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We consider a lossless one-dimensional nonlinear discrete bi-inductance electrical transmission line made
of N identical unit cells. When lattice effects are considered, we use the reductive perturbation method in the
semidiscrete limit to show that the dynamics of modulated waves can be modeled by the classical nonlinear
Schrödinger (CNLS) equation, which describes the modulational instability and the propagation of bright and
dark solitons on a continuous-wave background. Our theoretical analysis based on the CNLS equation predicts
either two or four frequency regions with different behavior concerning the modulational instability of a plane
wave. With the help of the analytical solutions of the CNLS equation, we investigate analytically the effects of
the linear capacitance CS on the dynamics of matter-wave solitons in the network. Our results reveal that the
linear parameter CS can be used to manipulate the motion of bright, dark, and kink soliton in the network.
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I. INTRODUCTION

Because of its wide significance in a great variety of
physical systems, the propagation of nonlinear matter waves in
nonlinear dispersive media has been the subject of considerable
interest for many decades [1–11]. On the other hand, nonlinear
discrete electrical transmission lines (NLDETLs) are very con-
venient tools to study soliton propagation in one-dimensional
nonlinear dispersive media [3,5,12–17]. Indeed, NLDETLs
are systems where solitons are easily and directly observed
in controlled laboratory experiments. They provide a useful
way to check how the nonlinear excitations behave inside the
nonlinear medium and to model the exotic properties of new
systems [5]. This paper contributes to the understanding of this
mechanism.

A nonlinear discrete transmission line is comprised of a
transmission line periodically loaded with varactors, where
the capacitance nonlinearity arises from the variable depletion
layer width, which depends both on the dc bias voltage and
on the ac voltage of the propagating wave. For example, the
model shown in Fig. 1 is a one-dimensional (1D) lossless
discrete nonlinear transmission line made of ladder-type LC

circuits containing constant inductors and voltage-dependent
capacitors [15,17,18]. The nonlinear capacitors are usually
reverse-biased capacitance diodes.

The NLDETL of Fig. 1, which differs from the Hirota-
Suzuki model [19] by the presence of a linear dispersive
capacitance CS , was built by Noguchi to study experimentally
the propagation of the first-order Korteweg–de Vries (KdV)
solitons [20]. Ichikawa et al. [21] used this network to carry
out theoretical studies on the motion of the second-order KdV
solitons. Employing the Noguchi model of Fig. 1, Yoshinaga
and Kakutani [22] generalized the Toda potential to study ex-
perimentally the properties of the second-order KdV solitons.
Exploiting the Pathria-Morris method, Pelap and Faye [18]
showed that the discrete network of Fig. 1 can support solitary
waves. Using the Kengne-Liu model [17] of wave propagation
on the Noguchi model, Marklund and Shukla [23] investigated
the modulational instability of partially coherent signals in
electrical transmission lines of Fig. 1. It appears that in all

these studies on the network of Fig. 1, the effects of the linear
dispersive capacitance CS on soliton propagation have not been
pointed out.

The main purpose of this paper is to study analytically
the effects of the linear dispersive capacitance CS on solitary
waves propagating on the network of Fig. 1. The paper is
organized as follows. In Sec. II we use the reductive pertur-
bation method in the semidiscrete limit to derive a classical
nonlinear Schrödinger equation describing the propagation of
modulated waves in the network. Then we obtain the general
expressions of the bright and dark solitary-wave solutions on a
continuous-wave background for the derived CNLS equation
and discuss the dynamics of bright and dark one-dimensional
solitary waves in Sec. III. The paper is summarized in Sec. IV.

II. BASIC EQUATIONS AND THE NONLINEAR
SCHRÖDINGER MODEL

We consider the 1D lossless discrete nonlinear electrical
network of Fig. 1, made of N identical cells. In this network,
the nonlinear capacitance C(Vn) = dQn/dt , where Qn =
Qn(Vn) is the corresponding nonlinear charge. In the weakly
nonlinear case, we assume that Qn(Vn) = C0(Vn − αV 2

n +
βV 3

n ), where C0 is the characteristic capacitance and the
nonlinear coefficients α and β are positive constants. Applying
Kirchhoff’s laws on the network of Fig. 1 yields the system of
nonlinear discrete equations

d2Qn

dt2
+ 1

L2
Vn−

[
1

L1
+ CS

C0

d2

dt2

]
(Vn−1−2Vn+Vn+1) = 0,

(1)
n = 1, 2, . . . ,N . In the linear approximation, the ansatz Vn ∼
exp[i(kn − ωt)] leads to the linear dispersion relation of a
typical passband filter

ω2L1L2

(
C0 + 4CS sin2 k

2

)
−

(
L1 + 4L2 sin2 k

2

)
= 0. (2)

In this paper, we restrict ourselves to the network of Fig. 1
for which the dispersion parameter CS satisfies the condition
Cs < L2

L1
C0, so the group velocity υg = dω

dk
will remain positive
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FIG. 1. Schematic representation of one elementary cell of a
lossless discrete nonlinear bi-inductance transmission line consisting
of four elements: one linear inductor L1 in parallel with a linear
capacitance CS in the series branch and one linear inductance L2 in
parallel with a nonlinear capacitor C(V ) in the shunt branch.

throughout our investigation. In the numerical simulations, we
will use the typical line parameters [3,24,25]

L1 = 28 μH, L2 = 14 μH, C0 = 540 pF, V0 = 1.5 V ,

α = 0.16 V−1, β = 0.0197 V−2, CS ∈ [0,C0/2[ pF.

