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Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds
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We have performed a systematic study quantifying the variation of solitary wave behavior from that of an
ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized
as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component,
one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic
interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component
system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type
of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical
system, and Monte Carlo simulations for the particle system. We define an “empirical” order parameter to
characterize the order of the soliton lattices and study how this changes as a function of the strength of the
“thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our
system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing
in the intermediate regime.
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I. INTRODUCTION

The theme of nonlinear waves and their dynamics and
interactions has amply blossomed over the past two decades in
the realm of atomic Bose-Einstein condensates (BECs) [1,2].
This is because BECs enable the experimental realization
of both focusing and defocusing nonlinear Schrödinger-type
models in the form of the Gross-Pitaevskii equation (GPE)
at near-zero temperature for atomic gases with, respectively,
attractive or repulsive interatomic interactions [3]. It is for that
reason that a diverse array of structures encompassing, but
not limited to, bright solitary waves [4–6], gap matter waves
[7], dark solitons [3,8], vortices [3,9,10], as well as solitonic
vortices and vortex rings [11] have been explored in this
context.

Dark solitons in one-component repulsively self-interacting
BECs represent one of the most intensely studied coherent
structures. Early experiments in this context [12–15] were,
at least in part, limited by dynamical instabilities affecting
the lifetime of the states in higher-dimensional settings, as
well as by the role of thermal fluctuations at temperatures
closer to the transition temperature. More recent experiments,
however, have been able to provide a significantly increased
control over the formation and dynamical evolution of such
states [16–21]. By combining sufficiently low temperatures
and closer to one-dimensional regimes, a number of these
more recent experimental efforts have provided clear imprints
of oscillating and interacting dark solitons, in good agreement
with theoretical predictions.

One of the additional remarkable features of the BEC
realm is that it controllably enables the consideration not only
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of the single-component system but also of multicomponent
ones, e.g., consisting of different hyperfine states of the same
atomic gas such as 87Rb [1–3]. In the latter setting, one of
the particularly relevant dynamical structures experimentally
realized (in the repulsive interatomic interaction regime) are
the so-called dark-bright (DB) solitary waves. These were
initially produced in optical settings [22–24] yet subsequently
gained considerable momentum in the BEC realm due, again,
to the wide and diverse as well as robust array of experiments
that produced them [25–30]. The remarkable feature about
this structure is the fact that while bright solitons cannot exist
“on their own” in the repulsive interatomic interaction case
within DB solitary waves, the dark solitary structures play
the role of an effective potential that enables the bound state
trapping of the bright component. As a result, robust DB states
have been observed to oscillate in a parabolic trap [25,26], to
be spontaneously produced by counterflow experiments [27],
and to form bound states [28]. It is also worthwhile to note that
SU(2)-rotated siblings of DBs have also been experimentally
observed in the form of beating dark-dark solitons [29,30].

While the dynamics of few solitary waves is most typically
studied in the above works (and their dynamical robustness,
where appropriate, is established), far fewer studies have
concerned themselves with the properties of large cohorts
of such waves and their potential states including, e.g., a
crystalline equilibrium state or a disordered highly interacting
(and perhaps chaotic) state. Nevertheless, the topic of tran-
sitions from a soliton “crystal” to a soliton “gas” is a fairly
old one; see, e.g., for a 15-year-old discussion the work of
Ref. [31]. Additionally, it is one that has been meeting with
renewed interest not only in single-component settings but
also in multicomponent ones; see, e.g., the recent discussion
about different phases (including a topological Wigner crystal)
of half-solitons (in our setting, DB ones) of Ref. [32].
On the other hand, considerable attention has been paid to
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far-from-equilibrium phenomena such as turbulent dynamics
(i.e., “soliton turbulence”) and their relaxation [33–36].

Our aim in the present work is to revisit the experimentally
tractable setting of one- and two-component atomic BECs
and consider large arrays of coherent structures in the form
of dark solitons (see, e.g., for a recent example of a relevant
discussion Ref. [37]) and dark-bright solitons (see, e.g., for
a recent example Ref. [38]). For these arrays, we intend to
describe “transitions” between ordered, crystalline-type states
to disordered, gaseous-type states. Notice that we do not
identify phase transitions by means of our diagnostics, a feature
that appears to be fairly plausible given the one-dimensional
nature of our system. We devise a suitable order parameter,
measuring the deviation of the different states from their
respective equilibria and explore these states as a function
of a kinetically defined temperature. Our indication about the
absence of a genuine phase transition arises in the form of
a smooth, continuous dependence of the order parameter on
our “kinetic temperature.” Nevertheless, we cannot exclude
the possibility that our choice of order parameter may be the
one that precludes the identification of a phase transition. In
any case, we believe that the identification of such dynamical
states (resembling “solitonic crystals” and “solitonic gases”)
will be valuable in prompting the further development of both
theoretical and experimental tools to explore them.

