resulting predictive skill can be sensitive
to the choice of models, the parameter fitting algorithm,
and the complexity of the underlying physical processes. An
alternative approach is to avoid choosing particular models
and/or parameter estimation algorithms and instead apply a
nonparametric modeling technique. In particular, nonpara-
metric modeling based on local linearization of discrete
shift maps on paths has been successful in predicting mean
statistics of data sets generated by dynamical systems with
low-dimensional attractors [1–3].

In this work, we generalize this nonparametric approach to
quantify the evolving probability distribution of the underlying
dynamical system. The key idea is to project the shift map on
a set of basis functions that are generated by the diffusion
maps algorithm [4] with a variable bandwidth diffusion
kernel [5]. This approach has connections with a recently
developed family of kernels [6], which utilize small shifts of
a deterministic time series to estimate the dynamical vector
field. The method also generalizes a recently introduced
nonparametric modeling framework for gradient systems [7]
to inhomogeneous stochastic systems having nongradient drift
and anisotropic diffusion. Consider a dynamical system,

dx = a(x) dt + b(x) dWt, (1)

where Wt is a standard Brownian process, a(x) a vector
field, and b(x) a diffusion tensor, all defined on a manifold
M ⊂ Rn. Given a time series xi = x(ti), generated by (1)
at discrete times {ti}N+1

i=1 , we are interested in constructing
a forecast model so that given an initial density p0(x) we
can estimate the density p(x,t) = etL∗

p0(x) at time t > 0,
without the Fokker-Planck operator, L∗, of (1) and without
knowing or estimating a and b. We will assume that (1) is
ergodic so that {xi} are sampled from the invariant measure
peq(x) of (1). Note that all probability densities are relative to
a volume form dV which M inherits from the ambient space,

and the generator L of (1) is the adjoint of L∗ with respect
to L2(M,dV ).

We note that our approach differs significantly from
previous approaches such as [8,9], which estimate a and b

explicitly in the ambient space Rn, relying on the Kramer-
Moyal expansion. In contrast, our approach directly estimates
the semigroup solution eτL on the manifold M ⊂ Rn, so that
a and b are represented implicitly. The advantages of our
approach are that the data requirements are independent of
the ambient space dimension and only depend on the intrinsic
dimension ofM, and we will be able to estimate the semigroup
solution, eτL, directly from the data for any sampling time τ .

Our approach is motivated by a rigorous connection be-
tween the shift map, S, which we define by Sf (xi) = f (xi+1)
for a function f ∈ L2(M,peq), and the semigroup solution,
eτL, of the underlying dynamical system (1). Applying Itô’s
lemma to f (x), one can show

Sf (xi) = eτLf (xi) +
∫ ti+1

ti

∇f �b dWs +
∫ ti+1

ti

Bf ds, (2)

where τ = ti+1 − ti , Bf = Lf − E[Lf ], and the expectation
is with respect to paths of (1) conditional to x(ti). The
detailed derivation of (2) is in Appendix B. Since E[Sf (xi)] =
eτLf (xi), we can use the shift map, S, to directly estimate
the semigroup solution, eτL. However, S is a noisy estimate
of eτL and our key contribution is to minimize the error by
representing S on a basis of smooth functions.

Minimizing the error requires choosing a basis which mini-
mizes the functional ‖∇f ‖peq , which is shown in Appendix B.
Intuitively, this is because we want to bound the stochastic
integral in (2), whose integrand contains ∇f . The functional
‖∇f ‖peq is minimized by the eigenfunctions of the generator,
L̂, of a stochastically forced gradient flow with potential
U (x) = −ln[peq(x)]. Let λj and ϕj be the eigenvalues and
eigenfunctions of L̂; {ϕj } are orthonormal on L2(M,peq).
Since L̂ is the generator of a gradient flow systems, it is
easy to check that ψj = peqϕj are the eigenfunctions of the
adjoint operator L̂∗, which are orthonormal on L2(M,p−1

eq ).
Numerically, we obtain ϕj (xi) as eigenvectors of a stochastic
matrix, constructed by evaluating a variable bandwidth kernel
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on all pairs of data points and then applying an appropriate
normalization [5]. We summarize this procedure and the
related results in Appendix A. We emphasize that the operator
L̂ is used only to estimate {ϕj } which is the optimal basis
for smoothing the shift operator S approximating semigroup
solution eτL of the full system (1).

