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Synchronization of networked chaotic oscillators under external periodic driving
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The dynamical responses of a complex system to external perturbations are of both fundamental interest and
practical significance. Here, by the model of networked chaotic oscillators, we investigate how the synchronization
behavior of a complex network is influenced by an externally added periodic driving. Interestingly, it is found
that by a slight change of the properties of the external driving, e.g., the frequency or phase lag between its
intrinsic oscillation and external driving, the network synchronizability could be significantly modified. We
demonstrate this phenomenon by different network models and, based on the method of master stability function,
give an analysis on the underlying mechanisms. Our studies highlight the importance of external perturbations
on the collective behaviors of complex networks, and also provide an alternate approach for controlling network
synchronization.
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I. INTRODUCTION

Realistic systems are inevitably disturbed by external per-
turbations, from either the surrounding environments or some
specially designed controllers, and one of the central tasks in
nonlinear science has been exploring the responses of complex
dynamical systems to various perturbation signals [1,2]. In
biological and engineering systems, it is commonly recognized
that many of the system functions rely heavily on the exter-
nally added periodic signals, examples of which include the
entrainment of the rhythm of suprachiasmatic nucleus (SCN)
to the 24-h daily light-dark cycle [3], the synchronization
of different brain regions to the SCN rhythm [4], and the
regulation of the heart beating rate to the rhythm of the
sinoatrial node (SAN) [5], the coordination of a large of
remote sensors or computing units by the timing signals of
the global positioning system (GPS) [6], etc. To properly
understand the functioning of these systems, in the past
decades there have been continuous efforts in studying the
responses of complex dynamical systems to externally added
periodic forces. For instance, mimicking the light-dark cycle
by an external periodic driving, it has been shown that
an ensemble of phase oscillators coupled through different
network structures can be successfully entrained to the same
frequency [7,8]; replacing the SAN signals by a linearly or
circularly polarized electric field, it has been demonstrated
that the spatiotemporal irregularity underlying life-threatening
cardiac arrhythmias, e.g., fibrillation and spiral waves, can
be efficiently eliminated, therefore recovering the coherent
beating of the heart cells [9,10]; using sinusoidal waves as
the information signals, it has been shown that the signals can
be properly detected and transmitted on networks of coupled
nonlinear oscillators [11,12].
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A typical phenomenon observed in systems of coupled
oscillators is synchronization, which has been widely regarded
as the dynamical basis for many of the system functions [13].
Generally speaking, synchronization refers to the coherent
motion of coupled oscillators, which usually occurs when
the coupling strength between the oscillators exceeds
some threshold values. Depending on the specific form of
the coherent motion, different types of synchronization have
been observed and studied in the past, including complete
synchronization, phase synchronization, generalized synchro-
nization, etc. [13,14]. Recently, stimulated by the discoveries
of the small-world and scale-free features in many natural and
manmade systems [15,16], a new surge of research interest
has been appeared in studying the synchronization of complex
networks, where the important roles of network structure on
synchronization have been revealed and addressed [17–22].
In studying network synchronization, a prevalent method is
the master stability function (MSF), which suggests that the
synchronizability of a complex network is largely determined
by an eigenratio calculated from the eigenvalues of the
network coupling matrix [23–26]. Specifically, the smaller
the eigenratio is, the higher the propensity for a network to be
synchronized. Regarding this, to enhance the synchronizability
of a complex network, the central task seems to be only finding
methods for decreasing the eigenratio, by either adjusting the
network topology or adopting new coupling schemes [17–21].

