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Long-range epidemic spreading in a random environment
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Modeling long-range epidemic spreading in a random environment, we consider a quenched, disordered,
d-dimensional contact process with infection rates decaying with distance as 1/rd+σ . We study the dynamical
behavior of the model at and below the epidemic threshold by a variant of the strong-disorder renormalization-
group method and by Monte Carlo simulations in one and two spatial dimensions. Starting from a single infected
site, the average survival probability is found to decay as P (t) ∼ t−d/z up to multiplicative logarithmic corrections.
Below the epidemic threshold, a Griffiths phase emerges, where the dynamical exponent z varies continuously
with the control parameter and tends to zc = d + σ as the threshold is approached. At the threshold, the spatial
extension of the infected cluster (in surviving trials) is found to grow as R(t) ∼ t1/zc with a multiplicative
logarithmic correction and the average number of infected sites in surviving trials is found to increase as
Ns(t) ∼ (ln t)χ with χ = 2 in one dimension.
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I. INTRODUCTION

The contact process (CP) [1,2] is a basic model in the fields
of epidemic spreading and population dynamics. It is defined
on a lattice, the sites of which are either active or inactive. The
activity spreads to other inactive sites (which is interpreted as
spreading of the infection in the case of epidemic modeling)
or vanishes (which is interpreted as the spontaneous recovery
of the individual at that site) stochastically with given rates.
This model has attracted much interest because it undergoes
a continuous phase transition from a fluctuating active phase
to an inactive one if the relative magnitude of infection rates
with respect to the recovery rate is varied. In its simplest form,
activity spreads to neighboring lattice sites with uniform rates.
The phase transition of this variant falls into the universality
class of directed percolation (DP) and the critical exponents
are known with a high precision [3–5], although their exact
values are unknown.

The contact process was later generalized in different
directions and studied with a focus on the phase transition.
Here we highlight two factors that have a substantial effect
on the critical behavior. In the long-range contact process
(LRCP), infection is not restricted to neighboring sites but
allowed to occur on any other site with a rate that decays
as a power of the distance λ(r) ∼ r−(d+σ ), where d denotes
the dimension [6]. The critical exponents of this model
have been calculated to first order in an ε expansion by a
field-theoretic renormalization-group method [7]. It turned
out that, in analogy with the long-range Ising and O(N )
models [8–12], the critical exponents vary continuously with
σ in the range σMF(d) < σ < σDP(d), while for σ > σDP(d)
the model is in the DP universality class and for σ < σMF(d)
the critical behavior is described by a mean-field theory. The
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upper critical dimension of the LRCP is dc = min(4,2σ ) and
the correlation length critical exponents in the mean-field
region (d > dc) are ν⊥

MF = max(1/2,1/σ ) and ν
‖
MF = 1. In

the intermediate region ν⊥(σ ) [ν‖(σ )] is a monotonically
decreasing (increasing) function of σ . Numerical simulations
in one dimension have confirmed the above scenario [13].
Motivated by the dynamics of a fluctuating interface growing
on a one-dimensional substrate, a restricted variant of the
LRCP has been studied as well [14,15]. In this model,
activation of a site occurs only by the nearest active site. The
main difference in critical behavior of this variant compared
to that of the unrestricted one is the absence of a mean-field
region. Long-range epidemic spreading has also been studied
by other models, such as the susceptible-infected-recovered
model [16,17]. For further studies in this field, we mention
Refs. [18–20].

Another circumstance that changes the critical behavior
of CP is quenched disorder. According to a strong-disorder
renormalization-group (SDRG) study in one dimension [21],
the critical behavior is, at least for strong enough initial
disorder, described by a so-called infinite-disorder fixed point
(IDFP) [22,23], where the relationship between time τ and
length scale ξ is extremely anisotropic ln τ ∼ ξψ . As a con-
sequence, the disorder-averaged dynamical quantities, such as
the survival probability, decay as a power of ln t rather than
as a power of t . Furthermore, in close analogy to the Griffiths
phase of quantum magnets [24], the dynamics in the inactive
phase is characterized by power laws, where the exponents
vary continuously with the control parameter [25,26].

In this work we aim at studying the dynamics of the CP
in the simultaneous presence of the above components, i.e.,
long-range interactions and quenched disorder. This type of
problem emerges in different situations. Here we mention
the case when an infectious disease is transmitted by insects,
which make occasionally long flights, the length of which
has a power-law distribution. Similarly, human infections
can be transported through long-distance plane flights and
plant disease epidemics spread through atmospheric dispersal,
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which have also power-law characteristics [27]. In all cases the
infection and recovery rates are generally position-dependent
random variables. We shall see that the interplay of disorder
and long-range interactions results in a critical behavior, which
is different from those observed in the presence of only
one component. The long-range random transverse-field Ising
chain, which is closely related to the present problem due to
a formally similar SDRG treatment, has been recently studied
with the conclusion that the critical behavior is controlled by a
strong-disorder fixed point with a power-law scaling [28]. By
inspecting the SDRG scheme of the CP in one dimension, we
will show that, in spite of the differences in the SDRG rules,
the same conclusions hold also for this model. In addition to
this, we will present results of a numerical SDRG study in two
dimensions, as well as results of Monte Carlo simulations in
one and two dimensions.

The rest of the paper is organized as follows. The model is
defined in Sec. II and a phenomenological argument about a
limiting value of the dynamical exponent in the Griffiths phase
is given in Sec. III. A SDRG scheme of the model is presented
in Sec. IV. Our results for the one-dimensional model are
presented in Sec. V and for the two-dimensional model in
Sec. VI. Finally, the results are discussed in Sec. VII and the
details of the SDRG calculations are deferred to the Appendix.