(3)

With the use of line parameters (3), the linear dispersion
curves of a typical passband filter are represented in Fig. 2
for different values of the dispersion coefficient CS . These
dispersion curves show (a) the frequency f = ω/2π and (b)
the dispersion coefficient Pl = d2ω/dk2 as functions of wave
vector k. The plots of Fig. 2(a) show that the frequency
decreases as the dispersion parameter CS increases. Plots
showing the evolution of the dispersion coefficient Pl show
that for any dispersion parameter CS ∈ [0,C0/2[, the equation
Pl(k) = 0 admits one and only one solution kz ∈ [0,π ]
corresponding to frequency fz = f (kz); moreover, kz → 1/2
as CS → C0/2 − 0.

Restricting ourselves to waves with a slowly varying
envelope in time and space with regard to a given carrier
wave with angular frequency ω = 2πf and wave number k,

we introduce the slow envelope variables

ξ = ε(n − υgt), τ = ε2t (4)

that allow us to apply the reductive perturbation method [6,17];
here ε is a small parameter and n is the cell number. The
solution of (1) is then sought in the general form

Vn(t) = εV01(ξ,τ ) exp(iθ ) + ε2[V02(ξ,τ )

+V12(ξ,τ ) exp(2iθ )] + c.c., (5)

where θ = kn − ωt is the rapidly varying phase [k and ω

are, respectively, the wave vector and the angular frequency
satisfying the dispersion relation (2)] and c.c. stands for
complex conjugation. The ε2 terms are added to the dc term
(i.e., ε term) in order to take into account the asymmetry of
the charge-voltage relation given by Eq. (1).

Inserting the ansatz (5) into the nonlinear discrete equa-
tions (1), neglecting consistently high-order ε terms, and
keeping up to the second-order derivative terms of Vn(t) (this is
done in order to balance dispersion and nonlinearity) leads to

V02(ξ,τ ) = −�02

α
|V01|2, (6a)

V12(ξ,τ ) = αω2

�12
(V01)2, (6b)

i
∂V01

∂τ
+ P

∂2V01

∂ξ 2
+ Q|V01|2V01 = 0, (6c)

where

�02 = 2L1C0α
2ωυ2

g

1 − L1C0υ2
g

,

(7a)

�12 = ω2 − 1

4L2C0
+ (4L1CSω

2 − 1) sin2 k

L1C0
,

P = − υ2
g

2ω

(
1 + 4CS

C0
sin2 k

2

)

+
(

1

2L1C0ω
− CS

2C0
ω

)
cos k − 2

CS

C0
υg sin k, (7b)

Q = 3β

2
ω + �02 − α2ω3

�12
. (7c)

FIG. 2. Theoretical linear dispersion curves showing (a) the frequency f = ω

2π
and (b) the dispersion coefficient Pl = d2ω

dk2 as functions of
the wave vector k for different values of the dispersive parameter Cs. The line parameters used in these plots are given in Eq. (3).
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FIG. 3. (a)–(c) Plots of the product PQ and (d)–(f) theoretical linear dispersion curves as functions of the wave vector k showing different
scenarios of the regions of modulational instability of the soliton wave solutions of the CNLS equation (6c) with the nonlinear coefficient (7c):
product PQ and frequency f = ω/2π for (a) and (d) CS = C0/8 < C0

S , (b) and (e) CS = C0
S ≈ C0/5.867 545 787 5, and (c) and (f) f = ω/2π

for CS = C0/5 > C0
S . To generate these plots, we have used the line parameters (3).

It follows from Eqs. 6(a), 6(b), 7(a), and 7(c) that the two
last terms in the expression of the nonlinear coefficient Q

of the CNLS equation (6c) come from the ε2 terms in the
general expression (5) for Vn(t). As one can see from the
expression 7(b), the ε2 terms do not affect the dispersion
coefficient P. This means that assuming a solution of the
form (5) without ε2 terms leads to another CNLS equation
similar to (6c), except for the nonlinear coefficient, which
is

Q = 3β

2
ω. (8)

We have thus obtained two classical nonlinear Schrödinger
equations with the same dispersion coefficient, but different
nonlinear coefficient allowing us to investigate the dynamics
of matter-wave solitons on the network of Fig. 1. Applying the
modulational instability criterion for the CNLS equation [26],
we conclude that a uniform wave train propagating along
the dispersive network of Fig. 1 will become unstable under
the modulation for PQ > 0 and will remain stable under the
modulation for PQ < 0. Because the nonlinear coefficient Q

defined by Eq. (8) does not change sign when ω maintains
its sign, the sign of the product PQ in Fig. 3(b) coincides
with that of P . For the nonlinear coefficient Q defined by
Eq. (7c), we have three scenarios: max[0,π]Q(k) = Qmax(CS)
is an increasing continuous function of variable CS ; moreover,
Qmax(0) < 0 < Qmax(C0

2 ); therefore, there exists a unique
CS = C0

S ∈ [0,C0
2 ] such that Qmax(C0

S) = 0. For every CS <

C0
S we will have Q(k) < 0, while for every CS > C0

S , the
equation Q(k) = 0 will have two solutions kq1 and kq2 on [0,π ].
Different scenarios of the region of modulational instability
of the soliton-wave solution of the CNLS equation (6c)
with the nonlinear coefficient (7c) are presented in Fig. 3.