We write the solution, p(x,τ ) = eτL∗
p0(x), as follows,

p(x,τ ) =
∞∑
l=1

〈eτL∗
p0,ψl〉p−1

eq
ψl(x) =

∞∑
l=1

〈p0,e
τLϕl〉ψl(x).

Similarly, the initial density is p0(x) = ∑
j cj (0)ψj (x), where

cj (0) = 〈p0,ψj 〉p−1
eq

. We therefore obtain

p(x,τ ) =
∞∑
l=1

∞∑
j=1

cj (0)Alj (τ ) peq(x)ϕl(x), (3)

where Alj (τ ) := 〈ϕj ,e
τLϕl〉peq . Based on the discussion af-

ter (2), we will use 〈ϕj ,Sϕl〉peq to estimate Alj . Numerically,
we estimate Alj by a Monte Carlo integral,

Âlj = 1

N

N∑
i=1

ϕj (xi)ϕl(xi+1), (4)

such that the diffusion forecast is defined as follows:

p(x,τ ) ≈
∞∑
l=1

peq(x) ϕl(x)
∞∑

j=1

Âlj (τ )cj (0). (5)

One can show that E[Âlj ] = Alj which means that Âlj

is an unbiased estimate of Alj . Moreover, the error of this
estimate is of order λl

√
τ/N in probability assuming that xi

are independent samples of peq. This shows that we can apply a
diffusion forecast for any sampling time τ given a sufficiently
large data set N . For more details, see Appendix B.

Nongradient drift anisotropic diffusion. We first verify the
above approach for a system of SDE’s of the form (1) on a
torus defined in the intrinsic coordinates (θ,φ) ∈ [0,2π )2 with
drift and diffusion coefficients,

a(θ,φ) =
(

1
2 + 1

8 cos(θ ) cos(2φ) + 1
2 cos(θ + π/2)

10 + 1
2 cos(θ + φ/2) + cos(θ + π/2)

)
,

b(θ,φ) =
(

1
4 + 1

4 sin(θ ) 1
4 cos(θ + φ)

1
4 cos(θ + φ) 1

40 + 1
40 sin(φ) cos(θ )

)
.

This example is chosen to exhibit nongradient drift, anisotropic
diffusion, and multiple time scales. Since it is a system of the
form (1) on a smooth manifold, our theory shows that the shift
operator S is an unbiased estimator for the semigroup solution
eτL, and in the limit of large data the diffusion forecast will
capture all aspects of the evolution of the density p(x,t).

We now verify this theory using a training data set
of 20 000 points generated by numerically solving the
SDE in (1) with a discrete time step 	t = 0.1 and then
mapping this data into the ambient space, R3, via the
standard embedding of the torus given by (x,y,z) = ([2 +
sin(θ )] cos(φ),[2 + sin(θ )] sin(φ), cos(θ )). We define a Gaus-
sian initial density p0(θ,φ) with a randomly selected mean
and a diagonal covariance matrix with variance 1/10.
The initial density is projected into a basis of M = 1000
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FIG. 1. (Color online) Validation of first two moments of the
diffusion forecast for a stochastic dynamical system on a torus
in R3.

eigenfunctions giving coefficients cj (0) = 〈p0/peq,ϕj 〉peq ≈∑20 000
i=1 p0(θi,φi)ϕj (θi,φi)/peq(θi,φi). The coefficients cj (0)

are evolved forward in time in discrete steps of length 	t = 0.1
by Â, constructed by (4) so that the forecast at time τ = n	t

is effectively Â(	t)n.
In Fig. 1, we show the evolution of the first two moments

in the ambient space, for the fast and slow variables, x and
z, respectively, created by the diffusion forecast in (5). To
verify the accuracy of the diffusion forecast, we also show the
corresponding moments produced by an ensemble forecast
of 50 000 initial conditions, randomly sampled from the initial
distribution p0(θ,φ), evolved using the true dynamical system.
Notice the long-time pathwise agreement of both moments
constructed via the diffusion forecast and those constructed by
an ensemble forecast. See also a video of the evolution of p in
the Supplemental Material [10].

