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Computer simulations of three-dimensional Turing patterns in the Lengyel-Epstein model
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We investigate numerically Turing patterns in the Lengyel-Epstein model in three dimensions. In a bulk
homogeneous system under periodic boundary conditions, we obtain not only lamellar, cylindrical, and spherical
structures but also several interconnected periodic structures including the Schwartz P-surface structure. In order
to examine Turing patterns in the conditions accessible experimentally, we consider inhomogeneous systems
where a parameter in the reaction-diffusion equations depends on the space coordinate with either Dirichlet
or Neumann boundary conditions. In this situation, we find that a perforated-lamellar structure and an Fddd

structure, both of which have a uniaxial symmetry, appear depending on the boundary conditions.
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I. INTRODUCTION

In 1952 Turing showed mathematically that a two-
component reaction-diffusion system with diffusion and non-
linear reaction terms exhibits spontaneous formation of spa-
tially periodic structures if certain conditions are satisfied [1].
Experimental realization of Turing patterns was carried out
by De Kepper and his coworkers [2,3] when they studied
the chlorite-iodide-malonic acid (CIMA) reaction by open
spatial reactors. Ouyang and Swinney achieved observing
two-dimensional Turing patterns and their bifurcations of
CIMA reaction in open thin gel reactors [4,5].

There are a number of theoretical studies of Turing patterns
in two dimensions. See, for example, Ref. [6]. Typical patterns
are stripe patterns and hexagonal disk-shaped patterns as
experimentally observed [4]. In three dimensions, it is expected
that there are many more varieties of Turing patterns since
interconnected periodic structures are possible, which are
characteristic of three dimensions. Earlier theoretical studies
assuming homogeneity of the system [7–9] obtained numeri-
cally lamellar, cylindrical, and spherical domain patterns but
could not make any definite conclusions about formation of
interconnected structures.

In our previous papers [10,11], we investigated Turing
structures in homogeneous three-dimensional (3D) systems by
numerical simulations of the FitzHugh-Nagumo equation [12],
the Brusselator [13], and the Gray-Scott model [14]. We
obtained interconnected structures such as single-gyroid,
double-gyroid, and diamond structures as well as lamellar,
hexagonal-cylinder, body-centered-cubic sphere, and face-
centered-cubic sphere structures.

In the present paper, we extend the previous studies
and carry out numerical simulations of the Lengyel-Epstein
model [15] which is a model system of the CIAM reaction.
We consider inhomogeneous systems as well as ordinary
homogeneous systems with periodic boundary conditions.
There are two methods to realize an inhomogeneous system.
One is to make a parameter in the time-evolution equations
space-dependent and impose Dirichlet boundary conditions at
the system boundaries assuming a constant supply of chemical
reactants. The other is also to make a parameter space-
dependent but with Neumann boundary conditions. Since a

slightly modified chemical reaction, the chlorine dioxide-
iodine-malonic acid (CDIMA) reaction, is photosensitive [16],
such a space dependence with no flux condition is possible
experimentally by illumination of light [17].

The Lengyel-Epstein model in one and two dimensions has
been studied analytically and numerically. Jensen et al. have
investigated the formation, growth, and pattern selection of
Turing structures focusing on the effects of a strongly subcriti-
cal transition to stripes [18]. The model has also been analyzed
under spatiotemporal forcing in one dimension [17] and under
time-delayed global feedback in two dimensions [19].

Turing patterns in a homogeneous system in three di-
mensions have been investigated experimentally by Epstein
and his coworkers [20]. They have observed by a tomo-
graphic technique, 3D stationary concentration patterns of the
Belousov-Zhabotinsky reaction in microemulsions confined
in a cylindrical capillary whose size is much larger than the
characteristic length of patterns. This method is free from a
concentration gradient caused by steady supply of chemical
components from the system boundaries. However, regular in-
terconnected patterns were not obtained in these experiments.

From a mathematical point of view, identification of what
kinds of interconnected structures exist as a Turing pattern
in three dimensions would be of interest since interconnected
structures with cubic symmetry such as the gyroid are related,
at least approximately, by periodic minimal surfaces [21].
This fact implies that Turing patterns in three dimensions
might make a link between reaction-diffusion equations and
geometry and topology of interfaces. It is also mentioned that
Turing instability is mathematically related with microphase
separation of block copolymers [22] and it has been established
both experimentally and theoretically that interconnected
structures such as the double gyroid exist as a micorphase
separated state [23]. This fact is another motivation of our
study in three dimensions.

Recently, systematic numerical simulations of the Lengyel-
Rabai-Epstein model (from which the Lengyel-Epstein model
is reduced) have been conducted in three dimensions under
the boundary conditions corresponding to a gel strip reactor
and have obtained domain patterns [24] which are qualitatively
consistent with experiments [2]. In contrast to this study, our
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main concern is interconnected structures. Our purpose of the
present study is to confirm existence of interconnected Turing
patterns in a homogeneous system of the Lengyel-Epstein
model and to investigate how those patterns are modified in
inhomogeneous situations.

