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Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function
in the Kuramoto model on scale-free networks
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We study the impact of network heterogeneity on relaxation dynamics of the Kuramoto model on uncorrelated
complex networks with scale-free degree distributions. Using the Ott-Antonsen method and the annealed-network
approach, we find that the critical behavior of the relaxation rate near the synchronization phase transition does
not depend on network heterogeneity and critical slowing down takes place at the critical point when the second
moment of the degree distribution is finite. In the case of a complete graph we obtain an explicit result for
the relaxation rate when the distribution of natural frequencies is Lorentzian. We also find a response of the
Kuramoto model to an external field and show that the susceptibility of the model is inversely proportional to
the relaxation rate. We reveal that network heterogeneity strongly impacts a field dependence of the relaxation
rate and the susceptibility when the network has a divergent fourth moment of degree distribution. We introduce
a pair correlation function of phase oscillators and show that it has a sharp peak at the critical point, signaling
emergence of long-range correlations. Our numerical simulations of the Kuramoto model support our analytical
results.
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I. INTRODUCTION

Spontaneous emergence of synchronization is a well-
known phenomenon which has been observed in a wide variety
of real systems: the natural spectacle of fireflies flashing
at the same time or crickets chirping in unison; circadian
rhythms; opinion formation in social science, and then again
in biology, physics, sociology, and neuroscience [1–5]. The
model introduced by Kuramoto [6] is the most studied
statistical model of spontaneous synchronization. It describes
the evolution of the system of phase oscillators towards
synchrony or disorder by means of a set of time differential
equations,

dθi

dt
= ωi + K

N

N∑
j=1

sin(θj − θi), (1)

where θi and ωi are the phase and the “natural” frequency of
an oscillator i,i = 1,2, . . . ,N.K is the coupling. The values
of each ωi are usually extracted from a given probability
density function g(ω). The important property of the model
is that, despite the heterogeneity in natural frequencies, the
oscillators become spontaneously synchronized if K is larger
than a critical value. The synchronization order parameter is

z = reiψ ≡ 1

N

N∑
j=1

eiθj , (2)

where ψ is the order parameter phase. The absolute value
r = |z| represents the degree of synchronicity, being equal to
0 when the oscillators’ phases are uniformly distributed in
[0,2π ) and 1 when they all have the same phase.

The set of Eq. (1) describes oscillators on a complete
graph in which, by definition, each vertex is connected to
each of the others. A far more realistic model is to set the

system on sparse random networks having a finite mean
degree [4,7–9]. In this model, apart from the heterogeneity
in natural frequencies, there is a structural heterogeneity that
is a natural attribute of real systems such as social, biological,
and technological networks. Understanding how this kind of
heterogeneity impacts synchronization dynamics of oscillators
is still elusive. The framework of networks makes it possible
to use well-known methods of the complex network theory,
which has been shown to be applicable to a striking number
of real systems [9–11]. Unfortunately, it is difficult to describe
a collective process of synchronization or desynchronization
of a large number of oscillators in the Kuramoto model
by solving the set of N nonlinear equations (1). However,
using the method proposed by Ott and Antonsen [12,13],
one can reduce the original set of differential equations
to a differential equation describing temporal behavior of
the order parameter Eq. (2) alone, eliminating all angular
variables. This method makes it possible to directly study
relaxation dynamics of the order parameter and to answer
the following question: How long does it take for the system
to reach equilibrium, i.e., to synchronize or desynchronize. It
was already shown that the relaxation time of the Kuramoto
model becomes infinite when the system approaches a critical
point of a second-order synchronization phase transition (see,
for example, [12,14,15]), a phenomenon known as critical
slowing down. However, analytically, the relaxation rate of
the Kuramoto model was only found in disordered state in
the case of all-to-all coupling [12,14]. The impact of network
heterogeneity on relaxation dynamics of the Kuramoto model
on a complex network in both disordered and synchronized
state was not yet studied analytically. This problem is non-
trivial since it has already been shown that critical behavior
of the order parameter is strongly influenced by network
heterogeneity when the Kuramoto model has a complex
network structure with fat tailed degree distributions [7–9].
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Investigations of relaxation dynamics of the Kuramoto model
are also interesting because the relaxation rate is related
to susceptibility of the system to external stimulations. In
statistical physics there are general relationships between the
relaxation rate, the susceptibility, and the pair correlation func-
tion characterizing correlations between distant interacting
agents in a system [16]. Within the mean-field theory, near a
critical point of a second-order phase transition, the zero-field
susceptibility of a system is inversely proportional to the re-
laxation rate. Therefore, critical slowing down simultaneously
signals the divergence of the susceptibility at the critical point.
Moreover, critical behavior of the susceptibility can show us
whether the synchronization transition is mean-field like in the
presence of network heterogeneity. In turn, the susceptibility
is related to a pair correlation function and divergence of the
function manifests simultaneously the emergence of long-rang
correlations in the system. However, these relationships were
not discussed in the context of the Kuramoto model in complex
networks.