Lorenz-63 model. Next, we apply the diffusion forecasting
algorithm to data generated by the Lorenz-63 model [11],
with error in the initial state. Unlike the previous example,
this model does not technically satisfy the requirements of
our theory because the attractor is a fractal set rather than a
smooth manifold. Our results indicate that the applicability
of the method seems to extend beyond the current theory.
We compare our approach to the classical nonparametric
prediction method which uses a local linear approximation
of the shift map [1–3] and a standard ensemble forecasting
method with the true model, applied with 50 000 initial
conditions, sampled from the same initial distribution p0.

We generate 10 000 data points with discrete time steps
	t = 0.1 and 	t = 0.5 by solving the Lorenz-63 model.
We use the first 5000 data points as training data for the
nonparametric models, and the remaining 5000 data points
to verify the forecasting skill. For each of the 5000 verifi-
cation points, xt , we define the initial state x̂t = xt + ξt by
introducing random perturbations ξt sampled from N (0,0.01).
Each forecast method starts with the same initial density,
p0 = N (x̂t ,0.01), centered at the perturbed verification point.
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FIG. 2. (Color online) Comparing forecast methods for Lorenz-
63. Top: 	t = 0.1. Middle: 	t = 0.5. Bottom: Eigenfunctions
ϕ40,ϕ500,ϕ1500, and ϕ4000 of the coarse approximation of the fractal
attractor by a manifold.

We chose this very small perturbation to demonstrate the
diffusion forecast for an initial condition which is almost
perfect; as the amount of noise increases, the advantage of
the diffusion forecast over the linear methods is even more
significant.

The diffusion forecast is performed with 4500 eigenfunc-
tions ϕj , constructed with the diffusion maps algorithm with a
variable bandwidth [5] (we show examples in Fig. 2). The local
linear forecast uses ordinary least squares to fit an affine model

to the n-step shift map on the 15 nearest neighbors to the initial
state. The iterated local linear forecast completes this process
for one step and then recomputes the 15 nearest neighbors to
the 1-step forecast and then repeats the process. The variance
estimate of the local linear models is given by conjugating the
covariance matrix of p0 with the linear part of the appropriate
affine forecast model. We compute the root-mean-squared
error (RMSE) between each mean forecast and the true state,
averaged over the verification period of 5000 steps. We also
show the standard deviation of the forecast density, so that a
forecasting method has good uncertainty quantification (UQ)
if the standard deviation agrees with the RMSE.

Of course, the ensemble forecast with the true model gives
the best forecast; however the diffusion forecast is a consid-
erable improvement over the local linear forecast. For short
	t = 0.1, the iterated local linear forecast is comparable to the
diffusion forecast except in the long term where the iterated
local linear forecast exhibits significant bias. Moreover, the
iterated local linear forecast significantly overestimates the
error variance in the intermediate to long term forecast. This
overestimation is due to the positive Lyapunov exponent,
which is implicitly estimated by the product of the iterated
local linearizations. In contrast, the direct local linearization
is unbiased in the long term, but converges very quickly to
the invariant measure and underestimates the variance. This
underestimation is because no single linearization can capture
the information creation introduced by the positive Lyapunov
exponent. For long 	t = 0.5, the bias in the local linear models
leads them to diverge far beyond the invariant measure for even
intermediate term forecasts. The ensemble forecast provides
the most consistent UQ since it has access to the true model;
however the diffusion forecast produces reasonable estimates
without knowing the true model as shown in Fig. 2. The
local linear forecast error estimates vary widely and do not
robustly provide a useful UQ whereas the diffusion forecast
is robust across multiple sampling times as suggested by the
theory. We include a video showing good long-term agreement
between the diffusion forecast density and an ensemble in the
Supplemental Material [10].