II. MODEL

Let us consider a d-dimensional cubic lattice, the sites
of which can be either active or inactive, and consider a
continuous-time Markov process with the following (indepen-
dent) transitions. Site i, if it is active, becomes spontaneously
inactive with a rate μi or it activates site j , provided the latter is
inactive, with a rate λij . The activation rates are parametrized
as follows:

λij = 
ij r
−(d+σ )
ij , (1)

where rij is the Euclidean distance between sites i and j , and

ij are O(1) independent and identically distributed quenched
random variables drawn from some distribution π (
). The re-
covery rates μi are also independent and identically distributed
quenched random variables drawn from a distribution κ(μ).
For the sake of brevity, we introduce the decay exponent α

of the infection rates as α ≡ d + σ . We will restrict ourselves
to the regime α > d, where the total rate of activation events
from a given site λi = ∑

j �=i λij remains finite.
This system exhibits two different phases. For a low

enough tendency for recovery, such that ln μ − ln 
 = θ < θc,
the fraction of active sites in the stationary state is ρ > 0,
which represents the active phase. (Here and in the following
the overbar denotes an average over quenched disorder.) In
contrast, for a high enough tendency for recovery θ > θc,
we have ρ = 0 in the stationary state. In between, at θ = θc,
there is a nonequilibrium phase transition in the system, the
properties of which are the subject of this work.

Although we will consider a finite strength of disorder, as a
first step, it is worth investigating the stability of the fixed point
of the clean system (with long-range infections) against weak
disorder. Generalizing the heuristic criterion by Harris [25,29]
for long-range interactions, weak disorder is predicted to be

relevant if

dν⊥ < 2, (2)

where ν⊥ is the correlation-length exponent of the nonrandom
system. According to the known results for ν⊥, discussed in
the Introduction, weak disorder is generally relevant, except
in the mean-field region, where it is irrelevant.

III. PHENOMENOLOGICAL THEORY IN THE GRIFFITHS
PHASE

In the short-range random CP, where activation occurs only
on neighboring sites, the average density, i.e., the fraction
of active sites ρ(t), decays as an inverse power of time
starting from a fully active initial state, in a regime θc <

θ < θG of the inactive phase, called the Griffiths phase [25].
This type of semicritical behavior (short-range spatial, but
long-range dynamical correlations) can be explained by a
phenomenological theory (for a review see, e.g., Ref. [26]).
According to this, although the entire system is subcritical
on average and tends toward the absorbing (inactive) state
for long times, it still contains clusters of sites, the so-called
rare regions, where the majority of internal activation rates
are greater than the average, so the local control parameter θl

is below the bulk critical point; thus these regions are locally
supercritical. A probability of occurrence of rare regions is
exponentially small but their lifetime is exponentially large in
their size, so the distribution of their lifetimes has an algebraic
tail

P>(τ ) ∼ τ−d/z, (3)

characterized by a nonuniversal dynamical exponent z, which
depends on the distance from the critical point z = z(θ ) and
diverges as the critical point is approached. If the initial state
of the model is the fully active one, then after a long time, the
activity will survive in clusters having a lifetime greater than
t . Let us denote the characteristic distance between nearest
active clusters at time t by �(t). At time t , the fraction of active
clusters is on the one hand on the order of 1/�d (t), while on
the other hand it is proportional to P>(t). Using Eq. (3), we
have thus

�(t) ∼ t1/z , (4)

the usual relation between length and time scales. The typical
(effective) activation rate between nearest active clusters at
time t is exponentially small in �(t): λeff[�(t)] ∼ exp[−c�(t)],
so the active clusters, which have a typical lifetime O(t) or,
equivalently, O[�z(t)], do not interact with each other for
long times and each of them arrives at the inactive state
at a time determined by its own lifetime, which has been
tacitly assumed. Using that the mass of clusters (i.e., number
of sites contained in it) that are active at time t is at most
m(t) = O(ln t), one obtains for the time dependence of the
average density

ρ(t) ∼ m(t)P>(t) ∼ t−d/z (5)

up to logarithmic corrections.
Let us now see how the above picture is modified in the

case of long-range interactions. In the following reasoning, we
assume that the relevant time scale in the problem is governed
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by the supercritical rare regions as in the short-range case
and thus the relations in Eqs. (3) and (4) are valid with an
appropriate value of the dynamical exponent z(θ ). However,
due to the long-range interactions, the typical activation
rates between neighboring active clusters are different and
these are estimated to be λeff[�(t)] ∼ �−α(t)m2(t). Here the
typical mass of an active cluster m(t) is expected to be a
slower-than-algebraic (logarithmic) function of time. For a
fixed pair of neighboring active clusters, the characteristic
time between two subsequent activation events thus scales
as τa ∼ 1/λeff[�(t)] ∼ �α(t)m−2(t). These clusters can be
regarded as independent if τa is much greater than the
typical lifetimes of the clusters τl ∼ �z(t). Independence is
realized asymptotically if τl(�)/τa(�) → 0 as � → ∞ (t →
∞), yielding

z < α, (6)

which is a necessary condition for the self-consistency of
the above phenomenological picture. We have thus obtained
that, for a fixed α, the dynamical exponent in the Griffiths
phase cannot increase unboundedly as the critical point is
approached, but this phase must terminate at a point where z

reaches the boundary value α. At this point, the above picture
breaks down since the clusters no longer die out independently
and the infection rates and recovery rates become comparable
with each other. This suggests that this point coincides with
the phase transition point separating the Griffiths phase from
the active phase so that

lim
�→�c+

z(�) = α. (7)

