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Synchronization properties of heterogeneous neuronal networks with mixed excitability type
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We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network
structures with the same propensity for synchronization (as quantified by master stability function analysis)
may develop dramatically different synchronization properties when heterogeneity is introduced with respect to
neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of
phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations.
Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC
respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that
Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons
increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations
between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to
synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing
that type 2 hub cells easily “hijack” neuronal networks to synchronization. These results underscore the fact
that the degree of synchronization observed in neuronal networks is determined by a complex interplay between
network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural

connectivity from dynamical correlations must in general take both factors into account.
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I. INTRODUCTION

Synchronization of neuronal networks is a prominent
feature of brain activity, having been associated with directed
attention [1,2], memory formation [3,4], and processing of sen-
sory stimuli [5], as well as with pathologies such as Parkinson’s
disease [6] and epilepsy [7]. Results from nonlinear dynamical
systems theory have been instrumental in understanding the
factors which determine neuronal synchronization, which
generally fall into two categories: dynamical properties of
individual neurons and characteristics of the coupling structure
between neurons.

Concerning the first category, most neurons exhibit one
of two bifurcation structures in their transition to firing,
saddle node, or Andronov-Hopf [8] (referred to as type 1
and type 2 excitability, respectively). Neurons exhibiting these
two excitability types generally respond differently to brief
perturbations [9], as characterized by the phase response
curve (PRC). Assuming a periodically firing neuron, the PRC
is a function which maps the phase at which a neuron is
stimulated to the phase response of the neuron. Type 1 neurons
usually exhibit phase advances (firing sooner than they would
with no stimulus) for all stimulation phases, whereas type
2 neurons typically show phase delays at early stimulation
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phase and phase advances at relatively later stimulation
phase. These qualitatively different responses to stimulation
lead to dramatically different synchronization properties, with
networks of type 2 neurons synchronizing much better than
networks of type 1 neurons when coupled with excitation
[10-12].

Considering the influence of coupling structure upon
network synchronization, the master stability function (MSF)
approach has proven a powerful tool for disentangling the ef-
fects of individual oscillator dynamics from network structure
in contributing to a network’s propensity for synchronization
(PFS) [13]. MSF analysis has been applied to many network
connectivity paradigms, including two which are commonly
used to model connectivity within neuronal networks. The
Watts-Strogatz (WS) small-world network model is useful
because it interpolates between local, latticelike, and random
connectivity structures using a single parameter, the rewiring
probability p, which introduces “shortcuts” between nodes
[14]. MSF analysis has shown that small-world PFS increases
with increased number of shortcuts [15], increased network
size, and increased connection density [16].

Scale-free (SF) networks, on the other hand, are char-
acterized by a power-law degree distribution p(k) ~ k77, a
property that has been observed in the functional connectivity
between hippocampal neurons in situ [17]. MSF analysis
has shown that unweighted SF networks synchronize quite
poorly in comparison with unweighted WS networks due to
heterogeneity in degree distribution leading to hub nodes being
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“overloaded” [18]. This poor PFS may be remedied, however,
by weighting the incoming links to each node such that all
nodes have the same total impinging connection strength. In
this case, SF networks may synchronize as well as, or even
better than, small-world networks [19].

While PRC theory and MSF theory have provided deep
insight into the contributions of neuronal dynamics and
connectivity structure to the synchronization of neuronal
networks, there has been little investigation into the interplay
between these two factors in networks that are heterogeneous
with respect to excitability type. This may in part be due
to the fact that classical MSF theory assumes a completely
homogeneous network with respect to oscillator dynamics
(although extensions to nearly identical oscillator dynamics
have been made [20,21]). In this study, we numerically explore
instances of two different network connectivity models, WS
and SF, which have the same PFS according to MSF theory.
We show that when the neuronal networks are homogeneous
with respect to excitability type, either all type 1 or all
type 2, both connectivity models exhibit the same degree of
synchronization, consistent with calculations made using MSF
theory. When dynamical heterogeneity is introduced, however,
the synchronization properties of WS and SF networks can
be either similar or dramatically different, depending upon
correlations between node degree and excitability type. In
particular, setting the hub nodes in SF networks to type 2
excitability results in a dramatic increase in synchronization
compared to WS networks with the same proportion of type 2
neurons.