The diffusion forecast is able to give a reasonable estimate
of the evolution of the density by building a consistent
finite-dimensional Markovian approximation of the dynamics.
This Markovian system incorporates global knowledge of the
attractor structure via the smoothing with the adapted basis
{ϕj }. This Markovian approximation of the Lorenz-63 model
implicitly uses a small Brownian forcing to replicate the
entropy generation of the positive Lyapunov exponent.

El Niño data set. We now apply our method to a real-world
data set, where the validity of our theory is unverifiable, namely
the Niño-3.4 index, which records the monthly anomalies
of sea surface temperature (SST) in the central equatorial
Pacific region (the raw data set is available from NOAA [12]).
In applying this method, we implicitly assume that there is
an underlying dynamics on a low-dimensional manifold that
generates these SST anomalies. Since the time series is one-
dimensional, we apply the time-delay embedding technique to
the data set, following [13–15], which will recover this low-
dimensional manifold if it exists. We use a 5-lag embedding,
empirically chosen to maximize the forecast correlation skill
between the true time series and the mean estimate. We
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FIG. 3. (Color online) Forecasting for the El Niño 3.4 index. rms
and correlation (top); 14-month lead forecast (bottom).

construct the Alj matrix with 80 eigenfunctions obtained by
the diffusion maps algorithm with a variable bandwidth kernel,
applied on the lag-embedded data set.

In this experiment, we train our nonparametric model with
monthly data between January 1950 and December 1999 (600
data points), following [16], and we verify the forecasting
skill in the period of January 2000 to September 2013. The
initial distribution p0 is generated with the same method as in
the Lorenz-63 example. Based on the RMSE and correlation
measure (see Fig. 3), the forecasting skill decays to the
climatological error in about 6 months but then the skill
improves, peaking at 13–14 month lead time. In fact, our
14-month lead forecast skill, in terms of RMSE 0.60 and
correlation 0.64, is significantly better than that of the method
proposed in [16] (Fig. 3 in their paper suggests RMSE 1.4 and
correlation 0.4) who claimed to beat the current operational
forecasting skill. The 14-month lead forecast mean estimate
gives a reasonably correct pattern, and the diffusion forecast
provides a reasonable error bar (showing 1 standard deviation)
which is a useful UQ. We include a movie in the Supplemental
Material [10] showing the nontrivial evolution of the forecast
distribution starting 14 months before January 2004.

Difficulty in improving the forecasts in this problem may be
due to combinations of many factors, including the validity of
our assumption of the existence of low-dimensional structures,
a transient in the time series, a large stochastic component, and
memory effects. One possibility is to combine the local linear
models via the diffusion basis to form a global model which

respects the invariant measure. Another issue is that both the
observational and dynamical noise in the data are currently
treated as part of the process, and it would be advantageous
to isolate the attractor and build the basis there. Finally, the
empirical success of this method suggests that it is possible
to approximate a fractal attractor with a smooth manifold;
however, there is limited theoretical interpretation for such an
approximation.

This research is supported under ONR MURI Grant No.
N00014-12-1-0912. D.G. also acknowledges financial support
from ONR DRI Grant No. N00014-14-1-0150. J.H. also
acknowledges financial support from ONR Grant No. N00014-
13-1-0797 and NSF Grant No. DMS-1317919.

APPENDIX A: ESTIMATING ELLIPTIC OPERATORS
WITH DIFFUSION KERNELS

In this appendix we include the details of the numerical
algorithm introduced in [5] which is used to estimate the
eigenfunctions ϕj of the elliptic operator L̂ = 	 − c1∇U · ∇.
We assume that the data set {xi}Ni=1 ⊂ Rn lies on a d-
dimensional submanifold M of the ambient Euclidean space
Rn. In order to describe functions on the manifold, we will
represent a function f by evaluation on the data set, so that f

is represented by the discrete N × 1 vector �f = (f1, . . . ,fN )�
where fi = f (xi). In this framework, operators which map
functions to functions are represented as N × N matrices,
since these take the N × 1 functions to N × 1 functions. In
this sense, we will approximate the eigenfunctions of L̂ as
eigenvectors of a kernel matrix which provably approximates
the operator L̂ in the limit of large data. In this paper we
are interested in data sets generated by dynamical systems;
however the general theory of this section is valid for arbitrary
data sets. In this case, we will assume that the dynamics are
ergodic so that the manifold M is an attractor of the system,
and the sampling measure q of the data on M is the same as
the invariant measure peq of the dynamics.