IV. STRONG-DISORDER RENORMALIZATION-GROUP
TREATMENT

In the strong-disorder renormalization-group approach to the
contact process [21,23], the transition with the highest rate is
iteratively eliminated and the effective rates of the reduced
system are calculated perturbatively. Thereby the actually
highest rate � of the renormalized system is gradually reduced.
The procedure consists of two kinds of reduction steps and
here we recapitulate the results in [21]. If the largest rate is an
activation rate � = λij , sites i and j form a cluster, which has
an effective deactivation rate

μ̃ij 	 2μiμj

�
(8)

if μi,μj 
 λij . If the largest rate is a deactivation rate � = μi ,
cluster i is deleted and clusters that were neighboring i become
directly connected through an effective activation rate

λ̃jk 	 λjiλik

�
(9)

if λjiλik 
 μi . Apart from one-dimensional systems, for
which the above procedure was originally developed [22,30],
double connections between clusters may appear after per-
forming the above reduction steps. This is treated in practice
in two different ways. The rates of the two parallel transitions
are either added, which is termed a sum rule, or the larger one
of them is kept, in which case we speak about a maximum
rule. In the case of an IDFP, which governs the critical
behavior of the short-range CP, the SDRG with both rules

becomes asymptotically exact and is conjectured to provide
correct critical exponents [23]. The random transverse-field
Ising model (RTIM) has an SDRG scheme identical to that of
the CP, apart from the absence of the factor 2 in Eq. (8) [22].
This difference is irrelevant in the critical properties of the two
models for short-range interactions and we expect the same
conclusion for the long-range models too.

For the RTIM, the SDRG procedure with the maximum
rule can be implemented in a very efficient numerical algo-
rithm [31], which provides accurate results for the short-range
model in higher dimensions too. This numerical procedure
has been used for the one-dimensional long-range RTIM
and the observed renormalization steps are summarized in
an approximate primary model, which has been analytically
solved [28,32]. Here we generalize these steps for the one-
dimensional LRCP and the results are summarized in Sec. V.
For the two-dimensional model, results of the numerical
analysis with the RTIM maximum rule are presented in
Sec. VI.

V. RESULTS FOR THE ONE-DIMENSIONAL MODEL

A. The SDRG analysis

A simplified SDRG scheme of the one-dimensional random
LRCP, which we call a primary scheme, is presented in
the Appendix together with its analytical solution. In this
approach, the renormalized system has a one-dimensional
structure with effective interactions only between neighboring
(nondecimated) clusters. Long-range interactions between
remote clusters are taken into account only at a later stadium
of the renormalization procedure, when these clusters become
nearest neighbors. A further simplification in the primary
scheme is that the effective interactions between clusters
are approximated by the long-range interaction between the
closest constituent sites of clusters. In this respect, this
treatment is closer to a disordered variant of the restricted
LRCP mentioned in the Introduction [14,15]. Unfortunately,
an extension of the primary scheme, which takes into account
all pair interactions between neighboring clusters and is
more appropriate to describe the unrestricted model, cannot
be solved ab initio; nevertheless, its scaling properties can
be inferred from those of the primary scheme by heuristic
reasoning.

Before presenting the results obtained by the SDRG
method, a caveat is in order concerning its reliability. We will
see that the critical behavior of the model is described by a
strong-disorder fixed point, where the disorder remains finite,
rather than by an IDFP. In this case, the asymptotic exactness
of the method is not guaranteed, therefore the outcomes
of the method must be confronted with results of Monte
Carlo simulations of the original model. Nevertheless, for
another example of a model with a strong-disorder fixed point,
namely, the two-dimensional random Heisenberg model, the
predictions of the method have been proven qualitatively
correct [33].

The main results of the analysis of the primary scheme
are summarized in Eqs. (10) and (11) below. A relationship
between the rate scale � and the length scale �, which is
the inverse of the concentration of nondecimated clusters, is
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provided by the method in the form

� 	 �0

(
�0

�

)1/α[
1

α
ln

�0

�

]2

, (10)

which follows from Eq. (A13), where �0 is the initial rate scale
and �0 is a nonuniversal constant depending on the distribution
of rates. Another important quantity is the survival probability
Q(�) of a given site during the SDRG procedure, which is
found to decay with � as given in Eq. (A16) or in terms of the
length scale

Q(�) ∼ �0

�

[
ln

�

�0

]2

. (11)

The results in Eqs. (10) and (11) are obtained for the primary
model, in which the SDRG scheme is based on the maximum
rule. These results can be somewhat improved by using a
scheme that works partially by the sum rule; see [28] for the
RTIM. It takes into account, namely, the interactions between
all pairs of sites of neighboring clusters and, as it has been
argued and confirmed numerically, this improved scheme is
roughly mapped to the primary scheme if it is formulated
in terms of reduced variables λ/m2(�) and μ/m2(�), where
m(�) = Q(�)� is the average mass of nondecimated clusters at
the length scale �. This means that improved scaling relations
are obtained from those of the primary scheme by replacing �

with �/[Q(�)�]2. This leaves the scaling of Q(�) in Eq. (11)
in leading order unchanged, but affects the power of the
logarithmic correction in the dynamical relation in Eq. (10),
resulting in

� ∼
(

�0

�

)1/α(
ln

�0

�

)2+4/α

. (12)

We will use this relation in the following.