While the importance of network structure and coupling
scheme on synchronization has been well addressed, little
attention has been paid to the possible influences of external
perturbations on network synchronization. According to MSF,
whether a network can be synchronized is jointly determined
by two factors: the distribution of the eigenvalues and the
shape of the MSF curve. The latter, which defines the
stable region for synchronization, is determined by only
the low-dimensional node dynamics. If by some methods,
e.g., driving the oscillators by some externally added per-
turbations, the MSF curve could be modified in such a way
that the synchronization region is greatly enlarged, then it
will be possible to modify the network synchronizability
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without changing the network structure and coupling scheme.
Inspired by this, in this article we study the synchronization
of networked chaotic oscillators when an externally added
periodic driving is presented. Interestingly, we find that by a
slight change of the frequency or the phase lag of the driving
signals, the synchronization behaviors of complex networks
can be significantly modified. This finding gives insights
on the functioning of some biological systems where an
external periodic driving is presented, e.g., the SCN and SAN,
and also provides an efficient approach for controlling the
synchronization behaviors of complex networks. In Sec. II, we
shall present the network model, and demonstrate the sensitive
dependence of the network synchronization on the frequency
of the external driving. In Sec. III, based on the MSF method,
we shall give an analysis on the underlying mechanism for
the observed phenomenon. In Sec. IV, we shall generalize our
studies to other network models, and discussing the effect of
phase lag of the driving on network synchronization. Finally,
in Sec. V we shall give our discussions and conclusion.

II. MODEL AND PHENOMENON

Our model of networked chaotic oscillators with external
periodic driving reads [8,21]

ẋi = F(xi) − ε

N∑

j=1

cij [H(xj ) − H(xi)] + g(t), (1)

with i,j = 1, . . . ,N the oscillator (node) indices and x the state
variables. In the isolated form, the dynamics of each oscillator
is governed by the equation ẋi = F(xi), which, for the sake of
simplicity, is set as identical over the network. H(x) denotes
the coupling function and ε is the uniform coupling strength.
The coupling relationship of the oscillators is described by
the coupling matrix C, with cij = −aij /ki and cii = 1. Here,
A is the adjacency matrix constructed as follows: aij = 1 if
nodes i and j are directly connected in the network; otherwise,
aij = 0. ki = ∑

j aij counts for the number of connections
for node i, i.e., the node degree. All oscillators are subjected
to the same periodic driving g(t) = b sin(ωt + φ0), with b,
ω, and φ0 the amplitude, frequency, and phase lag of the
driving, respectively. Note that here we assume the normalized
coupling. But since our results are mostly based on the MSF
approach, where the effects of different network topology and
coupling schemes (normalized, weighted, unweighted, etc.)
are solely determined by their spectra of eigenvalues, therefore,
our results should be able to apply to other types of network
and linear coupling schemes straightforwardly. Another point
that needs clarifying is the coupling function H(x). Here we
assume linear coupling without delay. However, a more general
coupling function would be a pairwise function of the form
H(xi ,xj ), which could be nonlinear and including delay. For
nonlinear coupling, it may introduce peculiar unsynchronized
phenomena due to the nonlinear interactions. However, around
the synchronization manifold, the difference between xi and xj

is small; thus the coupling will be dominated by the linear term
xj − xi . Since xi can be absorbed into the node dynamics F(xi ),
the coupling can then be written as H(xj ), as adopted in Eq. (1).
Therefore, for nonlinear coupling with the linear term as the
lowest order of approximation, the synchronization behavior
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FIG. 1. (Color online) For an ER network of N = 100 chaotic
Rössler oscillators and average degree 〈k〉 = 10, by the coupling
strength ε = 0.9, the time evolutions of the network synchronization
error, δ, for the cases of no external driving (solid line), and external
driving with amplitude b = 4 but different frequencies: ω1 = 1.235
(dashed line) and ω2 = 1.231 (dotted line). The relevant eigenvalues
for the coupling matrix are λ2 = 0.180 and λN = 1.783. All the
following simulations of synchronization dynamics are carried out
on the same ER random network.

will be similar to the results presented in this paper, although
the unsynchronous dynamics could be totally different. For the
case with delay in the coupling, the synchronization dynamics
can be very different due to the new dimension of delay [27].
Our results could not be applied to that case, and it deserves
future investigation.