In this paper, using the Ott-Antonsen method and the
annealed-network approach [9,17], we study relaxation dy-
namics of the Kuramoto model on sparse uncorrelated complex
networks with a scale-free degree distribution P (q) ∝ q−γ and
one-humped distributions of natural frequencies. At first, we
find the relaxation rate below and above the critical coupling
and demonstrate critical slowing down at the critical point in
networks with γ > 3. In the case of all-to-all interaction and
the Lorentz distribution of natural frequencies, we obtain an
explicit dependence of the relaxation rate on the coupling.
Then we study the Kuramoto model in an external field
and find critical behavior of the susceptibility. Our approach
allows us to analyze a field dependence of the relaxation
rate and the susceptibility at the critical point. We show that
these parameters are described by power laws with power
law exponents dependent on γ when 3 < γ � 5. Finally,
we introduce a pair correlation function of phase oscillators
and study its critical behavior. In order to support our
analytical results, we also perform numerical simulations of
the Kuramoto model on scale-free networks and compare with
the analytical results.

II. ANNEALED NETWORK APPROXIMATION

The Kuramoto model on a complex network is described
by an equation,

dθi

dt
= ωi + K

N∑
j=1

aij sin(θj − θi), (3)

that is a natural generalization of Eq. (1). Note that, since we
are considering sparse complex networks in which the mean
degree 〈q〉 is O(1), the coupling constant K in Eq. (3) is O(1),
in contrast to K/N in Eq. (1), for a complete graph. aij are the
entries of the network’s adjacency matrix:

aij =
{

1 if i is connected to j ,
0 otherwise. (4)

However, Eq. (3) is too complex to obtain significant analytical
results. A good approximation is given by substituting the
values aij with their expected values 〈aij 〉 ∈ [0,1] in a given

ensemble of graphs [9,17]. For the case of a sparse uncorrelated
complex network with a degree distribution P (q),

〈aij 〉 = qiqj

N〈q〉 (5)

holds in the continuum (N → ∞) limit, so that

dθi

dt
= ωi + Kqi

N〈q〉
N∑

j=1

qj sin(θj − θi). (6)

This so-called “annealed network” approximation gives cor-
rect critical behavior of phase transitions in complex net-
works [9,17], including the synchronization transition in
the Kuramoto model [9,18]. Within this approach [9,17], a
complex order parameter is defined as follows:

z = reiψ ≡ 1

N〈q〉
N∑

j=1

qj e
iθj . (7)

Here the contribution of single oscillators is weighed on the
degree of the node to which they are associated. This choice,
which is reasonable, as it accounts for the role of the oscillators
in the network, also makes it possible to write (6) as

dθi

dt
= ωi − Kqir sin(θi − ψ). (8)

III. DYNAMICAL APPROACH

To obtain an explicit set of differential equations for the
time evolution of z, we use the Ott-Antonsen method [12,13].
First, in the thermodynamical limit, we introduce the oscillator
density F (θ,ω,q,t) on a (θ,t) configuration space, with
dependence on the parameters ω and, in the network case, q. By
definition, it satisfies the following normalization conditions:∫ ∞

1

∫ 2π

0
F (θ,ω,q,t)dθdq = g(ω) (9)

and ∫ +∞

−∞

∫ 2π

0
F (θ,ω,q,t)dθdω = P (q). (10)

The fundamental equation is simply the conservation law of
the number of oscillators,

∂

∂t
F (θ,ω,q,t) + ∂

∂θ
[vF (θ,ω,q,t)] = 0, (11)

where v is the velocity field on the circle that drives the
dynamics of F . This is specific of the model and in our case
can be read from Eq. (8) as

v(θ,ω,q,t) = ω + Kqr sin(ψ − θ )

= ω + Kq

2i
(ze−iθ − z∗eiθ ). (12)

Following the Ott-Antonsen method, a solution is sought in
the form

F = P (q)g(ω)

2π
(1 + F+ + F−), (13)
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with

F+ ≡
∞∑

n=1

Fn(ω,q,t)einθ (14)

and F− = F ∗
+. With the additional ansatz

Fn = αn(ω,q,t), (15)

one obtains an equation for the function α(ω,q,t),

α̇ + iωα + Kq

2
(zα2 − z∗) = 0, (16)

which is not in a closed form yet. It can be shown that Eq. (7)
takes a form

z(t) =
∫

qP (q)

〈q〉
∫

g(ω)α∗(ω,q,t)dωdq. (17)

These two equations (16) and (17) form a closed system of
equations for the complex order parameter z.

Let us study a steady state solution before studying the
relaxation dynamics. By stationary, here we mean z(t) =
reiψ+i	t for the constant order parameter r , a phase ψ , and
a group angular velocity 	. With a suitable change of the
reference frame, ω 
→ ω + 	 and putting ψ = 0, without loss
of generality we have z = r and stationary points of Eq. (16)
can be found by simply putting α̇ = 0 in Eq. (16). We find a
solution,

α0(ω,q) =

⎧⎪⎨⎪⎩
− iω

Kqr
+

√
1 − (

ω
Kqr

)2
, |ω| � Kqr,

− iω
Kqr

[
1 −

√
1 − (

Kqr

ω

)2]
, otherwise.