In Fig. 3, fz = f (kz), where P (kz) = 0, while fq1 and fq2

are the frequencies associated with Q(k) = 0. Figure 3(d)
shows two regions of modulational instability: the region
of f ∈ [fmin,fz[ corresponding to PQ < 0 → stable →
hole solitons and the region f ∈ ]fz,fmax] corresponding to
PQ > 0 → unstable → envelope solitons. In Fig. 3(e) we
observe two regions of modulational instability: the region
f ∈ [fmin,fz[ corresponding to PQ < 0 → stable → hole
solitons and the region f ∈ ]fz,fq1 [∪]fq1 ,fmax[ corresponding
to PQ > 0 → unstable → envelope solitons. Figure 3(f)
reveals four regions of modulational instability: the regions
f ∈ [fmin,fz[ and f ∈ ]fq1 ,fq2 [ corresponding to PQ < 0 →
stable → hole solitons and regions f ∈ ]fz,fq1 [ and f ∈
]fq2 ,fmax] corresponding to PQ > 0 → unstable → envelope
solitons.

Figure 4 shows the product PQ as a function of the wave
vector k for different values of the dispersion parameter Cs .
The plots of Fig. 4(a) correspond to the CNLS equation (6c)
with the nonlinear coefficient (8), while Figs. 4(b) and 4(c) are
associated with the nonlinear coefficient (7c) for CS < C0

S and
CS > C0

S, respectively. Figures 2(a) and 4(a) show that the
region of modulational stability (MS) (i.e., PQ < 0) under
the CNLS equation (6c) with the nonlinear coefficient (8)
is enhanced when the dispersion parameter CS increases.
Figures 2(a) and 4(b) show that the region of modulational
stability (i.e., PQ < 0) under the CNLS equation (6c) with
the nonlinear coefficient (7c) shrinks when the dispersion
parameter CS < C0

S increases. It can be seen from Figs. 2(a)
and 4(c) that using the nonlinear coefficient (7c), the region
of modulational stability (i.e., PQ < 0) shrinks for low
frequencies and is enhanced for high frequencies when
CS > C0

S increases. In other words, the size of the interval
[fmin,fz] decreases (here fz ↓) while the size of the interval
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FIG. 4. Plots of PQ showing the regions of positive and negative PQ for different values of the dispersion parameter CS. (a) Plot of product
PQ with the nonlinear coefficient Q given by Eq. (8) for different CS . (b) Plot of product PQ generated with the nonlinear coefficient (7c)
for different parameters CS < C0

S ≈ C0/5.867 545 787 5. (c) Plot of product PQ generated with the nonlinear coefficient (7c) for different
parameters CS > C0

S ≈ C0/5.867 545 787 5. These plots are generated with line parameters (3).

]fq1 ,fq2 [ increases (here fq1 ↓ and fq2 ↑) when CS > C0
S

increases.

III. DYNAMICS OF BRIGHT AND DARK ONE-SOLITON
WAVES IN LOSSLESS 1D NONLINEAR DISCRETE

BI-INDUCTANCE TRANSMISSION LINES

In the present section, we use the classical nonlinear
Schrödinger equation (6c) with the dispersion coefficient (7b)
and nonlinear coefficient Q given by either Eq. (7c) or (8) to
study the dynamics of bright and dark one-dimensional solitary
waves in the electrical network shown in Fig. 1.

A. Analytical solutions of the classical nonlinear
Schrödinger equation

We focus on solutions on the nonvanishing cw background

V01c(ξ,τ ) =
{
Acb exp(iφcb) for PQ > 0
−Acd

√−Q/2P exp(iφcd ) for PQ < 0,

with

φcb = kcb

√
Q

2P
ξ + Q

2

(
2A2

cb − k2
cb

)
τ,

φcd = kcdξ − A2
cdQ

2 + 2P 2k2
cd

2P
τ + δ0,

where Acb, Acd , kcb, kcd , and δ0 are arbitrary real constants.
After performing the Darboux transformation [27,28] for the
CNLS equation (6c), we use the above nonvanishing cw
background V01c(ξ,τ ) to obtain the bright and dark soliton
solutions

V01(ξ,τ )

=
(

Acb+Asb

d1 cosh θ+ cos ϕ

cosh θ+d1 cos ϕ
+iAsb

d2 sinh θ+d3 sin ϕ

cosh θ+d1 cos ϕ

)

× exp(iφcb), (9)

V10(ξ,τ ) = −
√

− Q

2P
(Acd + iAsd tanh ζ ) exp(i�cd ), (10)

respectively. In the solutions (9) and (10), the solution
parameters are defined as