We first note that L̂ is the generator of the gradient flow
system,

dx = −c1∇U (x) dt +
√

2 dWt, (A1)

where Wt is a Brownian motion on the manifold M (so that
the Laplacian 	 is the infinitesimal generator of Wt ). The
potential function U = −ln(q) is determined by the sampling
measure, q. In particular, we will be interested in the case c1 =
1, in which case the invariant measure of the system (A1) is
e−c1U = q = peq. This means that the invariant measure of the
true dynamical system which governs the evolution of the data
set is the same as that of the gradient flow system generated
by L̂. Since L̂ is a negative semidefinite elliptic operator, self-
adjoint with respect to peq, the eigenfunctions {ϕj } form a
basis for L2(M,peq). Moreover, this is the smoothest basis
with respect to peq in the sense that each ϕj minimizes the
norm ‖∇f ‖peq = −〈f,L̂f 〉peq subject to ϕj being orthogonal
to all {ϕl}l<j . The minimal value of the norm is given by the
corresponding eigenvalue, ‖∇ϕj‖peq = λj .

Approximating the operator L̂ was first achieved in [4] for
compact manifolds using a fixed bandwidth kernel. However,
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in order to allow the manifold M to be noncompact, it was
shown in [5] that we must use a variable bandwidth diffusion
kernel of the form

KS
ε (x,y) = exp

(
− ‖x − y‖2

4ε[qε(x)qε(y)]β

)
, (A2)

where qε(x) = q(x) + O(ε) is an order-ε estimate of the sam-
pling density and β should be negative so that the bandwidth
function qε(x)β is large in regions of sparse sampling and small
in regions of dense sampling. The algorithm presented below
is closely related to that presented in [5] and is motivated by
Corollary 1 of [5].

Corollary 1. Let q ∈ L1(M) ∩ C3(M) be a density that is
bounded above on an embedded d-dimensional manifoldM ⊂
Rn without boundary and let {xi}Ni=1 be sampled independently
with distribution q. Let KS

ε be a variable bandwidth kernel
of the form (A2) with bandwidth function qβ

ε where qε =
q + O(ε) is any order-ε estimate of q. For a function f ∈
L2(M,q) ∩ C3(M) and an arbitrary point xi ∈ M, define the
discrete functionals,

Fi(xj ) = KS
ε (xi,xj )f (xj )

qS
ε (xi)αqS

ε (xj )α
, Gi(xj ) = KS

ε (xi,xj )

qS
ε (xi)αqS

ε (xj )α
,

where qS
ε (xi) = ∑

l K
S
ε (xi,xl)/qε(xi)dβ . Then,

LS
ε,α,βf (xi)

≡ 1

εmqε(xi)2β

( ∑
j Fi(xj )∑
j Gi(xj )

− f (xi)

)

= L̂f (xi) + O

(
ε,

q(xi)(1−dβ)/2

√
Nε2+d/4

,
‖∇f (xi)‖q(xi)−c2

√
Nε1/2+d/4

)
,

(A3)

with high probability, where c1 = 2 − 2α + dβ + 2β and c2 =
1/2 − 2α + 2dα + dβ/2 + β and m is a constant depending
on the form of the kernel, and m = 2 for (A2).

The key result of [5] is that for the error to be bounded
when q is not bounded below, we require c2 < 0 (otherwise
as q → 0 the final error term becomes unbounded). Since
we are interested in the case c1 = 1, in this paper we will
use β = −1/2 and α = −d/4. Notice that this algorithm will
require the intrinsic dimension d of the manifold M; however
we will determine this empirically as part of the kernel density
estimation of the sampling density q.