The organization of the present paper is as follows.
In Sec. II, we describe the Lengyel-Epstein model and
numerical procedure for 3D reaction-diffusion systems. The
Lengyel-Epstein model is solved numerically in Sec. III in
homogeneous systems with periodic boundary conditions.
We have found various interconnected periodic structures
including the Schwartz P-surface structure. In Sec. IV, we
investigate pattern formation where the concentrations have a
spatial gradient under the Dirichlet boundary conditions. The
case of Neumann boundary conditions is considered in Sec. V.
The patterns obtained in Secs. IV and V are not precisely
periodic because of the spatial gradience of the parameters.
After eliminating this nonuniformity effect, we identify the
patterns in Sec. VI. Discussion is given in Sec. VII.

II. THE LENGYEL-EPSTEIN MODEL

The Lengyel-Epstein (LE) model is given by the set of
reaction-diffusion equations [15,17]

∂u(�r,t)
∂t

= ∇2u(�r,t) + a − cu(�r,t) − 4u(�r,t)v(�r,t)
1 + u(�r,t)2

− φ,

(1)

1

σ

∂v(�r,t)
∂t

= d∇2v(�r,t) + cu(�r,t) − u(�r,t)v(�r,t)
1 + u(�r,t)2

+ φ, (2)

where a,c,σ , and d are positive constants. This is a simplified
model of the CDIMA reaction. The variables u(�r,t) and v(�r,t)
are dimensionless local concentrations of the activator and the
inhibitor, respectively. The constant φ stands for the intensity
of photoillumination.

The equilibrium uniform solution of Eqs. (1) and (2) is
given by [17]

u0 = a − 5φ

5c
, v0 = a

(
1 + u2

0

)
5u0

. (3)

Substituting the deviations δu(�r,t) = u(�r,t) − u0 and
δv(�r,t) = v(�r,t) − v0 into Eqs. (1) and (2) and linearizing
them, we obtain the 2 × 2 linear matrix L̃0 whose i,j

component is given by

l̃11 = −
(

c + 4
(
1 − u2

0

)
v0(

1 + u2
0

)2 + k2

)
, l̃12 = − 4u0

1 + u2
0

, (4)

l̃21 = σ

(
c −

(
1 − u2

0

)
v0(

1 + u2
0

)2

)
, l̃22 = −σ

(
u0

1 + u2
0

+ dk2

)
,

(5)

where �k (k = |�k|) is the wave vector of the deviations, i.e.,
δu,δv ∼ exp(i�k · �r). The eigenvalue of L̃0 is given by the
solutions of the following equation:

λ2 − (̃l11 + l̃22)λ + DetL̃0 = 0. (6)

The Turing instability occurs by the condition that

DetL̃0 = l̃11̃l22 − l̃12̃l21 = 0. (7)

The minimum of DetL̃0 as a function of k is determined by
dDetL̃0/dk2 = 0 as

− l̃22 − σ l̃11 = 0. (8)

From Eqs. (7) and (8), we obtain the critical wave number
kc and the bifurcation threshold. For example, when a = 16.0,
c = 0.6, d = 1.07, and σ = 301.0, the critical wave number is
kc = 1.07 and Turing patterns appear for φ < φc ≈ 2.3 [17].

In order to investigate the time evolution in the region
where the Turing instability occurs, we have carried out
numerical simulations for the coupled set of Eqs. (1) and (2) in
three dimensions. The space was divided into Nx × Ny × Nz

cubic cells with cell size δx. The simple Euler algorithm
was used with time step δt which has to fulfill the stability
condition caused by the diffusion terms. In each time step, we
employ a 27-point difference scheme introduced in Ref. [25] to
diminish the anisotropy caused by discretizing the Laplacian.
The initial conditions are basically given by the equilibrium
solutions (3) with small noises superimposed. We shall
investigate the pattern evolution for periodic, Dirichlet, and
Neumann boundary conditions in the subsequent sections.

To accelerate numerical computations, parallelization of
source codes using graphics processing units (GPU) has
recently been developed. We utilize the GPU with Compute
Unified Device Architecture (CUDA) [26] to solve numeri-
cally the discretized equations of Eqs. (1) and (2). Molnar
et al. [27] applied this method to several reaction-diffusion
equations in three dimensions. Their main concern was not
to explore Turing patterns but to check the efficiency of the
numerical method.