We start by demonstrating the sensitive dependence of the
network synchronization on the frequency of the external
driving. Our first model is a random network of N = 100
coupled chaotic Rössler oscillators. The network is generated
by the Erdös-Renyi (ER) model, with the average degree
〈k〉 = 10. The Rössler oscillator in its isolated form is
described by the equations (dx/dt,dy/dt,dz/dt)T = (−y −
z,x + αy,β + xz − γ z)T . We set the parameters (α,β,γ ) =
(0.2,0.2,9), with which the oscillator presents chaotic dynam-
ics [28]. The oscillators are coupled through the x variable,
i.e., H([x,y,z]T ) = [x,0,0]T . The external driving is added on
the x variable of each oscillator too, i.e., (bx,by,bz) = (b,0,0).
We measure the degree of network synchronization by the
error δ = ∑

i |xi − 〈x〉|/N , with 〈x〉 averaged over all the
oscillators. Clearly, the smaller δ is, the better the network
synchronization will be. In our studies, we fix the coupling
strength as ε = 0.9, with which the network is staying in
the nonsynchronous state when the external driving is absent
(Fig. 1). We now drive the oscillators by a periodic driving
of amplitude b = 4 and phase lag φ0 = 0. Within the range
[0,3], we randomly select a frequency ω1 = 1.235, and plot in
Fig. 1 the time evolution of δ. It is seen that, comparing to the
undriven case, the network synchronization is not improved
at all. By another randomly selected frequency ω2 = 1.231,
we monitor the network evolution again. Surprisingly, it is
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found that the synchronization error quickly decreased to
zero. That is, by a slight change of the driving frequency
(
ω = 4 × 10−3), the network changed abruptly from the
nonsynchronous to synchronous state.

The above phenomenon of frequency-sensitive network
synchronization is commonly observed in our simulations,
despite the changes of the driving amplitude and the phase
lag. As we will show later, this phenomenon is also observable
for other types of node dynamics. The numerical evidences
therefore imply the universality of this phenomenon in systems
of networked oscillators, making it interesting to explore the
underlying mechanism.

III. MECHANISM ANALYSIS

We next analyze the influence of the driving frequency on
network synchronizability, based on the MSF method [23,24].
Let xs be the trajectory that all the oscillators are synchronized
to, i.e., the synchronous manifold, and δxi = xi − xs be the
infinitesimal perturbations added to the trajectory of the ith
oscillator; then in the linearized form the perturbations will be
evolving according to the following variational equation:

δẋi = DF(xs) − ε

N∑

j=1

cij DH(xs)(δxj − δxi), (2)

with DF and DH the Jacobian matrices of the corresponding
vector functions evaluated on xs . Projecting {δxi} into the
eigenspace spanned by the eigenvectors of the Laplacian
coupling matrix G = C + I (I is the identity matrix of the same
dimension as C), then the set of equations described by Eq. (2)
can be transformed into N blocked variational equations of the
form

δẏi = [DF(xs) − ελiDH(xs)]δyi , (3)

with 0 = λ1 < λ2 � · · · � λN the eigenvalues of G, and δyi

the ith mode of the perturbations. Denoting �i as the largest
Lyapunov exponent calculated from Eq. (3) for the ith mode,
then the stability of this mode is determined by the sign of
�i : the mode i is stable if �i � 0 (δyi approaches zero as
time increases), and is unstable if �i > 0. It is worth noting
that the mode of λ1 represents the motion parallel to the
synchronous manifold, which for the driving-free case has
the same dynamics as the isolated chaotic oscillator, but may
follow different dynamics when the external driving is present.

To achieve the network synchronization, a necessary con-
dition is that all the nontrivial eigenmodes are stable, i.e.,
�i < 0 for i = 2, . . . ,N . Defining σ ≡ ελ, then the analysis
of network synchronization can be decoupled into two separate
issues: the variation of � as a function of σ [i.e., the MSF
curve calculated from Eq. (3)] and the distribution of the
eigenvalues (calculated from the Laplacian coupling matrix
G). For the typical chaotic oscillators and coupling functions,
� is negative only within a bounded region in the param-
eter space, saying σ ∈ (σ1,σ2). As network synchronization
requires ελ2 > σ1 and ελN < σ2, the propensity of network
synchronization thus can be characterized by the eigenratio
R ≡ λN/λ2. Specifically, given R < Rc = σ2/σ1, network
synchronization in principle can be reached by adjusting the
coupling strength. In this regard, the smaller R is, the higher
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FIG. 2. (Color online) For the same network model used in Fig. 1,
the influence of the driving frequency on the MSF curve. (a) The
MSF curves for the cases of no external driving (solid line), and
external driving with amplitude b = 4 but for different frequencies:
ω1 = 1.235 (dashed line) and ω2 = 1.231 (dotted line). (b) σ1 vs ω.
(c) σ2 vs ω. σ1 and σ2 denote, respectively, the left and right boundaries
of the stable region.