B. Scaling at criticality

The scaling properties of different observables at the critical
point can be obtained from Eqs. (11) and (12) as follows.
Starting the process from a fully active state, Eq. (12) provides
a relationship for the typical time t = �−1 needed for a
segment of size � in an infinite system or, for a finite system
of size �, to settle in a quasistationary state, in which only the
largest cluster identified by the SDRG method in the given
segment is active and the other sites are typically inactive. The
average fraction of active sites ρ(L) in the quasistationary state
of finite systems of size L scales as

ρ(L) ∼ Q(L) ∼ L−1(ln L)2, (13)

where we have used Eq. (11). However, in the numerical
simulations to be presented in the next section, we have
studied the time dependence of various quantities as the
process approaches the stationary state rather than considering
stationary ones. To be concrete, starting the process from
a single active site, we are interested in the time-dependent
average survival probability P (t), which is the probability that
the process has not yet been trapped in the absorbing (inactive)
state at time t . Other quantities commonly studied with the
above setup is the average number N (t) of active sites at time
t and the spread characterizing the spatial extension of the

growing cluster of active sites, defined as

R(t) = exp

⎧⎨
⎩

〈∑
i �=0 ni(t) ln ri∑

i ni(t)

〉
s

⎫⎬
⎭. (14)

Here ni(t) is 1 (0) if site i at time t is active (inactive), ri

denotes the Euclidean distance from the initially active site 0,
and 〈·〉s denotes the expectation value under the condition that
the process is active at time t in a fixed random environment
(i.e., set of transition rates). Note that the common definition of
the spread for the short-range CP through the second moment
of the distance from the origin would be divergent in the LRCP
for any finite t , hence the average of the logarithmic distance,
which is finite, is considered here instead [13]. Due to the self-
dual property of the CP [2,34], the average survival probability
P (t) is equal to the average density ρ(t) in the case when the
process had been started from a fully active state. Expressing
the length L in Eq. (13) with time t ∼ 1/� using Eq. (12),
we obtain for the asymptotic time dependence of the average
survival probability at the critical point

P (t) = ρ(t) ∼ [t(ln t)4]−1/α. (15)

We can see that the critical decay exponent 1/α coincides with
the limiting value of the decay exponent at the upper boundary
of the Griffiths phase found by the phenomenological theory
in the previous section [see Eq. (7)]. The average number of
active sites scales with the length � as N (�) ∼ (ln �)2

�
(ln �)2,

where the first factor is the probability that the starting site
was part of the largest cluster in a segment of length � and the
second one is the mass of the largest cluster. Using Eq. (12),
we obtain

N (t) ∼ [t(ln t)4−2α]−1/α (16)

for large t . Thus, the average number Ns(t) of active sites in
surviving samples scales with time as

Ns(t) = N (t)

P (t)
∼ (ln t)2 (17)

irrespectively of α. As it has been argued in Ref. [28], the
length of the longest bond in the largest cluster of a segment
of length � is O(�/(ln �)4). Assuming that the length of the
cluster, which roughly determines the spread, is in this order
of magnitude and using Eq. (12), the spread is expected to
scale with time asymptotically as

R(t) ∼ [t(ln t)4−2α]1/α. (18)

C. Numerical simulations

We have performed discrete-time Monte Carlo simulations
of the disordered LRCP on rings of L = 109 sites. The disorder
was implemented by a random dilution, i.e., the fraction
c of sites was removed. The simulation consisted of the
following moves. An active site is chosen randomly and with a
probability 1/(1 + λ) it is made inactive or with a probability
λ/(1 + λ) a random variable r from an algebraic distribution
with the probability density f (r) = (α − 1)r−α in the range
(1,∞) is generated. Then one of the two sites whose distance
from the active site is the integer part of r modL is chosen with
equal probability as a target site. If the target site is an existing
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FIG. 1. (Color online) (a), (d), and (g) Logarithm of the average survival probability P (t) plotted against ln[t(ln t)4]. The data were obtained
by numerical simulations of the one-dimensional model for different values of the control parameter λ. The solid line with a slope −1/α

indicates the asymptotic behavior predicted by the SDRG approach of the model at the critical point. (b), (e), and (h) Average number Ns(t)
of active sites conditioned on survival plotted against (ln t)2. (c), (f), and (i) Logarithm of the spread R(t) defined in Eq. (14) plotted against
ln[t/(ln t)2α−4]. The solid line with a slope 1/α indicates the asymptotic behavior predicted by the SDRG approach of the model at the critical
point.

and inactive site, it will be activated. One Monte Carlo step
(of unit time) consists of n(t) such moves, where n(t) is the
number of active sites at the beginning of the Monte Carlo step.
Starting the process from a single active site, we have followed
the simulation up to t = 227 Monte Carlo steps. Repeating the
simulation for 10–1000 randomly diluted lattices and for 105

starting positions per sample, we have calculated the average
survival probability P (t), the average number of active sites
N (t), and the spread R(t) as a function of time for different
values of the decay exponent α, the dilution parameter c, and
the control parameter λ.

According to the Harris criterion in Eq. (2), weak disorder
is predicted to be relevant in one dimension if α > 3/2.
Numerical results for α = 2,3 with c = 0.5 are shown in
Figs. 1(d)–1(i). In these cases, a Griffiths phase can be
identified where the survival probability decays algebraically
with time (with possible logarithmic corrections). The decay
exponent varies continuously with λ and at a critical value
λc the time dependence is compatible with the form given in
Eq. (15). The critical point is estimated to be at λc = 2.90(1)
for α = 2 and λc = 5.00(5) for α = 3. At this point, the time

dependence of the average number of active sites in surviving
trials is compatible with the square-logarithmic law given in
Eq. (17). The predicted behavior of the spread given in Eq. (18)
fits satisfactorily to the data for α = 2 but for α = 3 a slight
discrepancy can be observed.