(18)

This solution satisfies the requirement |α| � 1 necessary to
the convergence of the geometrical series Eq. (15). Note that
substitution of Eq. (18) into Eq. (15) gives explicitly the
oscillator density Eq. (13). Real and imaginary parts of Eq. (17)
give, respectively,

r =
∫

dqP (q)q

〈q〉
∫ +Kqr

−Kqr

dωg(ω+	)

√
1−

(
ω

Kqr

)2

, (19)

	 = 〈ω〉 −
∫

dqP (q)q

〈q〉
∫

|ω|�Kqr

dω sgn(ω)g(ω + 	)

×
√

ω2 − (Kqr)2. (20)

The integral over ω in Eq. (20) equals zero if the frequency
distribution g(ω) is one-humped and symmetrical with respect
to its maximum. In this case, symmetry reasons impose
	 = 〈ω〉. An analysis of Eq. (19) and the critical behavior
of the order parameter r in complex networks with different
topologies are represented in Appendix A. Below we study
relaxation dynamics of the Kuramoto model with one-humped
distribution g(ω). However, our approach based on Eqs. (16)
and (17) can be applied to the Kuramoto model with an
arbitrary distribution of natural frequencies, for example,
asymmetric frequency distributions studied in [19].

IV. RELAXATION DYNAMICS

Once one has found the equilibrium points for the system—
and therefore the critical point—what other information can be
extracted from the equations? A natural question for the model

is as follows: How long does it take to attain synchrony (or
disorder)? In a general case, in order to answer this question,
it is necessary to take into account a nonlinear character of the
relaxation dynamics from an initial state. In this section, we
study a simple case when the system is weakly perturbed from
a stationary state Eq. (18) with the order parameter z0 = r:

z(t) = z0 + δz(t),

α(t) = α0(ω,q) + δα(ω,q,t). (21)

In an initial state at t = 0, a parameter δz(t = 0) � z0 is
determined by a function δα(ω,q,t = 0). Excluding second-
and higher-order terms in δα and δz in Eq. (16), we obtain a
linear equation for δα(ω,q,t),

δα̇ + iωδα + Kq

2

(
2z0α0δα + α2

0δz − δz∗) = 0, (22)

that must be solved self-consistently with an equation,

δz(t) =
∫

qP (q)

〈q〉
∫

g(ω)δα∗(ω,q,t)dωdq. (23)

To solve it, we take the Laplace transform of both sides and
integrate by parts. Reordering of the terms then yields

δα(s,ω,q) = δα(t = 0) + Kq

2

[
δz∗(s) − α2

0δz(s)
]

s + iω + Kqz0α0
. (24)

Substituting δα(s,ω,q) into Eq. (23) leads to

δz(s) = B(s)

1 − K
〈q〉

∫
dqP (q)q2A(s,q)

, (25)

where

B(s) = 1

〈q〉
∫

dqP (q)q2
∫

dω
g(ω + 	)δα(ω,q,t=0)

s+iω+Kqrα0
, (26)

A(s,q) = 1

2

∫ ∞

−∞
dω

g(ω + 	)[1 − α2
0(ω,q)]

s + iω + Kqrα0(ω,q)
. (27)

To invert the Laplace transform Eq. (25), we first have to find
the poles of δz(s), equating the denominator to zero:

1

〈q〉
∫

dqP (q)q2A(s,q) = 1

K
. (28)

It is important to note that the function A(s,q) must be
calculated at a positive s and then analytically continued to
negative values.

A. Relaxation rate below the critical coupling, K < Kc

In the region below the critical point, K < Kc, the
Kuramoto model is in a disordered state and the order
parameter is zero, i.e., r = 0. In this case, the function A(s,q)
given by Eq. (27) is independent on q and A(s) ≡ A(s,q).
Equation (28) for the poles takes a simple form,

〈q2〉A(s)

〈q〉 = 1

K
. (29)

Lorentz distribution of natural frequencies. First let us find
the relaxation rate in the case of the Lorentz distribution of
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natural frequencies with the zero mean value,

g(ω) = �

π (ω2 + �2)
. (30)

Throughout this paper, we use � as a frequency unit and put
� = 1. Using this distribution function, we find

A(s) = 1

2

∫ ∞

−∞
dω

g(ω)

s + iω
= 1

2(1 + s)
; (31)

that is, the Eq. (29) takes the form

〈q2〉
2〈q〉(1 + s)

= 1

K
. (32)

This equation has a single solution,

s0 = −Kc − K

Kc

, (33)

where the critical coupling Kc = 2〈q〉/〈q2〉 [see Eq. (A4)].
The inverse Laplace transform of Eq. (25) yields

δz(t) ∼ e−t/τr , (34)

where the relaxation rate τ−1
r = −s0, i.e.,

τ−1
r = Kc − K

Kc

. (35)

Note that this result is exact for a complete graph [12,14,15].
The relaxation rate τ−1

r tends to zero when K → Kc. This is
critical slowing down, meaning that the relaxation time τr goes
to infinity at the critical point. Equation (35) is valid for any
uncorrelated complex network with a finite second moment
〈q2〉 when Kc > 0, i.e., at the degree exponent γ > 3.