III. PATTERNS UNDER PERIODIC BOUNDARY
CONDITIONS

In this section, we present numerical results of Eqs. (1)
and (2) in three dimensions where all the parameters are
assumed to be constant. When a = 16.0, c = 0.6, d = 0.683,
and σ = 301.0, Turing patterns are expected in the region
1.190 < φ < 2.003. Therefore, we have explored the patterns
in this region for discrete values of φ = 1.15 + 0.05n with n

positive integers.
The numerical procedure is the same as that in

Ref. [11]. The system is divided into cubic cells with
Nx = Ny = Nz = 32 and the periodic boundary conditions
are imposed at the system boundaries. Since the spatial period
of the stationary solutions is unknown before simulations,
we change δx in the region 0.250 � δx � 0.550 with the
increment 0.002 to find the most stable periodic solution.
The initial conditions are set to be u = u0 and v = v0 with
small noises superimposed. In order to avoid freezing at any
metastable states, we add white noises in the time-evolution
equations at each time step with the intensity A. This intensity
is also changed from 0 to 0.04 by the increment 0.005 to
check the local stability of stationary solutions.

In this way, we have obtained 9 stationary patterns as listed
in Fig. 1. The abbreviations L, H, DG, Fd, PL, B, P, SG,
and SD indicate lamellar, hexagonal-cylinder, double-gyroid,
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FIG. 1. Region of φ where 9 stationary solutions appear in the
LE model. The meanings of L, DG, Fd, PL, H, B, P, SG, and SD are
given in the text.

Fddd, perforated-lamellar, bcc, Schwartz P-surface, single-
gyroid, and single-diamond structures, respectively. Note that
there are several locally stable solutions for a given value
of φ. For example, for φ = 1.6 we have lamellar structure,
double-gyroid, Fddd structure, perforated-lamellar structure,
and hexagonal structure of cylinders depending on δx, A,
and the random initial conditions. The P-surface pattern was
obtained only for φ = 1.50. But this is reproducible. All
the structures except for Schwartz P-surface were obtained
in our pervious study [10,11] of the FitzHugh-Nagumo
equation [12], the Brusselator [13], and the Gray-Scott
model [14]. It is remarked here that no double-diamond struc-
ture was found either in the present study or in our previous
study [11].

Domain evolution of the P-surface structure is shown in
Fig. 2. Starting from a random initial condition in Fig. 2(a),
domains grow and finally they constitute a periodic intercon-
nected structure in Fig. 2(d). To identify this structure, we plot
the Bragg positions in Fig. 2(e) and their intensity in Table I.
The intensity is defined by

Ik = u�ku−�k, (9)

(a) (b) (c) (d)

t=0 t=80 t=100 t=250

(e)

FIG. 2. (Color online) Formation of Schwartz P surface in
Eqs. (1) and (2). (a)–(d) for φ = 1.50, Nx = Ny = Nz = 32, δx =
3.42 × 10−1, N = 32, and A = 0.005 at (a) t = 0, (b) t = 80,
(c) t = 100, and (d) t = 250. For the sake of clarity, the isosurface of
u = 2.848 is represented in (a) whereas the isosurface of u = 2.8 is
represented in (b)–(d). The Bragg spots for Ik > 1.5 × 10−4 obtained
from the structure in (d) are shown in (e). The large 6 red spheres
indicate the major Bragg positions and their mirror inversions whereas
the small pink spheres indicate the secondary peak positions. These
are listed in Table I below.

TABLE I. Bragg spots and their intensities (arbitrary units) of the
Scwartz P-surface structure.

Peak position Ik Peak position Ik

(2, 0, 0) 0.137 823 (2, 2, 0) 0.002 737
(0,2, 0) 0.137 816 (2, −2, 0) 0.002 734
(0, 0, 2) 0.137 788 (2, 0, −2) 0.002 737
(2, 0, 2) 0.002 735 (0, 2, 2) 0.002 737
(0, 2, −2) 0.002 735

where u�k is given by

u�k =
∫

d�ru(�r) exp(i�k · �r). (10)

The Bragg positions defined by �kBragg = �kL/(2π ) in Ta-
ble I are consistent with the isosurface representation of the
Schwartz P surface [28]

0 = cos x + cos y + cos z. (11)

In fact, a domain structure similar to that in Fig. 2(d) can be
obtained from Eq. (11).

It might be useful to compare the above results with those
in two dimensions. We have carried out numerical simulations
of Eqs. (1) and (2) with the same set of parameters under
the periodic boundary conditions with Nx = Ny = 256 and
δx = 0.5. Hexagonal-spot patterns appear for 1.95 � φ � 2.0
and 1.20 � φ � 1.65 and stripe patterns for 1.65 � φ � 1.95.
This is qualitatively consistent with the regions of L and H in
Fig. 1.