To determine the sampling density q (which also serves
as an estimate of the invariant measure peq) we introduce
the ad hoc bandwidth function ρ0(x) = ( 1

k0−1

∑k0
j=2 ‖xi −

xI(i,j )‖2)1/2, where I(i,j ) is the index of the j th nearest
neighbor of xi from the data set. Following [5] we used k0 = 8
in all of our examples, and empirically the algorithm is not very
sensitive to k0. With this bandwidth we define the following
kernel,

Kε(x,y) = exp

(
− ‖x − y‖2

2ερ0(x)ρ0(y)

)
, (A4)

which will be used only for the kernel density estimate of
the sampling density q. The kernel density estimate qε of the

sampling density q is given by the standard formula,

qε(xi) ≡ 1

N (2περ0(xi)2)d/2

N∑
j=1

Kε(xi,xj )

≈
∫
M

Kε(xi,y)

[2περ0(xi)2]d/2
q(y) dV (y)

= q(xi) + O(ε), (A5)

where dV is the volume form which M inherits from the
ambient space and q is the sampling measure relative to this
volume form. Note that applying (A5) requires choosing the
bandwidth ε and knowing the dimension d of the manifold.

To determine the bandwidth ε and the dimension d, we
apply the automatic tuning algorithm, originally developed
in [17] and refined in [5]. The idea is that if ε is not well
tuned, the kernel will become trivial; when ε is too small the
kernel (A4) is numerically zero when x �= y, and when ε is
too large the kernel is numerically 1. Forming the double sum
T (ε) ≡ 1

N2

∑N
i,j=1 Kε(xi,xj ), when ε is too small we find T

approaches 1/N and when ε is too large we find T approaches
1. As shown in [5,17] when ε is well tuned we have T (ε) ≈
(4πε)d/2

vol(M)
so that

ln T (ε) ≈ d

2
ln(4πε) − ln[vol(M)]. (A6)

Since T (ε) is monotonically increasing in ε, we also have
ln[T (ε)] monotonically increasing in ln(ε), and so the deriva-
tive d ln[T (ε)]

d ln(ε) has a unique maximum. Intuitively this maximum
corresponds to ε that gives the maximum “resolution” of the
kernel Kε . The approximation (A6) suggests that the value
of the maximum is maxε

d ln[T (ε)]
d ln(ε) = d

2 , and we will use this to
determine the intrinsic dimension of the manifoldM. Since the
summation T (ε) is not very expensive to compute, we simply
evaluate T (ε) for ε = 2l where l = −30,−29.9, . . . ,9.9,10
and then compute the empirical derivative,

d(ln S)

d(ln ε)
≈ ln[S(ε + h)] − ln[S(ε)]

ln(ε + h) − ln(ε)
, (A7)

and choose the value of ε which maximizes this derivative and
set d = 2 maxε

d ln[T (ε)]
d ln(ε) .

Now that we have the empirical estimate qε(xi) = q(xi) +
O(ε), we can form the kernel (A2). We reapply the same
bandwidth selection to choose the global bandwidth ε in the
kernel (A2) and a new estimate of d, by constructing T (ε) as
a double sum of the kernel (A2) over the data set. Notice that
these new values of ε and d can be different from the previous
values used in the kernel (A5), although empirically the new
dimension d is typically very similar.

We can now evaluate the kernel (A2) on all pairs from
the data set and form the matrix KS

ε,i,j = KS
ε (xi,xj ) and

we can compute the first normalization factor qS
ε (xi) =∑N

j=1 KS
ε (xi,xj )/qε(xi)dβ as in Corollary 1. We define a

diagonal matrix Di,i = qS
ε (xi), and the first normalization is

to form the matrix KS
ε,α = D−αKS

ε D−α . We then compute

the second normalization factor qS
ε,α(xi) = ∑N

j=1 KS
ε,α,i,j and

form a diagonal matrix Dα,i,i = qS
ε,α(xi). The second normal-

ization is to form the matrix K̂S
ε,α = D−1

α KS
ε,α . We define the
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final normalization diagonal matrix D̂i,i = 2εq(xi)2β , and by
Corollary 1,

LS
ε,α,β = D̂−1

(
K̂S

ε,α − Id
) = D̂−1D−1

α D−αKS
ε D−α − D̂−1

approximates the desired operator L̂ when β = −1/2 and α =
−d/4. To find the eigenvectors of LS

ε,α,β , which approximate

the eigenfunctions ϕj of L̂, we note that setting P = D̂1/2D
1/2
α

we can define a symmetric matrix,

L̂ ≡ PLS
ε,α,βP −1 = P −1D−αKS

ε D−αP −1 − D̂−1.