Our presentation is structured as follows. In Sec. II, we
introduce the single-component setting of dark solitons and
explain our threefold computational approach: (a) based on
the partial differential equation (PDE) of the GPE type, (b)
based on the ordinary differential equation (ODE) describing
the solitary waves as particles, and, finally, (c) based on
a population annealing Monte Carlo (PAMC) approach for
the particle system (consisting of the solitons). In Sec. III,
we present corresponding information about the dark-bright
states and two-component BECs. In Sec. IV, we collect
our numerical results about the order-disorder transition as
our kinetic temperature is varied in all three of the above
approaches for each of the two systems. Finally, in Sec. V, we
summarize our findings and present a number of directions for
future study.

II. ONE COMPONENT DARK SOLITONS

A. Models and the particle picture

Our examination of the dark soliton system will take place
in the large-density limit, where the equilibrium positions
are known and can be identified for an arbitrary number of
coherent structures [37]. We model the dark solitons using
the repulsive one-dimensional (1D) GPE equation with a
harmonic potential. The GPE equation can be written as
(assuming for computational simplicity a trap frequency of
unity, although our considerations are fully generalizable to
the case of arbitrary trap strength; for a discussion of the
reduction to the 1D model see, e.g., Ref. [3])

iψt = − 1
2ψxx + 1

2x2ψ + |ψ |2ψ − μψ. (1)

Here ψ ∈ C is a complex field defined on (x,t) ∈ (R,R) and μ

is the chemical potential related to the total number of particles
in the BEC.

The static properties and the low-lying dynamical normal
mode frequencies were explored in detail in the particle
picture in the large-density limit in Ref. [37]. We will
briefly summarize some of the key results for our subsequent
discussion herein. A scaling transformation of Eq. (1) can
be selected to yield the semiclassical form of the nonlinear
Schrödinger model:

ψ = √
μu, x =

√
2μξ, t = 2τ, ε = 1

2μ
. (2)

Equation (1) then becomes

iεuτ + ε2uξξ + (1 − ξ 2 − |u|2)u = 0. (3)

In the limit μ → ∞ or, equivalently, ε → 0, Eq. (3) has a
limiting static solution,

η(ξ ) = (1 − ξ 2)1/2, (4)

with ξ ∈ [−1,1]. We will call the former space the real space
and the latter space the scaled space in this work for reference.

It is an interesting fact that particle-like excitations can be
“baptized” on top of the BEC background in the dark solitonic
form

v(ξ,τ ) = A tanh(ε−1B(ξ − a)) + ib, (5)

where A = √
1 − b2, B =

√
(1−a2)(1−b2)

2 , and a ∈ (−1,1),b ∈
(−1,1). As is well known [8], a represents the position of
the dark soliton while b corresponds to its velocity. The
number of dark solitons that can be meaningfully fit within
the domain is only limited by the number of healing lengths
(the characteristic size of the soliton [3]) that can be placed
within the diameter of the static solution; yet, by suitable tuning
of the trap and of the chemical potential, this number can be
made arbitrarily large. Hence, in general, one can grow s dark
solitons by multiplying s equations in the form of Eq. (5), with
different initial positions and speeds, where s is a positive
integer. Then, a general initial state of a system with s dark
solitons can be written as:

u(ξ ) = η(ξ )
s∏

j=1

vj (ξ,aj ,bj ). (6)

In Ref. [37] the equilibrium positions of the dark soliton
were identified and the effective interactions between them
when treated as classical particles can be described using a
Toda potential in the form:

U (ξ1,ξ2) = 8e−√
2ε−1|ξ1−ξ2|. (7)

We derived by the scaling transformation how the kinetic
energy Ek of a dark soliton in real space can be represented
in terms of b in the scaled space and the form of the potential
energies between the dark solitons U and that between the
dark solitons and the trapping potential V in real space. The
trapping potential has an effective frequency ωos = 1√

2
for dark

solitons in the real space (as is well known [8], this is scaled
by the trap frequency) in the large chemical potential limit that
we are presently considering. The results are summarized as
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follows:

Ek = μ

2
b2, (8)

U (x1,x2) = 4μe−2
√

μ|x1−x2|, (9)

V (x) = 1
2ω2

osx
2. (10)

In the rest of this section, we will define the order
parameter m and talk about the procedures of the PDE, ODE,
and the PAMC simulations in detail that will lead to the
characterization of our order-disorder transitions.