the network synchronizability usually is [25]. This criterion
has led a number of studies on the optimization of network
synchronization, by either modifying the network structure or
changing the coupling scheme of the oscillators [18–22,29,30].

By the MSF method described above, we now give an
analysis on the phenomenon observed in Fig. 1. When the
external driving is absent, the synchronous manifold has the
same dynamics as the isolated chaotic oscillator, ẋs = F(xs).
By numerically solving Eq. (3), we plot in Fig. 2(a) the
variation of � with σ , i.e., the MSF curve. It is seen that
� is negative in the bounded region σ ∈ (0.186,4.614).
For the generated network structure of an ER network of
N = 100 and 〈k〉 = 10, we have λ2 = 0.180 and λN = 1.783.
As ελ2 = 0.162 < σ1, the network therefore is judged as
nonsynchronizable according to the MSF analysis. This is in
agreement with the numerical result shown in Fig. 1. When
external driving is presented, the synchronous manifold is
governed by the equation

ẋs = F(xs) + g(t). (4)

Setting the driving amplitude as b = 4, we plot in Fig. 2(a)
again the MSF curve. It is seen that for the frequency
ω1 = 1.235, the boundaries of the stable region are only
slightly adjusted, and the mode of λ2 is still staying in the
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FIG. 3. (Color online) (a) For b = 4, the variation of the largest
Lyapunov exponent of the synchronous manifold, �s , as a function
of the driving frequency, ω, calculated according to Eq. (4). (b) The
periodic motion at ω2 = 1.231, with �s = −0.0367. (c) The chaotic
motion at ω1 = 1.235, with �s = 0.088.

unstable region. However, for the frequency ω2 = 1.231, it is
seen that the boundaries of the stable region are significantly
modified. To be more specific, the left and right boundaries of
the stable region are adjusted to σ1 = −0.047 and σ2 = 2.994,
respectively. As now all modes are staying inside the stable
region, the network thus becomes synchronizable.

To have a global picture on the influence of the driving
frequency on the MSF curve, we plot in Figs. 2(b) and 2(c)
the variation of the boundaries of the stable region, σ1 and
σ2, as a function of ω. It is seen that as ω increases from
zero to 3, both σ1 and σ2 vary wildly with large amplitudes.
Particularly, at some frequencies it is observed that σ1 (σ2) is
suddenly dropped to very small or even negative values, e.g.,
σ1 = −0.047 at ω2 = 1.231, while at some frequencies σ1 (σ2)
is larger than that of the driving-free case, e.g., σ1 = 0.307 at
ω3 = 0.781.

According to Eq. (3), for the given coupling function, the
MSF curve is solely determined by the synchronous manifold
xs . To explore the nature of the modified MSF curve, we next
study the dependence of the node dynamics on the driving
frequency. In Fig. 3(a), we plot the largest Lyapunov exponent
of the synchronous manifold, �s , as a function of ω. [Please
note that �s is calculated according to Eq. (4), instead of
Eq. (3) by setting ε = 0.] It is seen in this figure that, similar
to the behavior of σ1,2 [Fig. 2(a)], �s also varies wildly
with ω. A careful checking with the variations of σ1 and
�s also shows that they are varying with the same steps.
In particular, for the frequencies ω1 = 1.235 and ω2 = 1.231
used in Fig. 1, we have �s = 0.088 and −0.0367, respectively.
As negative (positive) �s characterizes periodic (chaotic)
motion, we therefore learn from Fig. 3(a) that at ω2 (ω1) the
synchronous manifold falls on a periodic (chaotic) attractor. To
check this, we plot in Figs. 3(b) and 3(c) the trajectories of the
synchronous manifolds for ω2 and ω1, respectively. Clearly,
the trajectory is periodic for ω2, and is chaotic for ω1.
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FIG. 4. (Color online) For ω = 0.7134 and 0.8998, the variation
of the largest Lyapunov exponent of the synchronous manifold, �s ,
as a function of the driving amplitude.