Symmetric distributions of natural frequencies. In a general
case of a symmetric frequency distribution g(ω), one can write
the function A(s) as the Laplace transform,

A(s) =
∫ ∞

0
ĝ(y)e−sydy, (36)

where ĝ(y) is the Fourier transform of g(ω). An analytical
result for a solution |s0| � 1 of Eq. (29) can be obtained using
the linearization

A(s) ≈
∫ ∞

0
ĝ(y)dy − s

∫ ∞

0
yĝ(y)dy (37)

and assuming that these two integrals exist. Introducing the
coefficient C = ∫ ∞

0 yĝ(y)dy, the pole s0 is given by

2

K

〈q〉
〈q2〉 = πg(0) − Cs0. (38)

Since the critical coupling equals Kc = 2〈q〉/(πg(0)〈q2〉), we
find the relaxation rate τ−1

r ,

τ−1
r = −s0 = πg(0)

C

Kc − K

K
. (39)

Thanks to the central limit theorem, Gaussian probability
distribution, g(ω) = exp(−ω2/2)/

√
2π , is very widespread in

nature and deserves to be considered in the Kuramoto model
as well. In the Gaussian case, C = 1 and

τ−1
r ≈

√
π

2

Kc − K

Kc

. (40)

FIG. 1. (Color online) Relaxation rate 1/τr versus coupling K in
the Kuramoto model on a complete graph in the region K < Kc.
The solid curve represents a numerical solution of Eq. (29) in the
case of a Gaussian distribution of the natural frequencies with the
mean frequency 〈ω〉 = 0 and the variance σ = 1. The dashed line
represents the linear approximation Eq. (40).

This critical behavior of τ−1
r agrees with a numerical solution

of Eq. (29) displayed in Fig. 1.

B. Relaxation rate above the critical coupling, K � Kc

Above the critical point, K > Kc, the order parameter is
nonzero, r �= 0, and we must substitute the function α0(ω,q)
from Eq. (18) into Eq. (27). For the Lorentz frequency
distribution Eq. (30), bulky but simple calculations give a
simple result,

A(s,q) =
√

1 + (Kqr)2 − 1

(Kqr)2[
√

1 + (Kqr)2 + s]
. (41)

Therefore, Eq. (28) for poles takes the form

1

〈q〉K2r2

∫
dqP (q)

√
1 + (Kqr)2 − 1√
1 + (Kqr)2 + s

= 1

K
. (42)

First, we consider the complete graph. Using P (q) =
δ(q − N + 1) and replacing K(N − 1) → K , we can write
Eq. (42) in the form√

1 + (Kr)2 − 1

(Kr)2[
√

1 + (Kr)2 + s]
= 1

K
. (43)

Using the implicit solution Eq. (A7) for r , we find a solution
s0 and the relaxation rate,

τ−1
r = −s0 = K − 2 = 2ε, (44)

where ε = (K − Kc)/Kc and Kc = 2. This simple result is
exact at any K � Kc for the complete graph. According to
Eqs. (35) and (44), the relaxation rate τ−1

r has the same critical
index both below and above Kc, as one could expect from the
mean-field theory. This result is in contrast to the work [15]
where an asymmetric critical behavior was found. The only
difference between the critical behavior above and below Kc

is that in the ordered phase the slope of the relaxation rate τ−1
r

is two times larger than one in the disordered phase [compare
between Eqs. (35) and (44)].
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Now we find the relaxation rate in scale-free networks.
Assuming |s| � 1 in Eq. (42), we easily find

s0 � −T1(r)

T2(r)
, (45)

where the integrals T1(r) and T2(r) are

T1(r) =
∫ ∞

q0

dqP (q)
[
√

1 + (Kqr)2 − 1]2√
1 + (Kqr)2

,

T2(r) =
∫ ∞

q0

dqP (q)
[
√

1 + (Kqr)2 − 1]

1 + (Kqr)2
. (46)

Here q0 is the minimum degree in the network.
First we consider networks with a finite fourth moment

〈q4〉 (i.e., γ > 5 for scale-free degree distributions). In order
to find T1(r) and T2(r), we use an expansion over r � 1. In
the leading order in r , it gives

τ−1
r = −s0 � 〈q4〉K2r2

2〈q2〉 = 2ε, (47)

where we used Eq. (A5). Therefore, at γ > 5 the relaxation
rate near the critical coupling Kc is the same as for the complete
graph [compare to Eq. (47) with Eq. (44)].

In the case 3 < γ < 5, we find

T1(r) � C(Kr)γ−1a,

T2(r) � 1
2K2r2〈q2〉, (48)

where

a =
∫ ∞

0
dy

y4−γ√
1 + y2(1 +

√
1 + y2)2

. (49)

Then Eqs. (A5) and (45) give us the relaxation rate,

τ−1
r � Aε, (50)

which is proportional to ε, similar to Eq. (47), but with a
coefficient A different from 2.

Based on the results obtained above, we conclude that,
despite network heterogeneity, the relaxation rate has the
critical behavior, τ−1

r ∝ |(K − Kc)/Kc|, at any γ > 3, both
below and above the critical coupling Kc, in contrast to
the critical dependence of the order parameter that has a
non-mean-field critical exponent at 3 < γ < 5. Our results
are summarized in Table I. Note that, in a scale-free network
with 2 < γ � 3 (i.e., when the first moment 〈q〉 of the degree
distribution is finite but the second moment 〈q2〉 diverges in
the thermodynamic limit) the critical coupling is zero, i.e.,
Kc = 0 (see Eq. (A4) and Refs. [7–9]). In this case, the phase
oscillators are synchronized at any nonzero coupling K and
the relaxation rate is finite.

V. KURAMOTO MODEL IN AN EXTERNAL
FIELD AND THE SUSCEPTIBILITY

In the case of continuous phase transitions, critical slowing
down and the divergence of a zero-field susceptibility are inter-
related phenomena. The mean-field theory predicts that near
the critical point the susceptibility is inversely proportional
to the relaxation rate τ−1

r found in Sec. IV. In this section

TABLE I. Critical behavior of the Kuramoto model on complex
networks with degree distribution P (q) ∝ q−γ for the order parameter
r , the relaxation rate τ−1

r , and the susceptibility χ as functions of
the coupling K , |1 − K/Kc| � 1, at zero field h = 0, and versus a
magnetic field h at the critical coupling K = Kc. The width of the
Lorentz distribution of natural frequencies is 1.