Simulations with the marginal decay exponent α = 3/2
and for a dilution c = 0.8 have shown a behavior similar to
that found for α > 3/2, as can be seen in Figs. 1(a)–1(c).
For a weaker dilution c = 0.5, however, the critical behavior
rather seems to be compatible with that of the clean LRCP, as
shown in Figs. 2(a)–2(c). Here, at the border of the mean-field
regime, the survival probability decays as P (t) ∼ t−1(ln t)3/7,
the exponent η, characterizing the growth of the number of
active sites N (t) ∼ tη, is zero, and the spread increases as
R(t) ∼ t1/z with z = σ [7]. Note that, due to the rapid increase
of the spread [R(t) ∼ t2 for α = 3/2], the times for which
finite-size effects are negligible are much shorter than in the
case of the strong-disorder scenario. From measurements in
this limited range of time, it cannot be decided whether this
is the true asymptotic behavior or a crossover to the strong-
disorder fixed point occurs at larger time scales.
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FIG. 2. (Color online) (a) Logarithm of the average survival probability P (t) plotted against ln[t(ln t)−3/7]. The solid line has a slope −1.
The data were obtained by numerical simulations of the one-dimensional model with α = 3/2 and c = 0.5 for different values of the control
parameter λ. (b) Logarithm of the average number of active sites N (t) plotted against ln t . (c) Logarithm of the spread R(t) plotted against ln t .
The solid line has a slope 1/σ = 2.

VI. RESULTS FOR THE TWO-DIMENSIONAL MODEL

A. Relation to the one-dimensional model

Before presenting Monte Carlo results of the two-
dimensional model, let us sketch a simple argument for
the scaling behavior of the quantities of interest in higher
dimensions. Let us start with the model with a decay exponent
α, on a d-dimensional hypercubic lattice of (finite but large)
size L, which is assumed to be an integer power of 2. Let us
divide the hypercube into 2d smaller hypercubes and arrange
them in chain (in arbitrary order). Then we iterate this step for
the smaller hypercubes until we arrive at a linear chain of length
Ld . After this procedure, almost all distances � between spins
in the original hypercube will be O(�d ). So we roughly obtain
in this way a one-dimensional model with a reduced decay
exponent α/d. As a first guess for the scaling behavior in d

dimensions, we take the formulas obtained in one dimension
and replace the quantities having a length dimension � with �d

and α with α/d in them [35]. This results in

P (t) ∼ [t(ln t)4]−d/α, (19)

R(t) ∼ [t(ln t)4−2α/d ]1/α, (20)

which is expected to be correct for the powers of algebraic
factors but not those of logarithmic corrections. Indeed, the
relations in Eqs. (19) and (20) are in agreement with Eqs. (5)
and (4), respectively, at least up to logarithmic corrections. The
scaling form of Ns in Eq. (17), which is purely logarithmic, is
expected to be so for d > 1, as well:

Ns(t) ∼ (ln t)χ , (21)

with a possibly different power χ � 2.

B. The SDRG analysis

In two dimensions, the SDRG method can only be imple-
mented numerically; here we refer to the SDRG studies of
the short-range RTIM in two and higher dimensions. In order
to have a more efficient numerical algorithm, we have used
the maximum rule and in the renormalization rule in Eq. (8)
we omitted the factor 2. In the one-dimensional case, these
simplifications are found not to modify the critical properties
of the system and the same type of irrelevance is expected to
hold in two dimensions too. For this problem we have used

an algorithm that has been developed by us for the RTIM
and used recently to analyze the critical properties of the
long-range model in one dimension. In the two-dimensional
case we have renormalized finite samples of linear size up to
L = 64. The number of samples were typically 160 000 (at
least 4000 for the largest size). The parameters of the model
were chosen uniformly from the intervals 
ij ∈ (0,1] and
μi ∈ (0,μ], with a control parameter θ = ln(μ). We have fixed
the decay exponent to α = 3, in which case the critical point
is found at θc = 2.42(5) from the analysis of the distributions
of the sample-dependent critical points. (For details of the
method we refer the reader to Ref. [28].) At the critical point,
we have calculated two quantities: the average mass of the
last remaining cluster m(L) = LQ(L) [see Eq. (13)] and the
characteristic time scale τ (L) defined as τ = 1/μ̃, where μ̃ is
the last decimated parameter in a finite sample.

The numerical results indicate that m(L) has a slower-than-
algebraic dependence, which can be written in analogy with
the one-dimensional result in Eq. (13) as m(L) ∼ [ln(L/L0)]χ .
Precise determination of χ from the existing numerical results
is difficult since it is sensitive to the value of the reference
length L0. The data in Fig. 3 are compatible with χ = 2 with
L0 = 3, but a similar fit is obtained with χ = 3 if we choose
L0 = 0.5 instead.
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FIG. 3. (Color online) Average mass of the last decimated cluster
plotted against (ln L/L0)2 with L0 = 3. The data were obtained by
numerical renormalization of the two-dimensional model with decay
exponent α = 3 for different values of the control parameter �.

032815-6



LONG-RANGE EPIDEMIC SPREADING IN A RANDOM . . . PHYSICAL REVIEW E 91, 032815 (2015)

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0  0.1  0.2  0.3  0.4  0.5  0.6

z

1/ln L

θ=2.20
2.30
2.40
2.45
2.50
2.70
2.90

FIG. 4. (Color online) Effective dynamical exponents obtained
by two-point fits using Eq. (22) as a function of the system size
L. The straight line is a fit to the data obtained for � = 2.45.