So far we have fixed the driving amplitude to b = 4. One
may wonder whether the sensitive dependence to frequency
would also persist when varying the driving amplitude.
In Fig. 4, we plot, for two arbitrarily chosen frequencies
ω = 0.7134 and 0.8998, the largest Lyapunov exponent of
the synchronous manifold, �s , as a function to the driving
amplitude. One can see that, at certain values of driving
amplitude (as the downward spikes indicate), the oscillator’s
motion changes abruptly from chaotic (�s ∼ 0.1) to periodic
(�s � 0). Therefore, the behavior of sensitive dependence
relies on both the driving frequency and the driving amplitude.
Although the frequency dependence can be originated from
the intrinsic periodic orbits embedded in the chaotic motion,
the amplitude dependence can be more subtle and deserves
further investigation.

Combining the results of Figs. 2, 3, and 4, the phenomenon
of synchronization sensitivity, as shown in Fig. 1, can now
be understood as follows. First, due to the externally added
periodic driving, the node dynamics is significantly modified.
In particular, at some specific frequencies the node dynamics
becomes periodic. The modified node dynamics in turn affects
the MSF curve, reflecting as an adjustment of the boundaries
of the stable region. As the network structure is fixed, by
adjusting the boundaries of the stable region, the stability of the
nontrivial eigenmodes will be changed. Generally speaking,
the wider the stable region is, the higher the possibility will be
for the nontrivial eigenmodes to become stable, and the higher
the network synchronizability is. Comparing to the chaotic
motion, the stable region of periodic motion is significantly
enlarged. In particular, for periodic oscillators, the dynamics
are synchronizable in the small coupling limit, i.e., the system
of coupled identical periodic oscillators will synchronize for
arbitrarily small coupling strength, although the time to arrive
at synchronization can be long. While for the chaotic oscillator,
the region for negative MSF can be highly case dependent, the
common point is that for the small coupling limit, the system
will not synchronize, which is guaranteed by the fact that the
MSF is positive when the normalized coupling parameter σ is
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zero. Therefore, whenever the nodal dynamics are perturbed
from chaotic to periodic, the negative region of MSF will
change abruptly from excluding the zero point to including
the zero point. As such, at frequencies of periodic node motion
the network synchronizability will be dramatically enhanced,
e.g., the case of ω2 shown in Fig. 1. Finally, according to
previous studies of chaos control [31,32], periodic motion
occurs when the frequency of the external force is resonant
with the intrinsic frequencies of the chaotic motion. For the
typical chaotic motion, the intrinsic frequencies are associated
with the embedded unstable periodic orbits (UPO), which
are densely distributed in the attractor. For this reason, the
sensitivity of network synchronization is only observable at
these resonant frequencies. This also explains why σ1 and σ2

are varying so wildly with ω in Figs. 2(b) and 2(c). Note
that the above arguments are for the case when the driving
amplitude and the driving frequency are properly chosen
that the dynamics for a single node have been significantly
changed, as demonstrated in Fig. 3. If the external driving fails
to modify the nodal dynamics in such an effective way, e.g., if
the driving amplitude is too weak or the chaotic motion does
not possess distinct frequencies, the above argument will be not
applicable and the relationship deserves further investigation.