Since L̂ is a symmetric matrix, which is conjugate to the LS
ε,α,β ,

we can compute the eigenvectors of L̂ = Û�Û� efficiently
and then the eigenvectors of LS

ε,α,β are given by the column

vectors of U = P −1Û .
Note that the columns of Û will be numerically orthogonal,

so the columns of U are orthogonal with respect to P 2 since
Id = Û�Û = U�P 2U . A careful calculation based on the
asymptotic expansions in [5] shows that P 2

ii = q(xi)c1−1 +
O(ε) and in general the qc1 is the invariant measure of the
gradient flow (A1) so that P 2 represents the ratio between the
invariant measure e−c1U of (A1) and the sampling measure q.
However, in this case since c1 = 1, we have P = Id + O(ε).
Thus, for the case c1 = 1, we will take the eigenvectors ϕj

to be the column vectors of Û , since these eigenvectors
are numerically orthogonal and are equal to the column
vectors of U up to order ε. Notice that the orthogonality
of these vectors 1

N

∑N
i=1 ϕl(xi)ϕj (xi) ≈ 〈ϕl,ϕj 〉q corresponds

to the orthogonality of the eigenfunctions ϕj with respect
to the sampling measure [and since c1 = 1 this is also the
invariant measure of (A1)]. Finally, in order to ensure that the
eigenvectors are orthonormal, we renormalize each column
vector so that 1

N

∑N
i=1 ϕj (xi)2 = 1.

APPENDIX B: ESTIMATING THE SEMIGROUP
SOLUTIONS FOR NONELLIPTIC OPERATORS

Consider a dynamical system for a state vector x on a
manifold M ⊂ Rn given by

dx = a(x) dt + b(x) dWt, (B1)

where Wt is a standard Brownian process (generated by the
Laplacian on M), a is a vector field (which is not necessarily
the gradient of a potential), and b is a diffusion tensor, all
defined on M. Let xi = x(ti) be a time series realization
of (B1) at discrete times {ti}N+1

i=1 with τ = ti+1 − ti . As in
the previous section, we represent a smooth function f on the
manifold by a vector fi = f (xi). Using the time ordering of
the data set, we can define the shift map, Sf (xi) = f (xi+1).
Applying the Itô formula to the process y(t) = f (x(t)), we
have

dy(s) = (
a · ∇f + 1

2 Tr[b�H(f )b]
)
ds + ∇f �b dWs

≡ Lf ds + ∇f �b dWs, (B2)

where H(f ) denotes the Hessian and the functions and
derivatives are evaluated at x(s). We first show that the
expected value of the discrete time shift map is the semigroup
solution eτL associated with the generatorLof the system (B1).

For all smooth functions f defined on the data set, the shift
map yields a function Sf which is defined on the first N − 1
points of the data set. Rewriting (B2) we have

Sf (xi) = f (x(ti+1)) = y(ti+1) (B3)

= f (xi) +
∫ ti+1

ti

Lf ds +
∫ ti+1

ti

∇f �b dWs,

and taking the expectation conditional to the state xi ,

Exi
[Sf (xi)] = f (xi) +

∫ ti+1

ti

Exi
[Lf (xs)] ds. (B4)

Recall that by the Feynman-Kac connection, the conditional
expectation of the functional y(ti+1) = f (xi+1) is given by the
semigroup solution Exi

[y(ti+1)] = eτLf (xi) and combining
this with (B4) we find

eτLf (xi) = f (xi) +
∫ ti+1

ti

Exi
[Lf (xs)]. (B5)

Substituting (B5) into (B3) we find

Sf (xi) = eτLf (xi) +
∫ ti+1

ti

∇f �b dWs

+
∫ ti+1

ti

Lf − Exi
[Lf ] ds. (B6)

The formula (B6) shows that the expectation of the shift map
S is the semigroup solution eτL as claimed. This suggests that
we can use the shift map to estimate the semigroup solution
of the generator of (B1). We next show that, by representing
S in an appropriate basis, we can minimize the error of this
estimate.