B. The order parameter m

Let the positions of each solitary wave particle be denoted
by {xi}. Then order versus disorder is reflected in the relative
positions between the coherent structures. This motivates us
to define an order parameter m using the relative position
normalized by the minimum reciprocal wave vector, which is
kmin = 2π

a0
, where a0 is the lattice constant. In particular, our

selection of m is defined as

m =
∑N−1

i=1 cos(kmin(xi+1 − xi))

N − 1
, (11)

=
∑N−1

i=1 cos( 2π
a0

(xi+1 − xi))

N − 1
. (12)

From the definition of m, we can see that m should be
expected to go to zero in the disordered regime, given the
fluctuations from the equilibrium distance and instead to tend
to 1 in the ordered regime. This constitutes our motivation
for the empirical selection of this particular order parameter.
As we will see, this will be a useful tool towards identifying
transitions from ordered to disordered regimes (although this
transition will be found to be smooth rather than one directly
involving or indicating a phase transformation). Nevertheless,
while this is a first step towards quantifying these types of
transitions, it also poses the broader question of identifying
suitable diagnostics for characterizing the phenomenology
of these effective particle-wave entities embedded within an
extended infinite-dimensional dynamical system.

C. The PDE and ODE simulation

We start by summarizing the PDE simulation parameters
for dark solitons:

μ = 50, N = 30, dx = 0.05, dt = 0.002, t = 40,

where the quantities are chemical potential (chosen to be
large to ensure that a particle description is suitable [37]),
number of dark solitons (also chosen to be reasonably large
so averaged quantities can be suitably defined), spatial and
temporal discretization size (chosen for our PDE simulations
to be insensitive to their slight variations), and total simu-
lation time, respectively, for the reported results. Our ODE
simulation parameters are the same except dt = 0.01. We
study the time evolution of the state by using the classical
Runge-Kutta-4 method in time and a second-order centered
difference discretization scheme in space. The dark solitons
are first initialized at their equilibrium positions but with
random velocities. For the PDE simulation, we first initialize

the state in the scaled space and then transform it to real
space. For the ODE simulation, we use the potential energies
given in Eqs. (9) and (10) to perform the time evolution
and compute the kinetic energy from the equation of motion.
Since the velocities were initialized with random speeds, we
studied many realizations with different initial velocities; each
realization will be hereafter termed a sample. The average
initial kinetic energy per particle ek is calculated as

ek = μ
∑N

i=1 b2
i

2N
. (13)

For each sample, we record ek and measure the state and the
order parameter m over each time period 0.1. For the ODE
simulation, we do the same but record states at each time step.
Note that the dt for the PDE is much smaller than that of the
ODE and it is much more expensive to save a PDE state than
an ODE state. Since there are fluctuations of the distribution
of speeds for the same ek , we therefore look for statistical
relations between ek and m.

The positions of the dark solitons for the PDE simulation
are extracted from a dark soliton location detection function
	|ψ |2 = |ψGS|2 − |ψ |2, where ψGS is the ground state. We
compute this function and do a cubic spline interpolation on a
spatial grid of size 0.01. Then the positions of the dark solitons
correspond to the maximum values of the function 	|ψ |2
instead of the minimum values of the function |ψ |2, which
is more difficult to deal with since ψ → 0 at the boundaries,
too. To prevent small peaks stemming from boundary noise to
be recorded, we used an extra condition to require 	|ψ |2 > 10.
A typical state and the function 	|ψ |2 is given in Fig. 1.

D. Population annealing Monte Carlo

A state of the system is a list of {xi}. These wave particles
interact with each other and with the trapping potential. Their
dynamics corresponds to an effective one-dimensional lattice,

FIG. 1. (Color online) A typical state |ψ |2 and dark soliton
location detection function 	|ψ |2 of the BEC with 30 dark solitons
during the system’s time evolution. The upper panel is the state |ψ |2
and the lower panel is the function 	|ψ |2 represented by means of a
cubic spline interpolation.
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which, in turn, enables us to utilize statistical mechanics
techniques. We are going to use a Monte Carlo (MC) method
to simulate the system. To work in the same state space, we
have therefore integrated out the kinetic energy of the system.
The energy function of the system for the MC simulation
thus comes only from the potential energy. Therefore the
temperature should be of the same scale as the potential
energy per particle. Then the transition in temperature should
be analogous to the transition in kinetic energy.