IV. GENERALIZATION

To check the generality of the observed phenomenon, we
replace the Rössler oscillator with the Hindmarsh-Rose (HR)
oscillator, and investigate the dependence of network synchro-
nization on external driving again with the same ER random
network. The HR oscillator describes the spiking-bursting
behaviors of the neuron membrane potential, and has been
widely used in literature for exploring various neuronal activ-
ities [33,34]. The HR oscillator is described by the equations

(dx/dt,dy/dt,dz/dt)T

= [y + V (x) − z + I,1 − 5x2 − y, − rz + rs(x + 1.6)]T ,

with V (x) = 3x2 − x3. By the parameters I = 3.2,
r = 6 × 10−3, and s = 4, the oscillator is of chaotic
motion [33]. We adopt the coupling function
H([x,y,z]T ) = [y,0,0]T , and add the periodic driving,
g(t) = b sin(ωt), on the y variable of each oscillator. The
coupling strength is fixed at ε = 0.6, with which the network
is not synchronized when the external driving is absent.

Like the Rössler oscillator, the MSF curve for the HR
oscillator also has a bounded stable region. Specifically, we
have σ1 = 0.286 and σ2 = 1.233 when the external driving is
absent. This time, to capture the change of the stable region,
we monitor the variation of the boundary ratio Rc = σ2/σ1 as a
function of the driving frequency ω. The numerical results are
presented in Fig. 5(a), where the driving amplitude is fixed as
b = 0.5. It is seen that as ω varies, the value of Rc is fluctuating
with large amplitudes, especially for ω ∈ [0,0.285]. As Rc

reflects the range of the stable region, the variation of Rc

therefore implies the modified network synchronizability by
varying the driving frequency. To show the sensitivity of the
network synchronization further, we vary ω adiabatically from
zero to 0.285 (with the speed 1 × 10−9), and plot in Fig. 5(b)
the time evolution of the network synchronization error δ. It
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FIG. 5. For the model of networked chaotic HR oscillator, the
dependence of network synchronization on the driving frequency, ω.
The amplitude of the driving is fixed as b = 0.5. (a) The variation of
the boundary ratio Rc = σ2/σ1 as a function of ω. (b) By increasing
ω adiabatically from 0 to 0.285 (with the speed 1 × 10−9, the time
evolution of the network synchronization error, δ.

is seen that as ω increases, the network is transiting between
the synchronous and nonsynchronous states in an intermittent
fashion.

For autonomous systems like the Rössler and HR os-
cillators, the system dynamics is independent of the phase
lag of the external driving, φ0. But for nonautonomous
oscillators, e.g., the Duffing oscillator, as it has an intrinsic
oscillation, the system dynamics could be dependent on
the phase lag φ0 between the intrinsic oscillation and the
external driving [35,36]. This makes it possible to modify
the synchronization of networked nonautonomous oscillators
by changing the phase of the external driving. To justify this,
we replace the node dynamics with the Duffing oscillator, and
study the dependence of network synchronization on φ0 with
the same ER random network. The Duffing oscillator in its
isolated form is described by the equations (dx/dt,dy/dt)T =
(y, − νy − x3 + β cos ω′t)T . For the parameters ν = 0.3,
β = 8.85, and ω′ = 1, the oscillator is chaotic, with the largest
Lyapunov exponent being about 0.1 [35]. The oscillators are
coupled through the x variable, i.e., H([x,y]T ) = [x,0]T . For
such coupled Duffing oscillators, the stable region of the MSF
curve is open at the right side, i.e., �(σ ) < 0 for σ > σ1 ≈
0.22 [26]. The coupling strength is chosen as ε = 0.012, with
which the network is not synchronized when the external
driving is absent. The external driving, g(t) = b cos(ωt + φ0),
is added on the y component of each oscillator. The amplitude
and frequency of the driving are set as b = 0.66 and ω = 3ω′,
respectively.