II. NEURON MODEL

For our numerical investigation of mixed-excitability-type
networks, we used the Morris-Lecar (ML) model neuron,
which is governed by the following equations:
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where V; is the membrane potential of the ith neuron, w; is
the corresponding recovery variable, I is a constant external
current, and I;”" is the synaptic current to neuron i induced
by the firing of neurons coupled to neuron i. Parameter
values are given in Table I, with modulation of the single
parameter V3 switching between type I and type II neuronal
excitability [22,23]. Values of I were uniformly distributed
over the interval [70.93, 76.65] uwA/cm? for type 1 neurons
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TABLE 1. Parameters for Morris-Lecar model neurons, from
[22,23]. Switching the parameter V3 from 12.0 to 2.0 mV switches
the neuronal excitability from type 1 to type 2.

C 20 uF/cm?
8ca 4.0 mS/cm?
8K 8.0 mS/cm?
8L 2.0 mS/cm?
Eca 120.0 mV
Ex —80.0 mV
E; —60.0 mV
v, —12mV
\%3 18.0 mV
Vi 12.0 mV or 2.0 mV
Vy 17.4 mV
P 115

and [76.06, 81.20] wA /cm? for type 2 neurons, corresponding
to firing rates between 19.5 and 20.5 Hz in both cases.

Figure 1(a) shows the frequency-current curves for these
two neuronal types, with the type 1 neuron firing at arbitrarily
low frequencies and the type 2 neuron exhibiting a nonzero
frequency threshold, typical of Andronov-Hopf bifurcations.
The similarity between these two curves makes this particular
parameter set attractive for network simulations since it largely
controls for different frequency response between the two
excitability types. Figure 1(b) shows PRCs at firing threshold
for the two neuronal types, with the type 1 neuron showing
an exclusively positive curve and the type 2 neuron featuring
an early phase delay region and rightward skew, both features
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FIG. 1. (Color online) Characteristics of model neurons. (a)
Frequency-current curves for Morris-Lecar neurons with type 1
(upper line) and type 2 (lower line) excitability. (b) Phase response
curves for type 1 (upper line) and type 2 (lower line) model neurons.
(c), (d) Raster plots of network activity for homogeneous Watts-
Strogatz small-world networks (with p = 0.8) composed entirely of
either type 1 neurons (c) or type 2 neurons (d).
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which have been shown to enhance synchronization under
excitatory coupling [24-26].

In network simulations, neurons were conductance coupled
with fast excitatory synapses, so that the synaptic current
delivered from neuron j to neuron i due to a spike by neuron
J at time ¢; was given by

syn t — t
B =sen (<5 B @

Fast excitation was modeled by setting T = 0.5 ms and
Eqn =0mV. The total synaptic current to neuron i was
simply ;" =Y, 17", where T'; is the set of all neurons
which synapsed onto neuron i. For both WS and SF simula-
tions, coupling conductances s;; were constrained such that
the total coupling strength impinging on each neuron was the
same throughout the network: s;; = ki (where kI denotes the
in-degree of neuron 7). This constraintis biophysically realistic
in neuronal networks [27], and has been shown to enhance the
PFS in SF networks to the point that it is comparable to the
PFS observed in small-world networks [19]. Consistent with
previous studies [10-12], homogeneous networks composed
entirely of type 2 cells synchronized better than homogeneous
type 1 networks for a wide range of values of the total synaptic
strength S. Figures 1(c) and 1(d) show representative raster
plots of network activity for § = 14.0 mS/cm?, the coupling

strength we used throughout this study.