θ = MR

√
Q

2P
ξ − (kcb + ksb)MR − AsbMI

2
Qτ − θ0,

ϕ = MI

√
Q

2P
ξ − (kcb + ksb)MI + AsbMR

2
Qτ − ϕ0,

ζ = Asd

Q

2P
ξ + Asd

(
AcdQ

2 − 4P 2k2
cd

)
2P

τ + ζ0,

�cd = kcdξ − Q2
(
A2

sd + A2
cd

) + 2k2
cdP

2

2P
τ + δ0,

d1 = Acb(MR − Asb)

D
, d2 = Acb(ksb − kcb + MI )

D
,

d3 = D − 2A2
cb

D
,

D = A2
cb + (MR − Asb)2 + (ksb − kcb + MI )2

4
,

M =
√

(−Asb + iksb − ikcb)2 − 4A2
cb = MR + iMI ,

and Asb, Asb, θ0, ϕ0, ksb, ζ0, and ksd are arbitrary real
constants. The bright soliton solution (9) and the dark soliton
solution (10) have the following properties. They turn into the
above cw background solution V01c(ξ,τ ) when Asb = 0 and
when Asd = 0, respectively. On the other hand, in the absence
of the cw background, i.e., when Acb = 0 and when Asd = 0,
they respectively turn into the bright soliton solution

V01(ξ,τ )

= Asb exp
{
i
[
ksb

√
Q/2Pξ−(

k2
sb − A2

sb

)
(Qτ/2) − ϕ0

]}
cosh[Asb(

√
Q/2Pξ − ksbQτ − ξ0)]

(11)

and the kink soliton solution

V10(ξ,τ ) = −iAsd

√
− Q

2P
tanh

(
QAsd

2P
ξ − ξ0

)

× exp

[
i

(
−A2

sdQ
2

2P
τ − τ0

)]
, (12)
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where ξ0 and τ0 are two arbitrary real constants. Therefore, the
exact solutions (9) and (10) describe solitary waves embedded
on a cw background.

Inserting the expressions (9) and (10) in Eqs. (6a) and (6b),
we obtain the analytical expressions for V02(ξ,τ ) and V12(ξ,τ ).
Inserting the analytical expressions of V10(ξ,τ ), V02(ξ,τ ), and
V12(ξ,τ ) in the general form (5) of the voltage Vn(t) and
returning to the original coordinates n and t by means of
Eq. (4) leads to the analytical expressions for the voltage
Vn(t). These analytical expressions for Vn(t) will be used
to investigate the dynamics of matter-wave solitons in the
network. Next, we separately discuss the dynamics of matter-
wave solitons in the region of modulational instability (MI)
[envelope solitons given by the analytical expression (9)] and
in the region modulational stability [hole solitons defined by
Eq. (10)].

B. Dynamics of matter-wave solitons in the regions of MI
(P Q > 0)

Using the zeros of the functions P = P (k) and Q = Q(k),
we have shown, for a given set of line parameters, the regions
of the MI for the CNLS equation (6c) with the nonlinear coef-
ficient (7c) or (8) in Fig. 3. In the regions of MI (PQ > 0), the
matter-wave solitons are envelope solitons propagating on the
cw background and defined by the analytical expression (9).
Without loss of generality, we restrict ourselves to the CNLS
equation (6c) with the dispersion coefficient (7b). It follows
from the above solution coefficients that

M|ksb=kcb
=

√
A2

sb − 4A2
cb

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i

√
4A2

cb − A2
sb = iMI for 4A2

cb − A2
sb > 0

0 = 0MR + 0RI for 4A2
cb − A2

sb = 0√
A2

sb − 4A2
cb = MR for 4A2

cb − A2
sb < 0,

with the case 4A2
cb − A2

sb = 0 leading to a constant solution.
We focus on the following four special cases: (i) Acb = 0,
(ii) ksb = kcb and A2

sb − 4A2
cb < 0, (iii) ksb = kcb and A2

sb −
4A2

cb > 0, and (iv) AcbAsb(4A2
cb − A2

sb)(ksb − kcb) 
= 0.

1. Case Acb = 0

In the case Acb = 0, the solution (9) of the CNLS
equation (6c) under the condition PQ > 0 [i.e., solution (11)]
can be written in the form

V10(ξ,τ ) = Asb

cosh[Asb(
√

Q/2Pξ − ksbQτ − ξ0)]
exp(i�),

(13)
with

�(ξ,τ ) = ksb

√
Q

2P
ξ −

(
k2
sb − A2

sb

)
Q

2
τ − ϕ0,

where ϕ0 and ξ0 are two arbitrary real constants. The ex-
pression (13) is just an envelope soliton solution of the
CNLS equation (6c) under the condition PQ > 0. The
solution (13) reveals that the envelope soliton is η(τ ) =√

2P/Q(ksbQτ + ξ0) and the width of the envelope soliton
is inversely proportional to

√
Q/2P . This means that we

can use Eq. (13) to describe the compression (extension)

of envelope solitons in a given network when
√

Q/2P

increases with the wave frequency f = ω/2π . It is obvious
that

lim
k→kz with P (k)Q(k)>0

√
Q

2P
↗ +∞,

meaning that for a given set of network parameters, the width
of the envelope soliton shrinks as the frequency

f (k) = ω

2π
−→
PQ>0

fz = f (kz).