IV. CONCENTRATION GRADIENT UNDER DIRICHLET
BOUNDARY CONDITION

When two continuous stirred tank reactors contact a
reaction cell, the concentrations at the boundaries are fixed
so that a concentration gradient of the chemical components is
formed in the system [2]. In this section, we consider this case
and assume that the parameter φ in Eqs. (1) and (2) depends
on the space.

As in the preceding section, we set the parameters as a =
16.0, c = 0.6, d = 0.683, and σ = 301.0 so that the uniform
state is linearly unstable in the region 1.190 < φ < 2.003.
Throughout the present paper, we fix the parameters as above.

A. One-dimensional (1D) patterns with Dirichlet boundary
condition

Before we discuss 3D patterns, we briefly describe forma-
tion of 1D patterns. In a system with size L = N × δx = 32
(N = 64 and δx = 0.5), we impose

φ(x) = φmin + (φmax − φmin)
x

L
, (12)

where φmax and φmin are constants. The initial distributions of
u0(x) and v0(x) are set as

u0(x) = a − 5φ(x)

5c
, (13)

v0(x) = a[1 + u0(x)2]

5u0(x)
, (14)
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FIG. 3. Formation of spatial structure obtained from Eqs. (1), (2), and (12) for (a) t = 0, (b) t = 60, (c) t = 86, and (d) t = 180. The black

line, the gray line, and the dotted line indicate u, v, and φ(x), respectively.

with small noises added. At each time step, white noises with
amplitude A and no spatial correlations are added to Eqs. (1)
and (2). The time evolution of domains is displayed in Fig. 3
for φmin = 1.20, φmax = 1.80, and A = 0.005. We find that a
spatial structure starts to appear in the region of large φ(x) and
propagates into the region of smaller φ(x) to form the final
spatial structure.

It is interesting to see that the amplitude of the inhomoge-
neous structure is larger in the region of small φ although the
domain evolution is slower there. Since the small φ region is
close to the stability threshold φ = 1.19, the slow dynamics
is expected. The origin of the large amplitudes is probably
related to the fact that the equilibrium values of u and v

before the Turing instability occurs are larger near the x = 0
region.

B. 3D patterns with Dirichlet condition

In 3D simulations, we impose the Dirichlet condition at the
boundaries z = 0 and z = Lz. At the boundaries perpendicular
to the x axis and y axis, we impose the periodic boundary
conditions.

To be specific, we set the z dependence of φ as

φ(z) = φmin + (φmax − φmin)
z

Lz

, (15)

where the parameters φmin and φmax are fixed shortly be-
low. The space is divided as (Lx,Ly,Lz) = (Nx × δx,Ny ×
δx,Nz × δx) with δx = 0.5 and (Nx,Ny,Nz) = (128,128,64)
or (128,128,128).

The values of u and v at the boundaries are given by

u(x,y,0,t) = a − 5φmin

5c
, (16)

u(x,y,Lz,t) = a − 5φmax

5c
, (17)

v(x,y,0,t) = a[1 + u(x,y,0,t)2]

5u(x,y,0,t)
, (18)

v(x,y,Lz,t) = a[1 + u(x,y,Lz,t)2]

5u(x,y,Lz,t)
. (19)

The initial conditions are put as

uD
0 (x,y,z,0) = a − 5φ(z)

5c
, (20)

vD
0 (x,y,z,0) = a

[
1 + uD

0 (x,y,z,t)2
]

5uD
0 (x,y,z,t)

, (21)

where small noises are superimposed. Furthermore, to make
the patterns relax to the final stationary state quickly, random
noises are added to the time-evolution equations every time
step, whose magnitude depends on z as

A(z) = A
Lz − z

Lz

. (22)

Figure 4 displays the domain evolution (isosurface of u =
2.0) in the initial stage (a)–(d), in the late stage (e)–(g), and
in the final stage (h) for φmin = 1.2 and φmax = 1.8, and the
system size (Lx,Ly,Lz) = (64,64,32) with δx = 0.5 and A =
0.015. Similarly to the one-dimensional case shown in Fig. 3, a
periodic structure emerges first in the large φ(z) region [i.e., the
bottom in (a)] and grows into the whole region perpendicularly
to the z axis as can be seen in Figs. 4(a)–4(d). The stripe
pattern oriented randomly is gradually ordered as in Figs. 4(e)–
4(g) and eventually the final ordered structure is formed as in
Fig. 4(h).