Calculating the average logarithmic time scale ln τ̃ , esti-
mates of an effective size-dependent dynamical exponent z(L)
have been obtained from two-point fits of the relation

ln τ̃ = z ln L + const. (22)

The extrapolation of z(L) to infinite system size, as shown in
Fig. 4, is compatible with the expectation zc = α.

C. Numerical simulations

We have performed Monte Carlo simulations of the two-
dimensional model on diluted lattices of linear size L =
40 000. In the case of infection events, the target sites have
been chosen as described in Ref. [16]. For each set of
parameters (α,c,λ), seed simulations have been carried out
in 100–1000 randomly diluted lattices, for 160 000 different
starting positions in each sample, and averages of dynamical
quantities have been calculated.

In two dimensions, the Harris criterion in Eq. (2) predicts
weak disorder to be relevant if α > 3. In this domain, we
have detected a Griffiths phase and obtained that the critical
behavior is satisfactorily compatible with the predictions of
the SDRG method extended to d > 1 [see Eqs. (19)–(21)]
apart from poor agreement in the case of the time dependence
of the spread. The exponent χ describing the increase of the
average number of active sites in surviving trials in Eq. (21)
is found to be compatible with the value χ = 2 characterizing
the one-dimensional model. As an illustration, we show results
obtained for α = 3.5 and c = 0.8 in Figs. 5(d)–5(f). The
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FIG. 5. (Color online) (a), (d), and (g) Logarithm of the average survival probability P (t) plotted against ln[t(ln t)4]. The solid line has a
slope −d/α. The data were obtained by numerical simulations of the two-dimensional model for different values of the control parameter λ.
(b), (e), and (h) Average number Ns(t) of active sites conditioned on survival plotted against (ln t)2. (c), (f), and (i) Logarithm of the spread
R(t) defined in Eq. (14) plotted against ln[t/(ln t)2α/d−4]. The solid line has a slope 1/α.
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FIG. 6. (Color online) (a) Logarithm of the average survival probability P (t) plotted against ln[t(ln t)−3/7]. The solid line has a slope −1.
The data were obtained by numerical simulations of the two-dimensional model with α = 3 and c = 0.5 for different values of the control
parameter λ. (b) Logarithm of the average number of active sites N (t) plotted against ln t . (c) Logarithm of the spread R(t) plotted against ln t .
The solid line has a slope 1/σ = 1.

critical point is estimated to be at λc = 6.95(3). Similar
conclusions have been obtained for α = 4 and c = 0.8 [see
Figs. 5(g)–5(i)] and for α = 3.5 and c = 0.5 (not shown).

For the decay exponent α = 3, at which, according to the
Harris criterion, weak disorder is marginal, the strong-disorder
fixed point still seems to describe the critical behavior of the
model for a strong enough dilution, as shown for c = 0.8
in Figs. 5(a)–5(c). The critical point is estimated to be at
λc = 6.01(1). For a weaker dilution, however, as it is illustrated
by the data in Figs. 6(a)–6(c) obtained for c = 0.5, no Griffiths
effects can be observed and the critical behavior seems to
agree with that of the clean LRCP, which is described by
the mean-field theory, rather than with the strong-disorder
scenario. These numerical results thus suggest that, fixing
the decay exponent to its marginal value α = 3, the disorder
changes from irrelevant to relevant as its strength is increased.
Note that a similar scenario has been found numerically for
the disordered short-range CP in Ref. [21,36]; see, however,
the conflicting results in Refs. [37,38]. We stress again that the
time interval in which the model is free from finite-size effects
[see Fig. 6(c)] is rather short and in this regime no definite
conclusions can be drawn concerning the asymptotic behavior
from the numerical data.

We have simulated the model with α = 2.5 and c = 0.8 as
well, which belong to the domain where weak disorder is pre-
dicted to be irrelevant by the Harris criterion. Here mean-field
critical behavior is found (not shown) and within the very short
time scale, where the system is free from finite-size effects,
no indications of the existence of a Griffiths phase have been
seen. It is interesting to compare these observations with the
behavior of the disordered short-range contact process above
its upper critical dimension dc = 4, where weak disorder is
irrelevant, just as in our case. According to a recent conjecture,
which is supported by simulation results for d = 5 [39], the
critical behavior is of mean-field type but a Griffiths phase still
shows up, where the dynamical exponent varies with the con-
trol parameter and saturates to the mean-field value. The nu-
merical results obtained for our model fit only partially to this
scenario, as Griffiths effects could not be observed in our case.

VII. DISCUSSION

In this paper we have studied a long-range contact process
in a random environment. This model is realized in different

situations, when the agents transmitting the disease can be
insects, human beings, or spores. Depending on the relative
strengths of the infection and the recovery rates, this model
exhibits an active (endemic) phase with a finite fraction of
infected sites in the steady state and an inactive one, where all
sites are healthy. The properties of the nonequilibrium phase
transition in the system are studied by different methods in one
and two spatial dimensions.