Also, it is shown that the soliton center moves with the
constant velocity dη/dτ = ksbQ

√
2P/Q. In what follows we

take some examples to demonstrate the dynamics of envelope
soliton in the network of Fig. 1.

As the first example we consider the line parameters (3)
with CS = C0/5. For these line parameters, the regions of
negativity of PQ (i.e., the regions of existence of envelope
solitons) are (in MHz) the region of low frequencies f ∈
]1.998 94,2.112 54[ and the region of higher frequencies f ∈
]2.230 66,2.3631[. The function

√
Q/2P decreases for f ∈

]1.998 94,2.112 54[ and increases for f ∈ ]2.230 66,2.3631[.
With the present line parameters, we depict in Fig. 5 the time
evolution of the voltage Vn(t) at cell n = 1 for different wave
frequencies. Figures 5(a)–5(c) show the waves propagating
with low frequencies, while Figs. 5(d)–5(f) show waves
propagating with high frequencies. It can be seen in Figs. 5(a)–
5(c) that the width of the envelope solitons increases as the
wave frequency increases. Figures 5(d)–5(f) show that the
width of the envelope solitons decreases as the wave frequency
increases. These two phenomena are justified by the fact that
quantity

√
Q/2P (which describes either the compression or

the extension of the solitons) is a decreasing function (an
increasing function) of frequency f in the region of low
frequencies (in the region of higher frequencies).

For our second example we consider three networks with
the same line parameters (3) except the dispersion parameters
CS taken from the interval [90,180] (we note that each value
of the parameter CS is associated with one network). We
consider waves with propagation frequencies associated with
wave vectors k = 1.016 and 2.4 rad. With both of these wave
vectors, the frequency f = ω/2π decreases as a function of the
dispersion parameter CS in the interval [0,C0/2] (see Fig. 2).
Figure 6 shows the temporal evolution of the voltage Vn(t)
of cell n = 1 for three values of CS = C0/5, C0/4.5, and
C0/4. Figures 6(a)–6(c) and 6(d)–6(f) are obtained with lower
frequencies and higher frequencies, respectively. Figures 6(a)
and 6(d), 6(b) and 6(e), and 6(c) and 6(f) correspond to the
same network, respectively. The plots of this figure show
the extension of the envelope solitons when the propagating
frequency decreases. Figures 6(a)–6(c) and 6(d)–6(f) also
reveal that the width of the envelope soliton increases when
the dispersion parameter CS increases. Therefore, we can
use the parameter CS to control the soliton width in the MI
regime.
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FIG. 5. Wave propagation in the region of low frequencies (top) and in the region of higher frequencies (bottom) showing the extension
and the compression of envelope solitons, respectively. These plots are obtained with line parameters (3) with CS = C0/5 and ε = 10−3,
Asb = 10, ksb = −0.6, ξ0 = −10, and ϕ0 = 0. We used the frequencies (a) f = 2.018 MHz, (b) f = 2.047 MHz, (c) f = 2.077 MHz,
(d) f = 2.247 MHz, (e) f = 2.265 MHz, and (f) f = 2.281 MHz.

2. Case ksb = kcb and A2
sb − 4A2

cb < 0

In the present case, the solution (9) becomes

V01(ξ,τ ) =
(

Acb + Asb

−Asb cosh θ + 2Acb cos ϕ + i

√
4A2

cb − A2
sb sinh θ

2Acb cosh θ − Asb cos ϕ

)
exp

[
i

(
kcb

√
Q

2P
ξ + Q

2

(
2A2

cb − k2
cb

)
τ

)]
, (14)

with θ = (Asb

√
4A2

cb − A2
sb/2)Qτ − θ0 and ϕ =√

4A2
cb − A2

sb (
√

Q/2Pξ − kcbQτ ) − ϕ0, where θ0 and
ϕ0 are two arbitrary real constants. It follows from the
expressions of θ and ϕ and the transformation (4) that the
solution (5) associated with the solution (14) is periodic
with the period (2π/ε)

√
2P/Q(4A2

cb − A2
sb) in the spatial

coordinate n and aperiodic in the temporal coordinate t as
soon as the wave vector of the cw background is chosen from
the condition kcb = k̃

√
4A2

cb − A2
sb , where k̃ is any integer.

Any wave vector kcb 
= k̃
√

4A2
cb − A2

sb leads to an aperiodic
solution in both temporal and spatial coordinates.