Coupling r τ−1
r χ

γ > 5

K < Kc 0 1− K

Kc

1
2

(
1− K

Kc

)−1

K > Kc

(
K

Kc
−1

)1/2
2
(

K

Kc
−1

)
1
4

(
K

Kc
−1

)−1

K = Kc ∝ h1/3 ∝ h2/3 ∝ h−2/3

3 < γ � 5

K < Kc 0 1− K

Kc

1
2

(
K

Kc
−1

)−1

K > Kc

(
K

Kc
−1

)1/(γ−3) ∝ (
K

Kc
−1

)
1

2(γ−3)

(
K

Kc
−1

)−1

K = Kc ∝ h1/(γ−2) ∝ h(γ−3)/(γ−2) ∝ h−(γ−3)/(γ−2)

we show that this relationship is also valid for the Kuramoto
model.

Let us introduce an external field into the Kuramoto model.
Within the model, a phase oscillator can be described by two
dimensional unit vector −→

n (θ ) = (cos θ, sin θ ). We introduce
a field

−→
h (φ) = h(cos φ, sin φ) characterized by an angle φ

and a magnitude h. In a general case, φ and h can be time
dependent. The energy of interaction between oscillator i and
a local field

−→
h i is E = −−→

h i
−→
n i . The field acts with a force

−∂E/∂θi = hi sin(φi − θi) on the oscillator. Substituting this
force into the right hand side of Eq. (3), we obtain equations
describing dynamics of the Kuramoto model in the presence
of local fields

−→
h i [20]:

dθi

dt
= ωi + K

N∑
j=1

aij sin(θj − θi) + hi sin(φi − θi). (51)

The local field
−→
h i forces the oscillator i to be parallel to the

field. This model was studied in [3,20–24].
Let us consider a uniform field, i.e., hi = h and φi = φ. In

the general case, the field
−→
h can rotate with an angular velocity

	h, i.e., φ = 	ht + φ0. In this paper, we only study the
resonance case when 	h equals the angular group velocity 	,
i.e., 	h = 	. Under this choice in the rotating frame, the field
is constant and determines the phase ψ of the order parameter
z, i.e., ψ = φ0. For simplicity, we chose φ0 = 0 and, therefore,
z = r in the steady state. We define the susceptibility as

χ (h) ≡ dr(h)

dh
, (52)

where the order parameter r(h) must be found taking into
account the field h. This definition is similar to the longitudinal
susceptibility in the classical XY model. Another definition
of the susceptibility was used in [24].

In order to obtain r(h), it is necessary to find the function
α0(ω,q,h) in the steady state. One easily sees that α0(ω,q,h)
is determined by Eq. (18) if we replace Kqr with Kqr + h.
Then r(h) is given by Eq. (19) with Kqr → Kqr + h [see
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Eq. (B1) in the Appendix B]. Note that r(h) is nonzero at any
coupling K > 0 if h �= 0. Differentiating Eq. (B1) with respect
to h gives

χ (h) = X1(h)

1 − KX2(h)
, (53)

where

X1(h) = 2

〈q〉
∫

dqP (q)q

(Kqr+h)3

∫ Kqr+h

0
dω

ω2g(ω)√
1+[ω/(Kqr+h)]2

,

X2(h) = 2

〈q〉
∫

dqP (q)q2

(Kqr+h)3

∫ Kqr+h

0
dω

ω2g(ω)√
1+[ω/(Kqr+h)]2

.

(54)

This equation determines the susceptibility as a function of
K and h. In the case of the complete graph and the Lorentz
frequency distribution, the susceptibility equals

χ (h) = 1

3Kr2 + 2hr − K + 2
, (55)

where r is a solution of the cubic equation (B3) in Appendix B.
This result is exact at any K � 0 and h � 0.

At K < Kc and h = 0, the order parameter is zero, r = 0,
and Eqs. (54) give that the zero-field susceptibility equals

χ (0) = 1

2(1 − K/Kc)
, (56)

where Kc is given by Eq. (A4). This result is exact at any
K � Kc in the complete graph.

Above Kc when K − Kc � Kc, we find

χ (0) =
{ 1

4(K/Kc−1) , γ > 5,

1
2(γ−3)(K/Kc−1) , 3 < γ � 5.

(57)

Therefore, the network heterogeneity does not affect the
critical exponent of the zero-field susceptibility if a network
has a finite second moment of degree distribution. This critical
behavior of susceptibility is a general property of mean-field
models [16]. The heterogeneity affects only the numerical
coefficient in Eq. (57). At 3 < γ � 5, we have the coefficient
1/[2(γ − 3)] instead of 1/4 at γ > 5.

Let us find a field dependence of the susceptibility χ (h)
at the critical point K = Kc. Using Eq. (B6) in Appendix B,
which determines r(h) at the critical coupling K = Kc, we
obtain

χ (h) ∝
{
h−2/3, γ > 5,

h−(γ−3)/(γ−2), 3 < γ � 5.
(58)

One can see that network heterogeneity changes the critical
exponent of the susceptibility χ (h) if the fourth moment of the
degree distribution diverges. This result is in contrast to the
fact that the critical behavior of the zero-field susceptibility
χ (0) is not affected by the heterogeneity [see Eq. (57)].