In order to identify the structure in Fig. 4(h) in detail, the
patterns from three different directions are displayed in Fig. 5.
It is clearly seen from Fig. 5(a) that flat domains are arrayed
perpendicularly to the z axis near z = 0 and z = Lz. A close
look indicates that the lowest two domains and the upper most
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t=35
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t=2100
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t=100
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t=9800

(h)

z
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y

FIG. 4. (Color online) Formation of partially perforated-lamellar structure obtained from Eqs. (1) and (2) with (15)–(22) for φmin =
1.2, φmax = 1.8, and A = 0.015. Domains with the isosurface of u = 2.0 are represented. The Dirichlet condition is imposed at the z boundaries
while the periodic conditions at the x and y boundaries. The illustration of optical transmittance of 50% has been used in this figure and figures
below.

domain are board shaped while the middle three domains seem
to be a perforated-lamellar structure. The holes in the domains
are visible in Figs. 5(b) and 5(c). We note that the flat board-
shaped domains close to the boundaries are not clearly seen
there since the illustration of optical transmittance of 50% has
been used.

The structure in the middle region of Fig. 5(a) is magnified
in Fig. 6. The domain pattern in Fig. 6(a) is quite similar
to that in Fig. 5(d) in Ref. [11], which is identified as a
perforated-lamellar structure. It is evident from Fig. 6(b) that
the location of holes constitutes a hexagonal pattern and
they are stacked alternatively as ABAB . . . along the z axis.
Furthermore, Figs. 6(a) and 6(b) indicate that the size of holes
increases as z is increased. We will analyze this structure in
further detail in Sec. VI eliminating the concentration gradients
due to the boundary conditions.

It is remarked that the final structures depend on the
initial conditions and random perturbations and that two other
structures have been obtained for different runs. One is an

zx

y

(a)

(c)

(b)

z

x y

z

x y

FIG. 5. (Color online) View of the final structure shown in
Fig. 4(h) from three different directions.

ordered cylindrical structure sandwiched by flat board-shaped
domains near the z boundaries. The other is a lamellar structure
perpendicular to the z axis.

When we set a smaller gradient of φ such that φmin = 1.3
and φmax = 1.4 with (Lx,Ly,Lz) = (64,64,32), δx = 0.5, and
A = 0.025, we have a different domain evolution though not
shown. That is, the final structure is an ordered cylindrical
structure sandwiched by the flat board-shaped domains near
the z boundaries as mentioned in the preceding paragraph. The
cylindrical domains are arrayed perpendicularly to the z axis
to form a hexagonal lattice. Formation of cylindrical domains
is understood as follows. One notes that hexagonal cylindrical
domain structure or bcc spherical domain structure is possible
in the region 1.3 � φ � 1.4 in a homogeneous system as in
Fig. 1. However, bcc structure is incompatible with the uniaxial
symmetry caused by the gradient in the z direction and is
unfavorable compared to the hexagonal structure. We have
checked the same kind of cylindrical structures for other runs
of simulations.

We have carried out numerical simulations for a wider
system in the z direction as (Lx,Ly,Lz) = (64,64,64). Other
parameters are set to be φmin = 1.1, φmax = 2.1, A = 0.035,

z

x
y

z

x y

)b()a(

FIG. 6. (Color online) Magnification of the cubic region of 6 �
z � 22 in Fig. 4(h).
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0.57=t0.03=t0.5=t0.0=t

0.00571=t0.0009=t0.052=t t=14000.0

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)z

x

y

FIG. 7. (Color online) Mixture of lamellar, cylindrical, and spherical domains for φmax = 1.1, φmin = 2.1, A = 0.035, and (Lx,Ly,Lz) =
(64,64,64). The boundary conditions are the same as those in Fig. 4. Domain surface with the isosurfaces of u = 2.0 is displayed in the initial
stage from (a) to (e) and in the late stage from (f) to (h).

and δx = 0.5. The gradient of φ along the z axis is equal to
1.0/64, which is not much different from 0.6/32 in Fig. 4. As
mentioned above, the Turing instability occurs in the region
1.190 < φ < 2.003 and hence the system has a linearly stable
region by the above choice of parameters. Figures 7(a)–7(e)
show that domains appear initially in the region close to the
z boundaries. As they grow, they gradually array in ordered
configurations as Figs. 7(f)–7(h). Figure 8 displays the pattern
in Fig. 7(h) viewed from two different directions. Spherical
domains constitute a bcc structure. Spherical and cylindrical
structures are formed in the small φ(z) region whereas a
lamellar structure in the large φ(z) region. The order of these
structures is transverse to the z direction.

Although not shown here, we have carried out numerical
simulations for other sets of parameters (φmin,φmax,A). In
some cases, interconnected patterns are observed but only
transiently. The structures obtained asymptotically in time
are essentially the same as those presented above. Therefore,
we conclude that interconnected periodic patters with cubic
symmetry do not appear as a final structure in the gradient
system with the Dirichlet boundary conditions.

Finally we make a remark that the domain evolution for a
larger system as in Fig. 7 is qualitatively different from that
in a smaller system as in Fig. 4. The final structure is reached
quickly in Fig. 4 since the boundary condition has a strong

(a) (b)

z

y

x

z

x
y

FIG. 8. (Color online) Structure of Fig. 7(h) viewed from two
different directions.

influence in the whole system. On the other hand, there are
two stages of domain growth in a large system. In an initial
stage, domains grow randomly and then, in the second stage,
those domains become ordered, which is a very slow process
as can be seen in Fig. 7. This property can be seen in all the
domain evolutions given below in three dimensions.