Figure 7 shows the evolution of the MI corresponding to
the solution (14) with line parameter (3) for the dispersion
parameter CS = C0/5. Figures 7(a)–7(c) and 7(d)–7(f) show
the transmission of the wave through the network for frequen-
cies f = 2.018 and 2.256 MHz, respectively. Therefore, the
envelope soliton of Figs. 7(a)–7(c) propagates with a frequency
taken from the region [fmin,fz[ of the MI, while the soliton
wave of Figs. 7(g) and 7(h) is associated with frequency taken
from the region [fq2 ,fmax] of the MI. Figures 7(g) and 7(h)
show solitons propagating with different frequencies taken
from the same region of the MI. From this figure, it can
be clearly seen that the cw background becomes unstable.
Figure 7 shows that the choice of the propagating frequency in
the region of the MI affects the soliton propagation in a given
network. This figure also reveals that with a best choice of
solution parameters, the soliton wave appears to be periodic

in the time coordinate and the period in the time coordinate
increases with the wave frequency. This can be clearly seen in
Figs. 7(c) and 7(f), as well as in Figs. 7(g) and 7(h). Moreover,
as we can see from Figs. 7(g) and 7(h), the envelope soliton has
different behavior when propagating at a frequency taken from
the region of low frequencies and at a frequency taken from the
region of high frequencies of the MI. We can conclude from
Figs. 7(g) and 7(h) that the period of the propagating wave
with respect to the time coordinate t is somehow connected
to the frequency f of the envelope soliton: In the region of
low frequencies of the MI, the period with respect to the time
coordinate t increases with the wave frequency f , while in the
region of high frequencies of the MI, the period with respect to
the time coordinate decreases as the wave frequency increases.

3. Case ksb = kcb and A2
sb − 4A2

cb > 0

In the case ksb = kcb and A2
sb − 4A2

cb > 0, we can compute
the coefficients of the solution (9) and obtain the solution in
the form

V01(ξ,τ )

=
(
−Acb+

√
A2

sb−4A2
cb

(√
A2

sb − 4A2
cb cos ϕ − iAsb sin ϕ

)
Asb cosh θ − 2Acb cos ϕ

)

× exp

[
i

(
kcb

√
Q

2P
ξ + Q

2

(
2A2

cb − k2
cb

)
τ

)]
, (15)
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FIG. 6. Temporal evolution of the soliton waves propagating with frequencies taken from the region of (a)–(c) lower frequencies and
(d)–(f) higher frequencies corresponding to different dispersion parameters CS given in the text: (a) CS = C0/5 ⇐⇒ f = 2.037 MHz,
(b) CS = C0/4.5 ⇐⇒ f = 2.020 MHz, (c) CS = C0/4 ⇐⇒ f = 2.00 MHz, (d) CS = C0/5 ⇐⇒ f = 2.327 MHz, (e) CS = C0/5 ⇐⇒
f = 2.275 MHz, and (f) CS = C0/4 ⇐⇒ f = 2.215 MHz. The solution parameters are the same as in Fig. 5.

FIG. 7. (Color online) Evolution of modulational instability associated with Eq. (14) for line parameters (3) with the dispersion coefficient
CS = C0/5 and the frequency taken from the region of (a)–(c) lower frequencies f = 2.018 MHz and (d)–(f) higher frequencies f = 2.273 MHz.
(a) and (d) Spatiotemporal evolution of the signal voltage, (b) and (e) spatial profile of the signal voltage at time t = 50, (c) and (f) temporal
evolution of the signal voltage at cell n = 350, (g) time evolution of the signal voltage (at cell n = 350) propagating with frequencies taken
from the region [fmin,fz[ of the modulational instability (f = 2.018 MHz ⇐⇒ k = 0.90 and f = 2.047 MHz ⇐⇒ k = 1.05), and (h) time
evolution of the signal voltage (at cell n = 350) propagating with frequencies taken from the region [fg2 ,fmax[ of the modulational instability
(f = 2.256 MHz ⇐⇒ k = 1.90 and f = 2.273 MHz ⇐⇒ k = 2.0). Different curves are generated with the solution parameters ε = 10−3,
Asb = 10−4, Acb = Asb/1.8, kcb = ksb = 2

√
4A2

cb − A2
sb, ϕ0 = 0, and θ0 = −10−8.
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FIG. 8. (Color online) Evolution of envelope solitons on a cw background given by Eq. (15) for the same network as in Fig. 7 with the
parameters ε = 10−3, Asb = 10−4, Acb = Asb/3, kcb = 2

√
A2

sb − 4A2
cb, ϕ0 = 0, and θ0 = −4. Spatial profile of bright solitons at time t = 50 s

propagating at frequencies (a) f = 2.018 MHz and (d) f = 2.256 MHz, time evolution of the envelope soliton in cell n = 350 with frequencies
(b) f = 2.018 MHz and (e) f = 2.256 MHz, and signal voltages of cell n = 350 as a function of time t propagating with different frequencies
taken from the region of (c) low frequencies of the modulational instability [fmin,fz[ and (f) high frequencies of the modulational instability
]fg2 ,fmax]. Different plots are generated with the same network parameters as in Fig. 7.

with θ =
√

A2
sb − 4A2

cb (
√

Q/2P ξ − ksbQτ ) − θ0 and ϕ =
−(QAsb

√
A2

sb − 4A2
cb/2)τ − ϕ0, where θ0 and ϕ0 are two

arbitrary real constants. It follows from the form of θ and ϕ

that the solution (15) is aperiodic in both spatial and temporal
coordinates ξ and τ . Returning to the original coordinates n

and t , we can conclude that the movement of the envelope
soliton is aperiodic in both n and t coordinates, as shown
in Fig. 8. It can be seen in Figs. 8(c) and 8(f) that the

envelope solitons have different behavior when propagating at
frequencies taken from the regions of low and high frequencies
of the MI: For envelope solitons propagating at frequencies
taken from the region of low frequencies of the MI, waves that
propagate with smaller frequency reach their peak before those
propagating with higher frequency. An inverse phenomenon
is observed for envelope solitons propagating at frequencies
taken from the region of high frequencies of the MI: A wave at
large frequency reaches its peak before that at small frequency.