Our results are summarized in Table I. One can see that the
Kuramoto model on uncorrelated random complex networks
has the same critical exponents as the Ising model; i.e., it
belongs to the same universality class as the Ising model [9,25].

VI. SIMULATIONS OF THE KURAMOTO
MODEL ON COMPLEX NETWORKS

In order to test our approach based on the annealed-
network approximation, we performed numerical simulations
of the Kuramoto model on scale-free complex networks.
The natural frequencies were distributed according to the
Lorentz distribution, Eq. (30), with � = 1. We built scale-free
complex networks with N = 104 nodes by use of the static
model [26,27] with the degree exponents γ = 4 and 6 and
the mean degree 〈q〉 = 20. We also performed simulations
for larger 〈q〉, 〈q〉 = 50 and 100, and obtained similar results
(not presented in this paper) to ones for 〈q〉 = 20. Then we
set the Kuramoto model on the networks and studied its
dynamics by solving the set of rate equations (51) in a uniform
field

−→
h = (h,0). We used an iterative method with the time

step �t = 0.001. In our simulations we measured the order
parameter r(h) given by Eq. (2), averaging

√
z(t)z∗(t) over

a large observation time. Then we found the susceptibility
χ (h) = [r(h) − r(h − �h)]/�h, Eq. (52). Furthermore, the
physical parameters were averaged over 100 network real-
izations. Results of our simulations are displayed in Fig. 2 for
networks with finite and divergent fourth moment of the degree
distribution, γ = 6 and γ = 4, respectively. Figure 2(a) shows
that the susceptibility χ (h) has a sharp peak at K = Kc ≈ 0.1
and this peak is growing when the field h decreases. In
Figs. 2(b) and 2(c) one can see that the reciprocal of the
susceptibility 1/χ (h) is proportional to |K − Kc|/Kc with the
slopes that agree with our results in Table I.

VII. PAIR CORRELATION FUNCTIONS
AND SUSCEPTIBILITY

In the classical XY model, if we apply a magnetic field hx

along the x axis, the longitudinal susceptibility dMx/dhx is

dMx

dhx

= 〈
M2

x

〉 − 〈Mx〉2,

= 1

N

∑
i,j

[〈cos θi cos θj 〉s−〈cos θi〉s〈cos θj 〉s], (59)

where Mx = N−1 ∑
i cos θi is the x component of the mag-

netization
−→
M = (Mx,My). Here 〈· · · 〉s stands for the standard

average over the statistical ensemble. This equation relates the
susceptibility to the pair correlation function.

In the case of the Kuramoto model, we suggest that a long
time average,

〈A(t)〉t ≡ 1

T

∫ T

0
A(t)dt, (60)

replaces 〈A〉s , where the observation time T � 1 and the
phases θi(t) of oscillators are determined in the rotating frame
related with an angular group velocity 	. Introducing a field−→
h = h(cos φ, sin φ) with the phase φ = 0, as it was discussed

in Sec. V, we define a pair correlation function in the Kuramoto
model as

C(h) = 1

N

∑
i,j

[〈cos θi(t) cos θj (t)〉t−〈cos θi(t)〉t 〈cos θj (t)〉t ]

= N
{〈Re2[z(t)]〉t − 〈Re[z(t)]〉2

t

}
, (61)
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FIG. 2. (Color online) Susceptibility χ [Eq. (52)] versus the
coupling K near the critical point Kc in the Kuramoto model on
scale-free networks. Results of numerical simulations. (a) χ in a
scale-free network with the degree exponent γ = 6 in the fields
h = 0.01 (circles), h = 0.02 (stars), and h = 0.03 (diamonds). (b),(c)
1/χ at γ = 6 and 4, respectively. Solid lines are lines A(Kc − K)/Kc

and B(K − Kc)/Kc with the slopes A = 2 and B = 4 in panel (b)
and A = 2 and B = 2 in panel (c). The mean degree of the networks
is 〈q〉 = 20. Each point on the plots is obtained by averaging over 104

time steps in the iterative procedure and 100 network realizations.

where Re[z(t)] = r(t) cos[ψ(t)] is the real part of the complex
parameter z(t) in Eq. (2). The phase ψ fluctuates around the
field phase φ = 0 in the rotating frame. We suggest that the
pair correlation function C(h) is equal to the susceptibility
χ (h), Eq. (52), i.e.,

C(h) = χ (h). (62)

The equality of the susceptibility to a pair correlation function
is a general property of statistical physics models. Based on
this suggestion and Table I, we expect that C(h = 0) ∝ |K −
Kc|−1, both above and below Kc.

One can also introduce the pair correlation function in
slightly different form,

C̃(h) = N [〈z(t)z∗(t)〉t − 〈z(t)〉t 〈z∗(t)〉t ],
= N [〈r2(t)〉t−〈r(t)eiψ(t)〉t 〈r(t)e−iψ(t)〉t ]. (63)

FIG. 3. Susceptibility χ , Eq. (52), and correlation function C,
Eq. (61), versus coupling K in the Kuramoto model on a scale-free
network with the degree exponent γ = 6 in the field h = 0.01. In
simulations, the mean degree of the network is 〈q〉 = 20.