We initialize the system from the equilibrium positions,
although this is not necessary. We would like to mention
here that it is not necessary to know the lattice constant
from the mathematical set up to perform the MC simulation.
Similarly to the ODE simulation, all we need is the form
of the interparticle potentials. The lattice constant can be
estimated from the MC method by looking at states at the
lowest temperature. In this way, we obtained the value of
0.3872 from the MC method for the lattice constant compared
with the value of 0.3829 of the steady-state computation of
the ODE problem. The two results agree very well. We use
our MC lattice constant to compute m (so as to make the MC
simulation more self-consistent and self-contained). The state
space of the system is continuous, so it is important to know
how to update the state of the system. After some tests with
a simple harmonic oscillator, we find that the following MC
update method is efficient in the present setting.

(i) Propose a move of random length with a random
direction.
We can use a random number in the interval [−h,h], where h

is a step length and h > 0 to propose a move to a particle. If
the number is positive, then the move is to the right, while if it
is negative, the move is to the left.

(ii) Update the state using the Metropolis algorithm.
We use the Metropolis algorithm in our simulation, i.e., we
compute the energy change of dE and accept the move
with probability p = min[1,e−βdE]. Here β is the inverse
temperature and is related to temperature T as β = 1

T
. In

addition, a move is practically rejected if it proposes a swap
between two particles since the interaction between them is
strongest when they are on top of each other even for the
highest temperatures in the simulation. This is not necessary
for the thermodynamics of the system but can nevertheless
better reflect the dynamics of the system and also simplify the
relevant implementation.

In this work, we use h = 1. We propose the elementary
move to all particles sequentially. A Monte Carlo sweep is an
update of the elementary moves for all N particles at once. We
will use Monte Carlo sweeps to quantify the amount of work
we did in our simulations.

Having introduced how to perform a Monte Carlo sweep
at an arbitrary temperature, we now introduce the population
annealing Monte Carlo algorithm. This algorithm was intro-
duced in Ref. [39]. It is an example of sequential Monte Carlo
[40], in contrast to the Markov chain Monte Carlo (MCMC).
It is related to simulated annealing but does annealing with
resampling to stay in thermal equilibrium. PAMC has recently
been developed and shown to be an efficient algorithm for
systems with complicated energy landscapes like spin glasses
[41,42]. In this work, we find that PAMC is also efficient
for the classical Toda lattice model. The main advantage

of PAMC over the simple MC is that PAMC can more
accurately maintain thermal equilibrium even for systems with
complicated energy landscapes and thermodynamic quantities
at multiple temperatures, often a few hundred, can be obtained
in a single run. Also, PAMC can be readily done with parallel
computing. In fact, in our work, we used OpenMP for the MC
simulation implementation.

The PAMC algorithm works as follows:
(1) Initialization: Start with R0 independent replicas.

Choose NT temperatures. The highest temperature for spin
glasses is often chosen as β = 0. Here we start from a finite
but high temperature. In this way, we can initialize the particles
at the equilibrium positions and do some MC sweeps to start
the population at thermal equilibrium. In our simulation, we
start at T = 5 with 40 sweeps for each replica and go down
to T = 0.1, where the particles are ordered. PAMC works by
decreasing the temperature slowly from a high temperature to
a low temperature following an annealing schedule. Here we
use a schedule of even spacing in β.

(2) Resampling: Suppose we are lowering the temperature
from β to β

′
, where β

′
> β. The reweighting factor of replica

i with energy Ei is proportional to e−(β
′ −β)Ei and the expected

number of copies of replica i is given by

ρi(β,β
′
) = e−(β

′ −β)Ei

Q(β,β
′ )

, (14)

where Q is just the sum of all the reweighting factors divided
by R0 to make the sum of ρi equal to R0,

Q(β,β
′
) =

∑R
i=1 e−(β

′ −β)Ei

R0
. (15)

The number of replicas can be fixed to a constant by using
the multinomial distribution [43] or the residual resampling
method [44]. We can also allow the population size to
fluctuate. For example, we can choose the number of copies
for replica i from a Poisson distribution [43] or the nearest
integer distribution. Here we use the nearest integer resampling
method, which has the smallest variance. Let the integer part
of ρi be ki . The number of copies ni of replica i is either ki + 1
with probability ρi − ki or ki with probability 1 − (ρi − ki).
Note that the expectation value of ni is ρi .

(3) MCMC sweeps: Because the new population is now
more correlated, since some of the replicas are the same due
to duplications and also for the purpose of ergodicity to fully
explore the phase space, since the population size is finite,
we do NS MCMC sweeps to all replicas using the Metropolis
algorithm after the resampling step.