FIG. 9. Propagation of envelope solitons through the network for frequencies taken from different region of the MI. For the plots
we use the line parameters (3) with CS = C0/5 and ε = 10−3 and the solution parameters kcb = 0.1, ksb = 0.2, ϕ0 = 0, and Acb =√

ksb(A2
sb + k2

cb − k2
sb)/2(kcb + ksb). The plots are obtained with (a)–(d) θ0 = −10 and Asb = 10−2 and (e)–(h) θ0 = −0.1 and Asb = 10−4.

Transmission of the envelope soliton through the 500th cell of the network for frequencies taken from the region of (a), (b), (e), and (f) low
frequencies of the MI and (c), (d), (g), and (h) high frequencies of the MI.
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FIG. 10. Propagation of envelope solitons on the network parameters (3) for CS = C0/5. Signal voltage (in volts) at cell n = 350 as a
function of time t (in ms) for solution parameters (a) and (e) θ0 = −32.6, Asb = −10−2, Acb = 0.041, ksb = 0.18, and kcb = 0.19; (b) and (f)
θ0 = −3.12 × 10−5, Asb = 10−2, Acb = 0.071, ksb = 0.19, and kcb = 0.18; (c) and (g) θ0 = −1.92 × 10−5, Asb = 10−2, Acb = 0.9 × 10−2,
ksb = 0.18, and kcb = 0.19; (c) and (h) θ0 = −0.98 × 10−5, Asb = 10−2, Acb = 0.9 × 10−2, ksb = 0.19, and kcb = 0.18; (i) θ0 = 0.029,
Asb = −10−2, Acb = 0.041, ksb = 0.18, and kcb = π/2; and (j) θ0 = −0.033, Asb = 10−2, Acb = 0.9 × 10−2, ksb = 0.18, and kcb = π/2.
Other parameters are given in the text.

032907-9



E. KENGNE AND A. LAKHSSASSI PHYSICAL REVIEW E 91, 032907 (2015)

4. Case Acb Asb(4A2
cb − A2

sb)(ksb − kcb) �= 0

In the case AcbAsb(4A2
cb − A2

sb)(ksb − kcb) 
= 0, we have
the general expression (9) corresponding to envelope solitons
propagating in the regions of the modulational instability of the
network of Fig. 1. Here we limit ourselves to the investigation
of the effects of solution parameters on the wave propagation.
If we take the solution parameters Acb, kcb, Asb, and ksb from
the conditions

A2
sb 
= 2ksb(kcb + ksb), A2

cb = ksb

(
A2

sb + k2
cb − k2

sb

)
2(kcb + ksb)

,

M2
R = A2

sb(kcb − ksb)

kcb + ksb

, M2
I = k2

cb − k2
sb,

we obtain the solution (9) with θ = MR

√
Q/2Pξ − θ0 and

ϕ = MI

√
Q

2P
ξ − Q[(kcb + ksb)MI + AsbMR]

2
τ − ϕ0,

where θ0 and ϕ0 are two arbitrary real constants. From the
expressions for θ and ϕ, we can see that the solution (9)
with the above set of parameters is periodic with the period
4πQ−1/[(kcb + ksb)MI + AsbMR] in the temporal coordi-
nate τ and aperiodic in the spatial coordinate ξ = ε(n − υgt).
This means that the oscillation of the wave along the time axis
t is more pronounced, as shown in Fig. 9. Figure 9 shows
an example of MI developed by the network. The plots of
this figure are generated with the use of the solution (9) for

AsbAcb(ksb − kcb) 
= 0 and show the propagation of envelope
solitons on a cw background. It appears that the mechanism
of development of this instability is different from the well-
known mechanism of MI described by Benjamin and Feir [26].
In Figs. 9(a), 9(b), 9(e), and 9(f), wave propagate at frequencies
taken from the region [fmin,fz[ of the modulational instability,
while the envelope solitons whose time evolution is shown in
Figs. 9(c), 9(d), 9(g), and 9(h) propagate at frequencies taken
from region ]fq2 ,fmax] of the MI. Figure 9 shows how much the
solution parameters may affect the transmission of the signal
voltage in the network.