Here, as well as above, z(t) is defined in the rotating frame.
Note that the function Eq. (63) is similar to the correlation
function N [〈−→M−→

M 〉s − 〈−→M 〉s〈−→M 〉s] in the XY model. It is well
known that the latter function has the same critical behavior
as the function in Eq. (59).

The function Eq. (63) was introduced by Daido in the case
of a complete graph [28]. Numerical simulations in [15,28,29]
revealed that C̃ has a sharp maximum at the critical coupling
Kc. Using an analytical approach in [15], Daido found that
C̃ ∝ |K − Kc|−γ ′

, with the critical exponent γ ′ = 1 when
K < Kc and γ ′ = 1/4 when K > Kc. However, the origin
of this asymmetry was not explained. Note that this result is
in contrast to the mean-field theory which predicts symmetric
critical behavior with γ ′ = 1. Note also that the analytical
approach in [15] gives the relaxation rate τ−1

r ∝ (K − Kc)1/4,
in contrast to our exact result τ−1

r = K − Kc [see Eq. (44)].
In order to verify our suggestion [Eq. (62)], we solved

numerically Eqs. (51) by use of the standard iterative method
and calculated C by use of Eq. (61) in the case of a scale-free
network with N = 104 nodes and the degree exponent γ = 6
in small fields h. Results of our simulations are represented in
Figs. 3 and 4. Each point on the plots is obtained by integrating
over 105 time steps (�t = 0.001) in Eq. (60) (initial 5 × 105

time steps in the iterative procedure were skipped in order
to reach a steady state). Figure 3 shows that C(h) has a sharp
peak at the critical point K = Kc and, moreover, C(h) ≈ χ (h).
As one can see in Fig. 4, near the critical coupling, 1/C is
proportional to |K − Kc| with approximately the same slope
as 1/χ in Table I and Fig. 2. We also calculated the function
C̃ and found that it has the same critical behavior as C, i.e.,
C̃(h = 0) ∝ |K − Kc|−1, with the same critical exponent both
below and above Kc, but C̃(h = 0) was approximately two
times larger than C. We assume that this difference is due to
phase fluctuations since the network size and the mean degree
were not sufficiently large in our simulations. We expect that
in the limit N → ∞ and 〈q〉 � 1, C and C̃ are equal to each
other in the critical region at a nonzero field.
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FIG. 4. (Color online) (a) Pair correlation function C [Eq. (61)]
versus the coupling K near the critical point Kc in a scale-free network
with the degree exponent γ = 6 in the fields h = 0.01 (circles), h =
0.02 (stars), and h = 0.03 (diamonds). Panel (b) shows 1/C. Solid
lines are lines A(Kc − K)/Kc and B(K − Kc)/Kc with the slopes
A = 2 and B = 4. In simulations, the mean degree of the network is
〈q〉 = 20.

Thus, our simulations support the suggestion [Eq. (62)] that
in the Kuramoto model the pair correlation function [Eq. (63)]
is equal to the susceptibility [Eq. (52)]. The divergence of C(0)
at the critical coupling signals the emergence of infinite-range
pair correlations at Kc. However, further theoretical analysis
and more detailed simulations of larger networks are necessary
to prove this suggestion.

VIII. CONCLUSION

In this paper, we studied an impact of network heterogeneity
on relaxation dynamics and susceptibility of a system of
coupled phase oscillators described by the Kuramoto model on
sparse uncorrelated complex networks with scale-free degree
distributions P (q) ∝ q−γ . By use of the Ott-Antonsen method
and the annealed-network approach, we found analytically the
critical behavior of the relaxation rate τ−1

r and the suscepti-
bility χ near (both above and below) the critical coupling Kc

of a second-order phase transition into a synchronized state.
In particular, we showed that near Kc the susceptibility is
inversely proportional to τ−1

r at all γ > 3, in agreement of the
mean-field theory. We studied how the relaxation dynamics
is influenced by the network heterogeneity. Our analysis
showed that the critical behavior of the relaxation rate and
the susceptibility follows the standard mean-field power laws,
τ−1
r ∝ |K − Kc| and χ ∝ 1/|K − Kc|, if the second moment

of the degree distribution is finite, i.e., at γ > 3, in contrast to
the critical behavior of the order parameter, which is strongly
influenced by the heterogeneity in networks with a divergent
fourth moment of the degree distribution (3 < γ � 5). The
divergence of the susceptibility manifests an infinite response
of the Kuramoto model to an external field. However, we found
that a strong influence of the network structure can be observed
in field dependence of the relaxation rate and the susceptibility
when 3 < γ � 5. At the critical coupling, these parameters
are described by a power law with respect to an external
field, wherein the power law exponent depends on γ when
3 < γ � 5, in particular, χ (h) ∝ h−(γ−3)/(γ−2) in contrast to
χ (h) ∝ h−2/3 when γ > 5. Our results are summarized in
Table I. Furthermore, we introduced a pair correlation function
of phase oscillators and showed numerically that it has a
sharp peak at the critical coupling, signaling the emergence
of long-range correlations between oscillators. We also carried
out numerical simulations of the Kuramoto model on scale-free
complex networks with finite and divergent fourth moments
of degree distributions. Our simulations confirmed the critical
behavior of the susceptibility and the pair correlation function.
In particular, we demonstrated a strong enhancement of the
pair correlation function and the susceptibility when the model
approaches the critical point. This enhancement signals the
emergence of long-range correlations between oscillators.
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APPENDIX A: THE ORDER PARAMETER VERSUS
THE COUPLING K