(4) Repeat step 2 and step 3 NT − 1 times to go from the
highest temperature to the lowest temperature.

The parameters of the MC simulation of the 30 dark solitons
are R0 = 5 × 104, NT = 301, and NS = 10. Having passed
the equilibrium criteria of Ref. [41], we believe that we have
equilibrated the system at all temperatures.

III. DARK-BRIGHT SOLITONS

A. The coupled GPE model and the particle picture

As indicated also in the Introduction, dark-bright soliton
(DBS) states are interesting nonlinear structures on top of
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the BEC background for the one-dimensional two-component
BECs. As such, these states have also undergone intense
theoretical investigation; see, e.g., Refs. [45–55] for a number
of relevant studies. The prototypical one-dimensional model
where such states can be found to arise is the coupled GPE
[28] of the form:

iψj t
= − 1

2ψj xx
+ 1

2ω2x2ψj + (|ψ1|2 + |ψ2|2)ψj − μjψj ,

j = 1,2, (16)

where ψj ∈ C is a complex field of the component j defined
on (x,t) ∈ (R,R) and μj is the chemical potential related to the
total number of particles of the component j in the BEC, while
ω is the frequency of the trapping potential. Here we have also
assumed a scattering length setting akin to that the case of 87Rb
where the near equality of self- and cross-scattering lengths
makes it a reasonable first-order approximation to assume that
all the nonlinear prefactors are equal.

A similar transformation can be done to the coupled GPE
equation, as per the discussion of Ref. [28]. Here, on top of the
(inverted parabola) ground state, we can “baptize” DB solitons
of the form:

u1(ξ,τ ) = cos φ tanh{D[ξ − ξ0(τ )]} + i sin φ, (17)

u2(ξ,τ ) = ηsech{D[ξ − ξ0(τ )]}eikξ+iθ(τ ). (18)

In the unperturbed (e.g., by the parabolic trap) problem the
parameters satisfy the following relations:

D2 = cos φ2 − η2, (19)

ξ̇0 = k = D tan φ, (20)

θ (τ ) = 1
2 (D2 − k2)τ + (μ̃ − 1)τ, (21)

where μ̃ = μ2/μ1. As before, far from the linear limit, in the
so-called Thomas-Fermi regime, we can multiply particle-like
dark soliton states to the ground state to get the first component
(approximate) wave function. In the second component, we
correspondingly add bright soliton states (located at the same
spot as the dark solitons), possibly with a phase difference ei	θ

between adjacent waves. A general state with s dark-bright
solitons located at {ai} with dark soliton phase angles {φi} and
bright soliton amplitudes {ηi} can therefore be written in the
following form:

ψ1 =
√

μ1 − V

s∏
j=1

{cos φj tanh{Dj [ξ − aj (τ )]} + i sin φj },

(22)

ψ2 =
s∑

j=1

ηj sech{Dj [ξ − aj (τ )]}eikj ξ+iθj (τ )ei	θj . (23)

If 	θ = 0 between adjacent waves, the bright solitons are
in phase, while if 	θ = π between them, we say the bright
solitons are out of phase. The interaction energy between a
pair of identical static dark-bright solitons has been recently
derived in Ref. [28]. More specifically, it was identified in that
work that UDBS = UDD + 2UDB + UBB, where the three terms
denote the dark-dark soliton same-component interaction, the
dark-bright soliton intercomponent interaction, and the bright-
bright soliton same-component interaction, respectively. Here

we summarize the kinetic energy for the PDE simulation and
the potential energy for the ODE and MC simulations in real
space for the dark-bright solitons [28],

Ek = 1
2μ1k

2, (24)

V (x) = 1
2ω2

osx
2, (25)

UDD = 1

χ0

[
272 − 176D2

0

3D0
+ 32

(
D2

0 − 1
)(

r + 1

2D0

)]

× e−2D0r , (26)

UBB = χ

χ0

[
− 6D0 − 2χ + 2D2

0

(
r + 1

D0

)]

×D0 cos(	θ )e−D0r + χ2

χ0
(1 + 2 cos2 	θ )

×
[

3 − 2D0

(
r + 1

2D0

)]
D0e

−2D0r , (27)

UDB = χ

χ0
8 cos(	θ )e−D0r

+ χ

χ0

[
− 104

3
+ 16D0

(
r + 1

2D0

)]
e−2D0r , (28)

where ω2
os = ω2( 1

2 − χ

χ0
). D0 is the value of D for the static

dark-bright solitons, χ = 2η2

D0
and χ0 = 8

√
1 + (χ

4 )2; r is the
distance between the two adjacent dark-bright solitons. We
can also define the average initial kinetic energy per DBS,
ek . It is clear that the interaction of the DBSs is much more
complicated than that of the single-component dark solitons.
The interaction depends on the amplitudes of the bright
solitons via χ . Therefore, to perform the relevant simulations
using the particle picture, we need some input of the parameters
of η of each bright soliton. We extract this information from the
numerical stationary DBS state. We can optimize the unknown
parameters of the particle state by minimizing the norm of the
difference of the particle state and the numerical stationary
state. Therefore, we will first talk about an effective procedure
to obtain multiple DBS stationary states in the next section.