As the second example of soliton propagation in the present
case, we show in Fig. 10 the temporal evolution of a bright
soliton at cell n = 350 of the network with parameters (3)
for CS = C0/5 and ε = 10−3. Figures 10(a)–10(d) show
the propagation of the envelope soliton at low frequency
f = 2.018 MHz (∈]fz,fq1 [), while Figs. 10(e)–10(h) show
the propagation of the envelope soliton at high frequency
f = 2.256 MHz (∈]fq2 ,fmax[); Figs. 10(i) and 10(j) show
the envelope soliton propagating at a frequency f → fmax,
that is, at a frequency associated with k = π/1.000 001 → π .
This figure is obtained with many combination in the choice
of the solution parameters Asb, Acb, ksb, kcb, and θ0, with
ϕ0 = 0. Comparing other plots with those of Figs. 10(i)
and 10(j) shows that when a wave packet travels along the
lattice, it experiences velocity fluctuations that become more
and more important with the increase of lattice effects [as
we can see from Fig. 2(a), frequency f is an increasing

FIG. 11. Propagation of stable kink solitons through the network for the network parameters (3) with ε = 10−3 and with solution parameters
ksd = π/5, Asd = −10−2, ζ0 = 2, and δ0 = 0 for CS = C0/5 (top), CS = C0/4.5 (middle), and CS = C0/4.1 (bottom).
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FIG. 12. Signal voltage (in volts) at cell n = 350 as a function of time t (in ms). Temporal profile of dark solitons propagating on the
network at different frequencies (in MHz) for line parameters (3) with CS = C0/5, ε = 10−3, and (a) f = 1.837, (b) f = 1.854, (c) f = 1.882,
(d) f = 2.119, (e) f = 2.146, and (f) f = 2.171.

function of the lattice effect, i.e., increases with k so that any
frequency from the region of low frequencies of the MI is
less than any frequency from the region of high frequencies
of the MI, which is less than frequency f (k → π ) = fmax].
Figure 10 shows that different combinations in the choice
of the solution parameters lead to different scenarios of the
propagation of signal voltage in the network (periodic pulses,
aperiodic pulse, oscillatory waves, etc.).

C. Dynamics of matter-wave solitons in the region of MS
(P Q < 0)

With the help of the solution (10) we investigate in this
section the dynamics of matter-wave solitons propagating
in the network at frequencies taken from the regions of
the modulational stability. As we have indicated above, the
analytical solution (10) describes the propagation of dark
(hole) solitons on the nonvanishing cw background V01c(ξ,τ ).
The analytical expression (10) shows that the soliton amplitude
is proportional to

√−Q/2P .
First, as it has been said above, in the absence of the cw

background, i.e., when Acd = 0, the solution (10) is associate
with the propagation of a kink soliton through the network
as it is shown in Fig. 11. Figure 11, obtained with the use of
the CNLS equation (6c) with the nonlinear coefficient (7c),
shows the temporal profile of stable kink solitary waves on
the 350th cell at low frequencies (left column) and at high
frequencies (right column). The top, middle, and bottom plots
correspond to the network with the dispersion parameter CS =
C0/5, C0/4.5, and C0/4.1, respectively. The left and right
panels of Fig. 11 show that independently of the value of the
dispersion parameter CS , the velocity of the soliton center
decreases as the wave frequency increases.

Second, in the presence of the cw background (i.e.,
Acb 
= 0), the solution (10) leads to propagation in the
network of dark solitons embedded on a cw background.
Thus, by employing the expression (10), we can obtain the
dark soliton solution of Eq. (1), which propagates on a cw
background. Figure 12 shows an example of the propagation
of dark soliton on the network. Figures 12(a)–12(c) show
dark solitons propagating at different frequencies taken

from the region [fmin,fz[ of low frequencies of the MS,
while Figs. 12(d)–12(f) show dark solitons propagating at
different frequencies taken from the region ]fq1 ,fq2 [ of high
frequencies of the MS. To generate this figure, we have used
the solution parameters kcd = 0.1, Acd = −10−4, ksd = 0.35,
Asd = 3 × 10−4, δ0 = 0, and ζ0 = −0.532.

IV. CONCLUSION

In this work, we have investigated the dynamics of matter-
wave solitons in lossless 1D nonlinear discrete bi-inductance
electrical transmission lines. With the help of the reductive
perturbation method in the semidiscrete limit, we have mod-
eled the dynamics of modulated waves on the network by
a classical nonlinear Schrödinger equations. Based on these
CNLS equations, our analytical study predicts either two or
four frequency regions with different behavior concerning
the modulational instability of a plane wave. Performing the
Darboux transformation for the derived CNLS equations, we
have derived exact bright and dark one-dimensional solitons
embedded in a cw background. With the help of these
analytical solutions, we have investigated the transmission of
soliton signals on the network. We found that the network
under consideration may support the propagation of bright,
dark, and kink soliton. We found that when a wave packet
travels along the lattice, it experiences velocity fluctuations
that become more and more important with the increase of
lattice effects, that is, for k → π . The analytical solutions
imply that control of the dispersion parameter CS allows us
to manipulate the motion of bright, dark, and kink solitary
waves in the network. The methodology presented here is
powerful for systematically investigating the dynamics of
matter-wave solitons in 1D nonlinear transmission lines. Our
next challenge is to use the presented classical nonlinear
Schrödinger equations to investigate the effects of the linear
capacitance CS on soliton-soliton interaction in the Noguchi
network of Fig. 1.
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