From (B6), for any smooth function g, we can define the
Monte Carlo integral,

〈g,Sf 〉peq = lim
N→∞

1

N − 1

N−1∑
i=1

g(x(ti))Sf (x(ti))

= 〈g,eτLf 〉peq +
〈
g,

∫ ti+1

ti

∇f �b dWs

〉
peq

+
〈
g,

∫ ti+1

ti

Bf ds

〉
peq

, (B7)

where we define Bf = Lf − Exi
[Lf ]. The Monte Carlo inte-

gral implies that the inner products should be taken with respect
to the sampling measure for the training data set, and we
assume that the evolution of x is ergodic so that the sampling
measure is the invariant measure peq of the system (B1).
Note that for smooth functions f,g ∈ L2(M,peq), the final
integral in (B7) will be order τ since it is deterministic and
the inner product with g will be bounded. Therefore, our goal
is to choose f,g from an orthonormal basis for L2(M,peq)
which minimizes the inner product with the stochastic integral,
and thereby reduces the variance of our estimates of the
coefficients.

We first expand the norm of �(f ) = ∫ ti+1

ti
∇f �b dWs by

applying the Itô isometry,

‖�(f )‖2
peq

=
∫
M

(∫ ti+1

ti

∇f �b dWs

)2

peq(xi) dV (xi)
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=
∫
M

∫ ti+1

ti

(∇f �b)2 ds peq(xi) dV (xi)

= τ‖∇f �b‖2
peq

+ O(τ 2). (B8)

In order to have a simple generic approach we will avoid
estimating the diffusion tensor b by assuming that the norm
‖b(x)‖ = sup ‖v�b‖

‖v‖ is bounded above on the manifold by
a constant b0. We can now apply the Cauchy-Schwartz
inequality to find that

|〈g,�(f )〉peq | � ‖g‖peq‖�(f )‖peq

�
√

τb0‖g‖peq‖∇f ‖peq + O(τ ). (B9)

The optimal basis will be the one that minimizes the norm
‖∇f ‖peq = ∫

M |∇f |2peqdV (x). As shown in Appendix A, the
norm ‖∇f ‖peq is provably minimized by the eigenfunctions
of the generator L̂ of the gradient flow system (A1) and these
eigenfunctions can be estimated by the diffusion kernel (A2).
Letting ϕi be the eigenfunctions of L̂ with eigenvalues λi so
that L̂ϕi = λiϕi , the set {ϕi} is a basis for L2(M,peq) and

the norm we wish to minimize is given by the eigenvalues
‖∇ϕi‖peq = λi .

Replacing f and g in (B7) with these eigenfunctions, for
a finite data set we define Âlj ≡ 1

N

∑N
i=1 ϕj (xi)Sϕl(xi) and

Alj ≡ 〈ϕj ,e
τLϕl〉peq . Since E[ϕj (xi)Sϕl(xi)] = Alj , we have

E[Âlj ] = Alj which shows that Âlj is an unbiased estimate of
Alj . Using the error bounds derived above, the variance is

E[(Âlj − Alj )2] � b2
0λ

2
l τN−1 + O(τ 2N−1),

assuming that xi are independent. Since xi form a time series,
they are not independent and the convergence of the Monte
Carlo integral will be slower if the dependence is strong.
In that case, one may need to subsample the time series
which simultaneously requires a larger data set. Assuming
independence, by the Chebyshev bound,

P (|Âlj − Alj | � ε) � b2
0λ

2
l τ ε−2N−1 + O(τ 2ε−2N−1),

and balancing these error terms requires λl < b−1
0

√
τ and the

errors are of order ε = O(τN−1/2) in probability.
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