V. CONCENTRATION GRADIENT UNDER NEUMANN
BOUNDARY CONDITION

In this section, we consider a confined system with
boundary walls and assume that chemical reactions are
controlled by light illumination. The illumination is turned on
at t = 250. That is, we set φ = 0 for 0 < t < 250 in Eqs. (1)
and (2) whereas φ = φON (�x) �= 0 after t = 250. The system
parameters are chosen such that the uniform state is stable for
φ = 0 but when φ = φON (�x), a Turing instability occurs.

A. 1D patterns with Neumann condition

First, we examine pattern formation in one dimension under
Neumann boundary conditions. We set L = N × δx = 64.0
with N = 128 and δx = 0.5, and when 0 < t < 250, φ = 0.
The initial condition is set as u(x) = u0 and v(x) = v0 which
are the equilibrium values for φ = 0. After t = 250 we put
φON (x) in Eqs. (1) and (2) as

φON (x) = φmin + (φmax − φmin)
x

L
, (23)

where φmin = 1.1 and φmax = 2.1.
Figure 9 shows the domain evolution obtained by numerical

calculations of Eqs. (1) and (2) adding random white noises
of the amplitude A = 0.01 every time step and at the all space
points. During the interval 0 < t < 250, the values of u and
v are almost equal to the equilibrium values as in Fig. 9(a).
After t = 250, φON (x) takes nonzero values as indicated by
the black dotted line in Fig. 9(b) and then a periodic structure
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FIG. 9. Domain evolution in one dimension with Neumann boundary conditions for φmin = 1.1 and φmax = 2.1 in Eq. (23). The spatial
profits of u (black line), v (gray line), and φON (x) (dotted line) for (a) t = 0.0, (b) t = 254, (c) t = 390, and (d) t = 550.

starts to evolve in the whole region almost simultaneously
as in Figs. 9(b) and 9(c) and finally the stationary structure
as in Fig. 9(d) is formed. The growth rate of domains is
large in the middle region. The uniform state is linearly stable
for the values of φON (x) in the regions 0 � x < 5.76 and
57.792 < x � 64.0. Note, however, that a periodic structure
is induced even in the stable region although the amplitude
is small there. If the noise is stronger as A = 0.03, the
periodic structure is evolved more uniformly in both space and
time.

B. 3D patterns with Neumann condition

In three dimensions, we apply the same time dependence
of φ as in Sec. V A. After t = 250 we put φON (z) as

φON (z) = φmin + (φmax − φmin)
z

Lz

. (24)

The Neumann boundary conditions are imposed at the z

boundaries whereas the periodic boundary conditions at the
x and y boundaries. The initial conditions are given by the
equilibrium solution (3). In order to accelerate the convergence

0.503 = t0.272 = t0.062 = t0.052 = t

0.0012 = t0.0051 = t0.0521 = t0.008 = t

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)
z

x

y

FIG. 10. (Color online) Cylindrical domain structure represented by the isosurface of u = 2.0 for (Lx,Ly,Lz) = (64,64,32), δx = 0.5,
φmin = 1.2, φmax = 1.8, and A = 0.025 under the Neumann boundary conditions at the z boundaries.
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(a) (b)

z
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FIG. 11. (Color online) View of the pattern in Fig. 10(h) from
two different directions.

of the numerical solutions for t > 250, we have added random
white noises to u and v at every time step. The noise intensity
A has a z dependence similarly to Eq. (22).

We have obtained the results shown in Fig. 10
for (Lx,Ly,Lz) = (Nx × δx,Ny × δx,Nz × δx) = (64,64,32)
with δx = 0.5, φmin = 1.2, φmax = 1.8, and A = 0.025. No
structure appears till t = 250 but after that, spherical and
cylindrical domains are formed as in Figs. 10(b)–10(d) and
ordered as in Figs. 10(e)–10(g). The final structure shown in
Fig. 10(h) indicates that ordered spherical domains exist in the
uppermost layer, below which an ordered cylindrical structure
is constituted perpendicularly to the z axis. This can be seen
more clearly in Fig. 11 viewed from different directions.

We obtain different structures when we set different initial
distributions and random perturbations. One of them is an
ordered cylindrical structure arrayed perpendicularly to the z

axis to form a hexagonal lattice which occupies the whole
volume. The other one is the lowest two domains which
are board shaped while the upper three domains constitute
a cylindrical structure arrayed perpendicularly to the z axis to
form a hexagonal lattice.