In this Appendix we develop a method that allows us to
solve Eq. (19) and find the order parameter r as a function of
the coupling K in the case of scale-free degree distributions
P (q) = Cq−γ , where C is the normalization constant. We
consider the function

�(ρ) ≡ 1

〈q〉
∫

dqP (q)q2g(ρq). (A1)

In the leading order in ρ � 1, this function has an expansion
with respect to ρ,

�(ρ) =
{

�0 + �2ρ
2, γ > 5,

�0 + �sρ
γ−3, 3 < γ < 5,

(A2)

where the coefficients are

�0 = g(0)〈q2〉/〈q〉,
�2 = g′′(0)〈q4〉/(2〈q〉), (A3)

�s = C

〈q〉(γ − 3)(γ − 4)

∫ ∞

0
dxx4−γ g′′(x).
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Here g′′(ω) = d2g(ω)/dω2 and 〈qn〉 ≡ ∑
q P (q)qn is the nth

moment of the degree distribution.
Using the Lorentz distribution Eq. (30) for natural frequen-

cies with 	 = 〈ω〉 = 0 and substituting the expansion (A2)
into Eq. (19), we find the critical coupling

Kc = 2

π�0
= 2〈q〉

〈q2〉 (A4)

and the order parameter r(K) as a function of K ,

r =
⎧⎨⎩

√
〈q〉3

〈q〉2〈q4〉ε
1/2, γ > 5,

r0ε
1/(γ−3), 3 < γ < 5,

(A5)

where ε ≡ (K − Kc)/Kc and

r0 ≡ 1/

(
2Kγ−2

c |�s |
∫ 1

0
dxxγ−3

√
1 − x2

)
. (A6)

This result shows that the network heterogeneity strongly
influences the critical exponent β of the order parameter
r ∝ εβ in agreement with [7–9]. In networks with the degree
exponent 3 < γ < 5, when the fourth moment 〈q4〉 diverges,
the exponent β differs from the mean-field value 1/2 that takes
place at γ > 5. At γ � 3 the critical coupling Kc = 0 and at
any finite K > 0 the system is in the synchronized state.

Equations (19) and (20) become exact for the complete
graph. In this case, all oscillators have the same degree q =
N − 1 and P (q) = δ(q − N + 1). Moreover, it is necessary to
replace Kq with K . For the Lorentz frequency distribution,
the implicit solution of Eq. (19) for the order parameter is

r =
√

K − Kc

K
, (A7)

where Kc = 2.
Note that, in a scale-free network with γ � 3, the critical

coupling is zero, Kc = 0, and the phase oscillators are
synchronized, i.e., r > 0, at any K > 0 [7–9].

APPENDIX B: THE ORDER PARAMETER
VERSUS AN EXTERNAL FIELD

Let us consider of the Kuramoto model in external field h.
According to Sec. V, in the rotating frame, the order parameter
r as a function of the coupling K and the external field h is

determined by an equation,

r =
∫

dqP (q)q

〈q〉
∫ Kqr+h

−Kqr−h

dωg(ω)

√
1−

(
ω

Kqr + h

)2

.

(B1)

Using the Lorentz distribution g(ω), Eq. (30), we find that this
equation takes a simple form,

r =
∫

dqP (q)q

〈q〉
[
√

1 + (Kqr + h)2 − 1]

(Kqr + h)
. (B2)

In the case of the complete graph, i.e., when P (q) = δ(q −
N + 1) and K(N − 1) → K , Eq. (B2) is reduced to a cubic
equation,

Kr3 + hr2 − (K − 2)r − h = 0. (B3)
At h = 0, a solution of the cubic equation is given by Eq. (A7).
At K = Kc = 2 and h � 1, we find

r ≈
(

h

Kc

)1/3

. (B4)

Interestingly, the magnetization M of the Ising model on a
regular Bethe lattice has the same critical behavior M ∝ h1/3

[30]. Differentiating Eq. (B3) with respect to h gives the
explicit susceptibility for the complete graph,

χ (h) = dr

dh
= 1

3Kr2 + 2hr − K + 2
. (B5)

In the case of a scale-free degree distribution, P (q) =
Cq−γ , solving Eq. (B2), we find

r =
⎧⎨⎩

( 〈q2〉2

〈q4〉
)1/3( h

〈q〉Kc

)1/3
, γ > 5,

1
q0Kc

(
q0Kc

α

)1/(γ−2)( h
q0Kc

)1/(γ−2)
, 3 < γ < 5,

(B6)

where the coefficient α is

α ≡ (γ − 2)
∫ ∞

0
dx

xγ−4

(1 + √
1 + x2)2

(B7)

and q0 is the minimum degree. Thus, Eq. (B6) shows
that the network heterogeneity strongly impacts the field
dependence of the order parameter r(h) and the susceptibility
χ = dr(h)/dh at the critical point K = Kc if the network has a
divergent fourth moment of the degree distribution. Instead of
the standard mean-field critical exponent 1/3 when γ > 5, we
obtain 1/(γ−2) when 3 < γ < 5. This result is an agreement
with the generalized Landau theory of phase transitions in
complex networks [9].
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