Analytical results are obtained in one dimension by a
variant of the SDRG method, which is called the primary
scheme. The critical point is found to be controlled by a
so-called strong-disorder fixed point, in which the dynamical
exponent is finite and given by zc = α in any dimension.
The average number of active sites in surviving samples is
found to increase as Ns(t) ∼ (ln t)χ , with χ = 2 in d = 1, thus
the set of active sites has a formally zero fractal dimension.
In the nearby inactive Griffiths phase, the decay of the
average density and the growth of the average spatial extent
of the set of active sites still follow power laws, however
the dynamical exponent is z < α and continuously depends
on the distance from the transition point. The theoretical
predictions obtained by the approximative SDRG method
and phenomenological reasoning have been confronted with
results of large-scale Monte Carlo simulations. We have found
satisfactory agreement in the non-mean-field regime of the
clean model α > 3

2d, where the Harris criterion predicts
relevance of weak disorder. At the boundary of this regime α =
3
2d, the numerical data are compatible with the strong-disorder
scenario only for a strong enough initial disorder; otherwise, as
well as for α < 3

2d, they rather seem to follow the mean-field
theory of the clean model. We emphasize, however, that, for
judging the long-time asymptotic behavior in the mean-field
regime, the present numerical results are not decisive and
a crossover to a strong-disorder fixed point at large scales,
even for a weak disorder, cannot be excluded. We mention
that, even in the simplest case, i.e., in the one-dimensional
short-range CP, although large-scale simulations suggest a
positive answer [37], it is an unresolved question whether the
IDFP is attractive for any weak disorder [40]. The situation
observed in our model for α � 3

2d is similar to that of the
short-range CP at and above the upper critical dimension
dc = 4, where, although the SDRG approach predicts an IDFP
in any dimensions for a strong enough disorder [31], numerical
simulations indicate a mean-field critical behavior [39]. How
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the nature of the phase transition changes with the strength of
the disorder in this case is a puzzling question.

It is worth comparing the behavior of our model to that of
the contact process on static (i.e., time-independent) random
networks embedded in a d-dimensional space and having
long-range links between remote sites with an algebraically
decaying connection probability p(lij ) ∼ l−s

ij [41,42]. This
model can be regarded as a quenched variant of the LRCP,
where the randomly drawn long-range links induce quenched
topological disorder. According to a numerical SDRG analysis
of the one-dimensional model [42], for s � 2, the critical
behavior is controlled by an IDFP, which is identical to that
of the short-range disordered CP for s > 2. For s < 2, Monte
Carlo simulations of the model show that the critical dynamics
is described by power laws and no signs of Griffiths effects can
be observed. An apparent difference between the two models
is that the quenched model displays short-range behavior for a
sufficiently large decay exponent (s > 2), while this is not the
case for the disordered LRCP.

The results presented in this work are similar to that
obtained very recently for the long-range RTIM. Indeed,
the SDRG decimation steps differ only at one point in the
two problems, which has been shown to be irrelevant in
one dimension (see the Appendix). The same conclusion
is expected to hold in higher dimensions too, which is
demonstrated in Sec. VI for the two-dimensional case. For
the RTIM, analysis of the primary model on the paramagnetic
side of the critical point, which corresponds to the inactive
phase of our model, leads to a divergence of the correlation
length ξ of the form

ξ ∼ exp(A/|θ − θc|), (23)

which resembles the singularity present in the Kosterlitz-
Thouless transition. We expect that Eq. (23) holds for the
LRCP as well. However, a numerical verification of this
conjecture is very difficult.
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APPENDIX: THE PRIMARY SDRG SCHEME IN ONE
DIMENSION

Let us restrict ourselves to one dimension and assume that

ij = 1 in Eq. (1), i.e., the activation rates are nonrandom, but
the deactivation rates are still random. This model is, according
to numerical investigations, in the same universality class as
the one with random activation rates, but it is simpler to treat
analytically. Analyzing the SDRG procedure close to the fixed
point in the inactive phase and in the critical point, we have

a few observations that can be used to simplify the SDRG
scheme. These observations are analogous to those found
for the one-dimensional RTIM [28]. First, almost always,
cluster eliminations occur; second, after decimating a cluster,
the maximum rule leads almost always to λ̃jk = λjk; third,
the extensions of (nondecimated) clusters are typically much
smaller than the distances between them. These lead to a
simplified scheme of effectively one-dimensional structure, in
which only the activation rates between neighboring clusters
are renormalized. Introducing the reduced parameters ζ =
(�

λ
)1/α − 1 and β = 1

α
ln �

μ
, in analogy with the RTIM, the

renormalization rules assume the additive forms

ζ̃ = ζi−1,i + ζi,i+1 + 1 (A1)

if a cluster is decimated and

β̃ = βi + βi+1 − B (A2)

if two clusters are unified. The difference compared to the
SDRG rules of the long-range RTIM is the appearance of
constant B = 1

α
ln 2. We mention that the SDRG scheme with

B = 0 first arose in the context of a disordered quantum rotor
model [43]. As the logarithmic rate scale

� ≡ 1

α
ln

�0

�
, (A3)

with �0 being the initial value of �, increases during the
procedure, the distributions g�(β) and f�(ζ ) evolve according
to the equations

∂g�(β)

∂�
= ∂g�(β)

∂β
+ f0(�)

×
∫

dβ1

∫
dβ2g�(β1)g�(β2)δ(β − β1 − β2 + B)

+ g�(β)[g0(�) − f0(�)], (A4)

∂f�(ζ )

∂�
= (ζ + 1)

∂f�(ζ )

∂ζ
+ g0(�)

×
∫

dζ1

∫
dζ2f�(ζ1)f�(ζ2)δ(ζ − ζ1 − ζ2 − 1)

+f�(ζ )[f0(�) + 1 − g0(�)], (A5)

where g0(�) ≡ g�(0) and f0(�) ≡ f�(0).
At the critical point and below, the variables ζ will

grow without limits as � → ∞, therefore the constant in
the δ function in Eq. (A5) can be neglected and the fixed-
point distribution will be f�(ζ ) = f0(�)e−f0(�)ζ , where f0(�)
satisfies the differential equation

df0(�)

d�
= f0(�)[1 − g0(�)]. (A6)