Pattern formation for a wider system (Lx,Ly,Lz) = (Nx ×
δx,Ny × δx,Nz × δx) = (64,64,64) with δx = 0.5, and a

(a)

(c)

zx

y

(b)

z
x

y
z

x y

FIG. 13. (Color online) Three different views of the pattern in
Fig. 12(h).

wider range of φ as φmin = 1.1, φmax = 2.1, and A = 0.02 is
displayed in Fig. 12. Some structures are formed in the region
1.10 � φ(z) < 1.190 and 2.003 < φ(z) � 2.10 although the
uniform state is linearly stable in these regions. The three
different views of the final structure in Fig. 12(h) are shown
in Fig. 13. Figure 13(a) indicates that several layers from
the top where φ(z) is small are occupied by the cylindrical
domains arrayed perpendicularly to the z axis whereas the
interconnected network structure and lamellae are seen in the
lower region where φ(z) is large. Figure 14 is a magnified
pattern in the cubic region of 36 � z � 52, 48 � x � 64, and
32 � y � 48. The pattern in Fig. 14(b) is expected to be an
Fddd structure because it resembles the one shown in Fig. 4(d)
in Ref. [11], which was identified as Fddd structure. We will
verify this in the next section by eliminating the concentration
gradient. This is the same situation as in the narrower system
of Lx = Ly = 64 and Lz = 32 mentioned above.

t=1250

t=258

t=10550

t=325t=280

t=6300

t=380

t=21000

(a)

(e)

(b)

(f) (g)

(d)

(h)
z

x

y

(c)

FIG. 12. (Color online) Mixed structure for (Lx,Ly,Lz) = (64,64,64), δx = 0.5 with φmin = 1.1, φmax = 2.1, and A = 0.02 under the
Neumann boundary condition at the z boundaries. Domain surface with the isosurfaces of u = 2.0 is displayed in the initial stage from (a) to
(e) and in the late stage from (f) to (h).
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FIG. 14. (Color online) Magnification of the region 36.0 � z �
52.0 in Fig. 12(h).

We obtain two other structures when we start with different
initial distributions and random perturbations. One of them
is an ordered cylindrical structure arrayed perpendicularly
to the z axis to form a hexagonal lattice. The other is an
inhomogeneous structure such that the lowest five domains
are board shaped while the upper seven domains constitute
a hexagonal structure of cylinders arrayed perpendicularly to
the z axis.

When the gradient of φ is smaller as φmin = 1.6 and φmax =
1.7 with the system size (Lx,Ly,Lz) = (64,64,32), δx = 0.5,
and A = 0.02, an interconnected pattern appears in the whole
system. However, this pattern does not attain a final time-
independent state even at t = 5 × 105 which is the longest
simulation time in our study.

VI. PERIODIC INTERCONNECTED STRUCTURES

In this section, we investigate, in detail, the interconnected
structures shown in Figs. 4(h) and 12(h). Since the system is
inhomogeneous due to space dependence of the parameters
in Eqs. (1) and (2), the concentration profiles of the Turing
patterns are not strictly periodic in space. Therefore the simple
Bragg point analysis in Sec. III is not applicable here. It is
necessary to make the patterns periodic by eliminating the
gradient effects before applying the Fourier analysis.

Construction of periodic structures

We describe the procedure to make the concentration
profiles obtained in Secs. IV and V periodic in space.

(i) We subtract ū0(z) and v̄0(z) from the concentration
profiles u and v, respectively, where ū0(z) and v̄0(z) are the

FIG. 15. (Color online) Interconnected structure of Fig. 4(h) after
eliminating the concentration gradient (a) and the final relaxed
structure (b). The isosurface with u = 2.0 is represented.

TABLE II. Bragg spots and intensities for the perforated-lamellar
structure of Fig. 15(b).

Peak position Ik Peak position Ik

(0, 0, 3) 0.924 423 (2, 1, 2) 0.254 157
(2, −1, 2) 0.253 448 (0, 2, −2) 0.209 040
(2, 1, −1) 0.130 517 (2, −1, 1) 0.129 858
(0, 2, 1) 0.029 847

profiles of u0 and v0 in Eq. (3) replacing φ by φ(z) defined
by Eqs. (15) or (24). By choosing appropriately a constant
value of φtry which satisfies φmin � φtry � φmax, we add the
steady uniform value of u

try
0 ≡ u0(φtry) and v

try
0 ≡ v0(φtry) to

the concentration profiles.
(ii) We cut out the region of M × M × M with M a

positive integer in such a way that the cubic volume satisfies
the periodic boundary conditions. Applying the expansion-
contraction method of image processing, we transform the
concentration pattern into another cubic system of 32 × 32 ×
32. The bilinear interoperation method is used for smoothing
of the profiles between the lattice points.