B. Identification and continuation of stationary DBS states

We trace stationary states of DBSs using Newton’s method,
applied to the corresponding steady-state problem of Eq. (16).
A key to the convergence in this regard is a suitable initial-
ization of the fixed point algorithm. There are two chemical
potentials in the equation. The idea of continuation from the
linear limit is to couple a state |n〉 and |0〉 for the in-phase
DBS from the linear limit of quantum harmonic oscillator. For
out-of-phase DBS states, we can couple the linear states |n〉 and
|n − 1〉. With the starting chemical potentials suitably chosen
slightly above the linear limit, a continuation of the relevant
states in the chemical potentials can be performed. A few
examples of both in-phase and out-of-phase DBS stationary
states are shown in Fig. 2. Note that the stationary states of the
DBSs are real (without loss of generality in our 1D system).
The few DBS states are in line with the states reported in Ref.
[28], while a discussion of DBS consisting of many waves
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FIG. 2. (Color online) A few in- and out-of-phase DBS states.
Red dashed lines are the dark soliton states and green solid lines
are the bright soliton states. The wave functions of the states are
all real, without loss of generality. For the 2, 3, and 4 dark-bright
soliton states, μ1 = 1.5, μ2 = 1. For the 10 dark-bright soliton states,
μ1 = 2.25, μ2 = 1.5 for the in-phase states and μ1 = 1.8, μ2 = 1.5
for the out-of-phase states.

and possible analytical DBS-lattice solutions based on elliptic
functions is given in Ref. [38].

C. Order parameter and simulation methods

From the stationary multiple DBS states, we can clearly
discern that the amplitudes of the bright solitons at the edges
are somewhat smaller than those around the center. This
renders the measurement of the bright soliton locations more
challenging, especially during the time evolution process.
In this work, we only measure the locations of the dark
solitons similarly to what we did in Sec. II C but now with
a somewhat smaller cutoff of 	|ψ |2 > 0.5. Then we can
extend the order parameter of single-component dark solitons
to the case of dark-bright solitons, too. However, to confirm
the genuine two-component nature of the observed dynamics,
we have checked carefully that bright solitons are indeed
following their dark soliton siblings in our simulations. We
will discuss this further in Sec. IV B. To be able to more clearly
identify bright solitons, we chose to simulate the out-of-phase
dark-bright soliton system. For the PDE simulation, each
bright soliton was initialized with the best fit amplitudes.
For the ODE and MC simulations, things are a bit more
complicated since the interaction potentials of Eqs. (26)–(28)
apply only to equal amplitude DBS pairs. Therefore, we have
made an approximation by using the average of the best fit
amplitudes of all bright solitons for each bright soliton in the
ODE and PAMC simulations. This naturally introduces some
error, but we have systematically checked that this does not
substantially affect our results. For example, we computed the
lattice constants using ODE and PAMC and found that they
agree reasonably well with the PDE lattice constant. The PDE
lattice constant is 2.07 while the ODE lattice constant is 2.10

and the PAMC lattice constant is found to be 2.13. We used
each method’s lattice constant for the respective simulations
to compute the order parameter in a self-consistent fashion.
Moreover, we have also carefully checked that for the same
disorder realization, our ODE simulation can well capture the
PDE dynamics. This will also be discussed in Sec. IV B.

Finally, we briefly summarize our simulation parameters for
the DBS simulations. For the PDE simulation, we used μ1 =
1.8, μ2 = 1.5,N = 10, ω = 0.1, dx = 0.05, dt = 0.002, t =
200. The reason for using different trapping frequencies for the
two separate settings of dark and dark-bright solitary waves
is because we are following the parameters of the original
works focusing, respectively, on them in Refs. [28,37]. In this
way, we can benchmark some of our results against the earlier
papers whenever possible, e.g., as concerns the all-in-phase
soliton oscillation frequencies, stationary states, equilibrium
positions, and so on. In any event, as mentioned previously
this is simply a matter of scaling of length scales and should
not affect our main results. For each sample, we record ek and
measure the state and the order parameter m over each time
period 1. Again, our ODE parameters are the same except
for dt = 0.01 and we also record our states over each time
period 0.01 for the ODE simulation. In our PAMC simulation,
we used R0 = 5 × 104, NT = 101, and NS = 10. We checked
that our simulation again passed the equilibrium criteria of
Ref. [41]. Having presented the general framework, we now
turn to a systematic reporting of the relevant results.