We first check the influence of φ0 on the stable region
of the MSF curve. As now the stable region is open at the
right side, we only need to monitor the left boundary, σ1. By
numerical simulations, we plot in Fig. 6 the variation of σ1

as a function of φ0 for φ0 ∈ [0,2π ). It is shown that, similar
to the effect of the driving frequency on autonomous systems,
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FIG. 6. For the model of networked chaotic Duffing oscillators,
the dependence of network synchronization on the phase of the
external driving. (a) The variation of σ1 as a function of the phase lag,
φ0. (b) By the frequency mismatch 
ω = 1 × 10−3, the evolution of
the network synchronization error, δ, as a function of time.

the stable region of the MSF curve is significantly modified
by the phase lag of the driving. In a realistic situation, it is
impossible to have exactly ω = 3ω′ for the external driving.
As such, there will be a small mismatch between the two
frequencies, 
ω = ω − 3ω′. This frequency mismatch will
introduce a phase drifting, 
ωt , which, according to Fig. 6(a),
will make the network switch between the synchronous and
nonsynchronous states in an automatic fashion. To demonstrate
this interesting phenomenon, we set 
ω = 8 × 10−4, and plot
in Fig. 6(b) the time evolution of the network synchronization
error, δ. Indeed, it is shown that as time increases, the network
is switching between the synchronous and nonsynchronous
states automatically.

V. DISCUSSIONS AND CONCLUSION

The effect of random perturbations has been also tested,
where the network synchronization is found to be hardly
affected. For instance, in the model of networked chaotic
Rössler oscillators, if we replace the driving with the ran-
dom perturbations, g(t) = [Dξ (t),0,0]T , with ξ (t) a random
variable of uniform probability distribution in [−1,1] and D

the noise amplitude, it is shown that the MSF curve is almost
unchanged even for D = 10. Although previous studies have
shown that under some circumstances chaos synchronization
can be induced by common noise, the noise amplitude required
there is usually very large, e.g., D ≈ 30 for the chaotic Lorenz
oscillator [37]. For the model of networked chaotic Rössler
oscillators (with the parameters the same to Fig. 1), we have
increased the noise amplitude up to D = 20 (beyond which
the oscillator is unstable), and found that the network is
still not synchronized. Hence, comparing with the random
perturbations, the periodic driving is much more effective in
affecting the network synchronization.

The finding that network synchronization is sensitive to the
frequency and phase of external driving might be useful for
the purpose of synchronization control. Previously, the control
of network synchronization is mainly achieved by pinning a
portion of the network nodes to an externally added controller,
i.e., the approach of pinning synchronization [38,39]. Com-
paring with pinning synchronization, the alternative approach
is based on a different mechanism, and could be more efficient
and feasible in certain circumstances. In pinning synchro-
nization, the controller has the same dynamics and coupling
function as the network nodes, which makes the relevant
studies essentially a problem of network synchronization,
and therefore can be treated under the framework of MSF
analysis. In fact, in pinning synchronization the role of the
controller is to introduce a super node (of a large number
of connections) to the existing network, which modifies the
eigenvalues of the network coupling matrix and, in turn,
changes the network synchronizability. Different from that,
in our alternative approach the network eigenvalues are fixed,
and the control of network synchronization is achieved by
modifying the MSF curve. The interesting thing is that, by a
slight change of the frequency or the phase lag of the external
driving, the MSF curve could be dramatically changed in
such a way that all the unstable modes are contained in the
stable region. This feature makes the alternative approach more
efficient than the pinning approach (in pinning control the
unstable modes are shifted into the stable region progressively
as the number of pinned nodes, or the pinning strength,
increases). Moreover, as an open-loop control strategy, the
alternative approach does not require a priori knowledge of the
network structure; neither needs to know the instant states of
the network nodes. This makes the alternative control approach
more feasible in realistic applications.

In summary, we have studied the synchronization of net-
worked chaotic oscillators when an external periodic driving is
presented, and found that by a slight change of the frequency
or phase of the driving, the network can be easily transited
between the synchronous and nonsynchronous states. We
have demonstrated this phenomenon by different models, and
analyzed its underlying mechanism based on the MSF method.
Notably, it is found that the modified network synchronization
is rooted in the change of the MSF curve, instead of the network
eigenvalues as widely adopted in the existing studies. Our
studies highlight the importance of external driving in affecting
the network synchronization, and also provide an alternative
approach for controlling the synchronization behaviors in
complex systems.
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