(iii) The pattern obtained in this way is used as an initial
condition to solve Eqs. (1) and (2) numerically in the cubic
cell under the periodic boundary conditions. The size δx and
the noise intensity A are chosen appropriately. In this way, we
relax the pattern obtained in the process (ii).

If the profile is deformed substantially or destroyed in the
process (iii), we change the set of the parameters φtry, M , δx,
and A and repeat the above steps. In what follows, we show
two examples of patterns corrected by this procedure.

First, we apply the method to the interconnected structure
shown in Fig. 4(h). We choose the area 45 � Nx � 72, 56 �
Ny � 83, and 7 � Nz � 34 with M = 28. Next we expand
the cubic system slightly to another cubic volume with the
size 323. We set φtry = 1.35, and make the interpolation of
the concentration profiles. Figure 15(a) was obtained in this
way. Then we apply the step (iii) with δx = 0.52 and A =
0.0005 to obtain Fig. 15(b) asymptotically in time. One can
see that the domains in Fig. 15(b) are waving (though static)
somehow compared to the domains in Fig. 15(a). Table II lists
the Bragg spots and their intensities. From these analysis, we
conclude that the structure in the central region of Fig. 4(h) is
a perforated-lamellar structure [11].

FIG. 16. (Color online) Interconnected structure of Fig. 13(h)
after eliminating the concentration gradient (a) and the final relaxed
structure (b). The isosurface with u = 2.0 is represented.
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TABLE III. Bragg spots and intensities for the Fddd structure of
Fig. 16(b).

Peak position Ik Peak position Ik

(2, 1, 1) 0.124 307 (2, −1, −1) 0.124 285
(1, 2, −1) 0.123 848 (1, 2, 1) 0.123 733
(2, −2, 0) 0.015 368 (1, −1, 2) 0.005 912
(1, −1, −2) 0.005 644 (1, 1, 1) 0.001 554
(0, 3, −1) 0.001 201 (0, 3, 1) 0.001 107
(3, 0, −1) 0.001 102 (3, 0, −1) 0.001 084

Next, we apply the method to Fig. 12(h). The volume with
M = 33, such that 95 � Nx � 127, 63 � Ny � 95, and 85 �
Nz � 117, is chosen and then the size is shortened slightly to
323 with φtry = 1.8. The profile after interpolation is shown in
Fig. 16(a). This pattern is relaxed with the parameters δx =
0.460 and A = 0.0015 to obtain Fig. 16(b). One notes that
some distortions in Fig. 16(a) have disappeared in Fig. 16(b).
From the data of the Brag peaks in Table III, we identify this
structure with an Fddd structure [11].

VII. DISCUSSION

We have shown the results of numerical simulations
of the Lengyel-Epstein model in three dimensions. In a
homogeneous system with periodic boundary conditions we
have obtained interconnected periodic structures: single-
gyroid, double-gyroid, single-diamond, Schwartz P-surface,
perforated-lamellar, and Fddd structures as well as lamellar,
hexagonal-cylinder, and body-centered-cubic structures. All
the structures except for the Schwartz P-surface structure
were obtained in our previous study of three different
reaction-diffusion systems [11]. We emphasize that although
the Schwartz P-surface structure appears in a very nar-
row parameter region, this is reproducible by numerical
simulations.

We have investigated how the patterns are modified when
inhomogeneity due to boundary conditions is taken into

account. We have considered two cases. One is the system
where Dirichlet boundary conditions are imposed in the
z boundaries whereas periodic boundary conditions are in
the x and y boundaries. The other system has Neumann
boundary conditions for the z boundaries and periodic
boundary conditions for the x and y boundaries. We have
found perforated-lamellar structure and Fddd structure as
interconnected patterns after correcting the gradient effects.
These results are quite reasonable since both structures have a
uniaxial symmetry which is consistent with the symmetry of
the system with inhomogeneity along one spatial direction.

Therefore, we have confirmed in the present study as well as
the previous ones [11] that interconnected periodic structures
exist generically as Turing patterns in three dimensions. In
particular, since the Lengyel-Epstein model is closely related
with the realistic chemical reactions, it is our desire that the
predictions given here will be observed experimentally in the
near future.

From the theoretical point of view, there are many unex-
plored problems in three-dimensional Turing patterns. One
needs to develop nonlinear reduction theories to study the
structures and the dynamics as analytically as possible. See,
for example, [29]. Amplitude equations might be derived
for lamellar and cylindrical domain structures. However,
it seems difficult to apply this method to interconnected
structures since much more fundamental modes are involved.
A phase-dynamical approach would be suitable for general
periodic interconnected structures as would the elastic theory
for double-gyroid and diamond structures in microphase sepa-
ration [30]. Investigation of internal structures and stability of
a boundary between different interconnected structures is also
a challenging future problem in Turing patterns.
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