IV. RESULTS

A. One component dark solitons

The main scope of our study concerns the examination
of how the order parameter changes as a function of our
kinetically defined temperature. Figure 3 shows how the order
parameter changes with T . Here we have generalized our
notation of T to stand for temperature for the MC method
and for average initial kinetic energy per particle for the

FIG. 3. (Color online) The monotonically decreasing behavior of
the order parameter as a function of our kinetically defined T for the
dark soliton system.

032905-6



TRANSITIONS FROM ORDER TO DISORDER IN . . . PHYSICAL REVIEW E 91, 032905 (2015)

FIG. 4. (Color online) Typical dynamics of the dark solitons in
the ordered, transition (intermediate) and disordered regimes. Upper
panel: The PDE simulation. Lower panel: The ODE simulation.

ODE and PDE simulations. Since the two quantities should
have the same scale, this justifies the use of the same notion
for simplicity. We will refer to this quantity as “kinetic
temperature.” We can see that the order parameter features
a monotonic decay as T grows. It is interesting to see that
the three different methods (PDE, ODE, and PAMC) agree
reasonably well with each other in predicting this fundamental
trait. There is a gradual transition between the ordered phase
and the disordered phase with an energy scale of about 1
(in our dimensionless units). This suggests the existence of a
modification of the system’s behavior from a highly ordered
one (near unity values of m) to a quite disordered one (values
of m around or below 0.1). This transition seems to be
smooth and gradual and does not feature the characteristics of
standard thermodynamic phase transitions. This indeed may
be reasonable to expect in our 1D system, although whether
such genuine transitions may exist for different solitonic
multiparticle states, e.g., in higher dimensions remains a
question worth exploring.

The three different regimes of the dark solitons are clearly
discernible in our simulations: there exists the ordered phase,
the transition (intermediate) phase, and the disordered phase.
So it is interesting to know what the typical dynamics look like
in each of these three different regimes. Figure 4 shows three
typical time evolutions of the dark solitons in these respective
regimes from both the PDE and ODE simulations. It is clear
from the figure that in the ordered regime, the dark solitons do
not cross each other. In the transition regime, they start to cross
each other once in a while. In the disordered regime, crossings
arise frequently. In this case, the highly energetic (both in the
PDE and in the ODE) soliton particles resemble those of a
“gas.”

B. Dark-bright solitons

Here we show similar results of how the order parameter
changes as our kinetic temperature increases for the DBSs.

FIG. 5. (Color online) The monotonically decreasing depen-
dence of the order parameter as a function of our kinetically defined
T for the DBS system.

Figure 5 shows how the order parameter changes with T .
There is again a gradual transition between the ordered phase
and the disordered phase with an energy scale of about 0.05
for the parameters selected here. Once again, the overall trend
of the PDE and ODE, as well as the PAMC, is fairly similar.
Nevertheless, the PDE seems to be somewhat less ordered than
the other two, conceivably because of the enhanced role of the
additional degrees of freedom and the more complex nature
of the associated dynamics in this two-component setting.
The change of the kinetic temperature scale is mainly due
to the change in the frequency of the trapping potential. Some

FIG. 6. (Color online) Typical dynamics of the ordered, transi-
tion (intermediate) and disordered states for the DBS system, resulting
from the PDE simulation. The space-time evolution of the field is
shown in the two components.
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FIG. 7. (Color online) Typical dynamics of the ordered, transi-
tion, and disordered states for the DBS system, as resulting from the
ODE simulation.

typical PDE and ODE ordered, transition (i.e., intermediate),
and disordered states are shown in Figs. 6 and 7.

We also want to point out here that Fig. 6 is worth
commenting upon further in that some of the bright solitons
seem to be less visible due to the highly collisional nature of
the dynamics. We therefore checked the dynamical stability
of the stationary dark-bright soliton state. In accordance with
the results of Ref. [38], we found there is some instability
but nevertheless the corresponding growth rate is rather small,
i.e., small enough that over the time scales reported herein, the
resulting weak dynamical instabilities (of stationary states)
have not set in yet. Our detailed examination of this feature

FIG. 8. (Color online) The same transition states as 6, but instead
of showing density, we plotted the peaks of the states from the dark
(left) and bright (right) components.