For B = 0, the fixed-point distribution g�(β) also will be a pure
exponential, but, otherwise, it is no longer the case. Assuming
that g0(�) tends to a finite limit g0(∞) as � → ∞, f0(�) will
diverge or vanish if g0(∞) < 1 or g0(∞) > 1, respectively, as
can be seen from Eq. (A6). Thus, at the critical point, we must
have g0(∞) = 1. Here let us assume that g0(�) 	 1 + G

�γ and
f0(�) 	 F

�φ for large �, where G, γ , F , and φ are positive
constants. Substituting these asymptotic forms into Eq. (A6),
we obtain that γ = 1 and G = φ. Although g�(β) is not a
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pure exponential, its large-β tail is still exponential g�(β) 	
g1(�)e−g2(�)β , as one can check by substituting it into Eq. (A4).
This gives for the unknown functions g1(�) and g2(�) the
differential equations

dg1(�)

d�
	 g1(�)[g0(�) − f0(�) − g2(�)], (A7)

dg2(�)

d�
	 −f0(�)g1(�)e−Bg2(�). (A8)

Let us assume that these functions have finite limiting values
g1(�) → G1 and g2(�) → G2 as � → ∞. Then, for large �,
Eq. (A8) assumes the form

dg2(�)

d�
	 −FG1e

−BG2�−φ ≡ −G�−φ. (A9)

The finiteness of G2 then requires φ > 1 and the integration
of Eq. (A9) results in

g2(�) 	 G2 + G �1−φ

φ − 1
. (A10)

The asymptotic form of Eq. (A7) then reads

dg1(�)

d�
	 G1

[
1 + φ

�
− F

�φ
− G2 − G �1−φ

φ − 1

]
. (A11)

For the reason that g1(�) converges in the limit � → ∞,
the constant and O(1/�) terms in the brackets in Eq. (A11)
must cancel, which yields G2 = 1, φ = 2, and G = 2. So we
conclude that the leading-order � dependences of the functions
g0(�) and f0(�) in the critical point are given by

g0(�) 	 1 + 2

�
, f0(�) 	 F

�2
. (A12)

The constant F , which takes the value 2 for B = 0, remains
unknown in the present case.

A relationship between the length scale �(�) = 1/n(�),
where n(�) is the mean number of nondecimated clus-
ters per unit length of the chain and the rate scale
� can be derived by solving the differential equation
dn(�)
d�

= −n(�)[g0(�) + f0(�)]. Using the asymptotic forms

in Eq. (A12), one obtains

� 	 �0e
��2, (A13)

where l0 is a nonuniversal constant that depends on the initial
distribution of parameters.

In order to infer the scaling of the order parameter in the
critical point, a further quantity we need is the probability Q(�)
that a given site is part of an active (nondecimated) cluster at the
scale �. This can be obtained through the probability density
q�(β) of the event that, at the scale �, a given site is part of an
active cluster that has a logarithmic deactivation rate β. This
function evolves according to the equation

∂q�(β)

∂�
= ∂q�(β)

∂β
+ 2f0(�)

[∫
dβ1

∫
dβ2q�(β1)g�(β2)

×δ(β − β1 − β2 + B) − q�(β)

]
. (A14)

Knowing the large-β tail of g�(β) only, the best we can
do is to determine that of the function q�(β) from this
equation. For large β, the solution will have the form
q�(β) 	 [q1(�) + q2(�) β

�
]e−g2(�)β , where q1(�) and q2(�) are

unknown functions. Substituting these asymptotic forms into
Eq. (A14), we obtain that the above functions must satisfy the
differential equations

dq1(�)

d�
	 −

(
1 + 2

�

)
q1(�) + 1

�
q2(�) + O(�−2q1(�)),

dq2(�)

d�
	 G

�
q1(�) −

(
1 + 1

�

)
q2(�) + O(�−2q1(�)).

(A15)

SinceG = 2, these equations are identical to those of the model
with B = 0. The solutions are q1(�) 	 c1e

−� and q2(�) 	
c2e

−� , and assuming that the integral Q(�) = ∫ ∞
0 dβq�(β)

scales with � in the same way as the contribution from the
large-β tail of q�(β), we obtain

Q(�) ∼ e−� =
(

�

�0

)1/α

. (A16)
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[4] G. Ódor, Universality in Nonequilibrium Lattice Systems (World

Scientific, Singapore, 2008); ,Rev. Mod. Phys. 76, 663 (2004).
[5] M. Henkel, H. Hinrichsen, and S. Lübeck, Non-Equilibrium
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74, 024427 (2006).

[34] J. Hooyberghs and C. Vanderzande, Phys. Rev. E 63, 041109
(2001).

[35] We note that this type of rescaling is compatible with the results
of the leading ε expansion of the nonrandom LRCP; see Ref. [7].

[36] C. J. Neugebauer, S. V. Fallert, and S. N. Taraskin, Phys. Rev.
E 74, 040101(R) (2006); S. V. Fallert and S. N. Taraskin, ibid.
79, 042105 (2009).

[37] T. Vojta and M. Dickison, Phys. Rev. E 72, 036126 (2005).
[38] J. A. Hoyos, Phys. Rev. E 78, 032101 (2008).
[39] T. Vojta and J. A. Hoyos, Phys. Rev. Lett. 112, 075702 (2014); T.

Vojta, J. Igo, and J. A. Hoyos, Phys. Rev. E 90, 012139 (2014).
[40] Disorder-induced crossover effects have been studied in random

quantum spin chains; see R. A. Hyman and K. Yang, Phys.
Rev. Lett. 78, 1783 (1997); C. Monthus, O. Golinelli, and
Th. Jolicoeur, ibid. 79, 3254 (1997); ,Phys. Rev. B 58, 805 (1998);
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