FIG. 9. (Color online) The same transition states as 6, but the left
panel is now the ODE simulation with the same disorder realization
as the corresponding PDE simulation. The dark soliton component is
shown on the right panel. The two simulations have the same initial
kinetic energy. Note that the ODE can accurately capture the PDE
dynamics.

suggests that during the intermediate, as well as disordered,
phase dynamics, the collisional dynamics may develop high
amplitudes, thus rendering some of the bright solitons less
visible in the space-time plots of Fig. 6. To shed further
light on this issue, we have looked at the peaks of the dark
(after being subtracted from the ground-state background) and
bright soliton components. The result of the same transition
states as in Fig. 6 is shown in Fig. 8, which clearly attests
to the fact that the bright solitons are indeed following suit
with respect to their dark soliton partners. Similar results are
obtained for states in other disorder realizations. Nevertheless,
this phenomenology of amplitude enhancement and apparent
“mass exchange” may be worth exploring further and may
be, in part, related to (a generalization of) the two DBS
self-trapping phenomenology recently reported in Ref. [56].

Finally, it is interesting to check whether the ODE simula-
tion can match the peaks in the PDE simulation for the same
disorder realization. A typical result of the ODE and PDE
simulation of the same disorder realization of the transition
states of Fig. 6 with the same initial kinetic energy is shown
in Fig. 9. We have shown the trajectories of the dark-bright
solitons of the ODE simulation on the left panel and the
dark soliton component of the PDE simulation on the right
panel. It is clear from the figure that even though we have
made some approximations for the particle interactions, the
ODE simulation nevertheless captures fairly accurately the
dynamics of the full PDE simulation. Similar results were
found for dark-bright solitons in other regimes and also for
the simpler case involving solely dark solitons.

V. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we did a systematic numerical
simulation of the states of the one-dimensional dark soliton
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and dark-bright soliton lattices in the large-density limit using
PDE, ODE, and PAMC simulations. We identified regimes
where the dynamics, as characterized both by a concrete,
yet empirical, order parameter and by a direct inspection
of the space-time evolution appears ordered, as well as
ones where it appears highly disordered and also monitored
intermediate (“transitional”) regimes between these two.
The three methods of our numerical choice gave similar
results, verifying the good agreement between our different
dynamical descriptions. For our defined order parameter, we
found that it continuously decreases when our kinetically
defined temperature parameter increases. Nevertheless, in our
current formulation of the problem and although the different
end states for low and high kinetic energy can be considered as
“soliton crystals” and “soliton gases,” respectively, no genuine
phase transitions were identified in our one-dimensional, one-
and two-component formulations.

Our analysis poses a number of interesting questions for
future study. One such concerns whether a more rigorous (or
numerically assisted) characterization of the thermodynamic
properties can be provided for our effective wave-particle
system via, e.g., the transfer integral method [57,58]. For
instance, in the dark soliton case, the effective particle
system is a perturbed form of a Toda lattice, while for
the classical (integrable) Toda lattice, transfer integral based
techniques have been used to compute the partition function
and thermodynamic quantities, e.g., in Refs. [59,60]. The use
of such techniques even in a numerical form could provide a
definitive answer in the question as to whether phase transitions
may or may not exist in the present setting. Additionally,
it would be particularly interesting to generalize relevant

considerations to higher-dimensional settings. In particular,
a similar effective description can be formulated in the case of
a gas of trapped vortices in quasi-2D BECs, where a reduced
particle description in the large-density limit is also available;
see, e.g., Ref. [61]. Also, analogously to dark-bright states,
one can consider in the multicomponent 2D setting filled
vortices (or so-called vortex-bright solitons [51]) that have also
been observed experimentally [62]. Finally, such questions
are also relevant in 3D settings where vortex rings have been
observed to arise (see, e.g., for one example Ref. [63]), for
which again effective particle dynamical descriptions have
been proposed [64]. Thus, once again, the use of suitable
order parameters can be used to identify the thermodynamics
properties of the relevant vortex cloud. These questions are
currently under consideration and will be reported in future
studies.
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K. Sengstock, Nat. Phys. 4, 496 (2008).

[26] S. Middelkamp, J. J. Chang, C. Hamner, R. Carretero-
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(2008).

[47] M. Vijayajayanthi, T. Kanna, and M. Lakshmanan, Phys. Rev.
A 77, 013820 (2008).

[48] S. Rajendran, P. Muruganandam, and M. Lakshmanan, J. Phys.
B 42, 145307 (2009).
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