III. NETWORK CONNECTIVITY

In order to investigate the interplay between connectivity
structure and excitability type, we employed two fundamen-
tally different network connectivity paradigms: Watts-Strogatz
(WS) small-world networks and scale-free (SF) networks.
In the WS model [14], each of N neurons sends outgoing
connections to its nearest d neighbors, and with probability
p each connection in the network is rewired to a randomly
selected neuron. The rewiring parameter p thus interpolates
between a latticelike, locally connected network and an
essentially random network. We used Barabasi’s preferential
attachment model [28] to construct SF connectivity. Briefly,
this model starts with a fully connected network of M
neurons, and as additional nodes are introduced they each
make ¢ connections with previously established nodes, with
the probability of connection being proportional to the degree
of each node. Since Barabasi’s protocol is for an undirected
network, and neuronal networks are inherently directed, we
randomly assigned directions to the connections resulting from
the Barabasi algorithm. All networks in this study featured
N = 1000 neurons and 4% connectivity.

We used MSF analysis to quantify the PFS of the model
networks described above. MSF theory assumes a network
of coupled, identical oscillators whose dynamics follow the
general form

N
X; ZF(Xi)+SZgin[Xj]a (N

j=1
where X; is a vector representing the dynamical variables of

the ith oscillator, F is a function governing the individual
oscillator dynamics, and H is a linear vectorial function. G is a
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FIG. 2. (Color online) Propensity for synchronization of Watts-
Strogatz and scale-free networks according to master stability

function analysis. Each value plotted represents the average over
10 network realizations, with error bars representing s.e.m.

zero row-sum coupling matrix in which each diagonal element
G;; reflects the summed strength of all connections incoming
to node i, G;; = — Z#i Gij. It can be shown that the more
compact the spectrum of eigenvalues of G is, the wider will
be the range of parameters for which the synchronous state is
stable [29]. For an undirected and symmetric network, this is
most easily quantified using the ratio of the largest eigenvalue
to the smallest nontrivial eigenvalue Ay /A,, with smaller
values implying better PES [30]. For a directed network the
eigenvalues are complex, but it can be shown that ordering
the eigenvalues according to their real parts and taking the
analogous ratio A’ /A% is an appropriate measure of a directed
network’s PFS, so long as G meets the constraint ) | i Gj=1
forall i [31].

All WS and SF networks in this study met this constraint
by construction, for we set G;; = %, where A is the network
adjacency matrix (this also implies‘ sij = S Gij). Normalizing
the input to each cell in this way is biophysically realistic
since manifold homeostatic plasticity mechanisms have been
experimentally shown to prevent total synaptic input from
growing too large or too small, thereby maintaining the
stability of neuronal networks [27]. Figure 2 shows the PFS, as
quantified by the ratio A%, /A5, for WS networks as a function
of the rewiring parameter p, as well as for the SF network
model used in this study. Note how in terms of connectivity
structure alone, SF networks have very nearly the same PFS
as WS networks with p > 0.8.

IV. NETWORK SIMULATIONS

By comparing the synchronization of mixed-excitability
p = 0.8 WS networks and SF networks, we were therefore
able to investigate the effects of dynamical heterogeneity on
network synchronization while controlling for the contribution
of connectivity structure to network PFS. We ran a series of
simulations of WS and SF networks in which the proportion
of type 2 neurons comprising each network was varied
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FIG. 3. (Color online) Effects of dynamical heterogeneity on the synchronization of SF and WS networks with random type 2 placement.

(a) Phase-locking synchronization, as quantified by mean-phase coher
networks. Type 2 cells were placed randomly throughout both network

ence, as a function of percentage of type 2 cells present in SF and WS
types. (b) Measure of burst synchronization as a function of percentage

of type 2 cells. (c)—(e) Raster plots depicting network spike times for networks with WS connectivity, for three levels of type 2 network
composition. (f)-(h) Same as (c)—(e), but for networks with SF network connectivity. Blue (dark gray) dots indicate type 1 spikes, red (light

gray) dots type 2 spikes.

(type 2 cells were randomly placed within each network).
We then quantified both phase-locking synchronization and
burst synchronization as a function of the fraction of type
2 neurons comprising the network. Briefly, phase-locking
synchronization was quantified by averaging over the mean
phase coherence (MPC) between all pairs of neurons [32],
where MPC between two neurons was defined by

1 N
_ ik
Oap = |— ) e, (®)
thr — 1,
m=h<iLJL> ©
tak+1 — lak

where 1, ; is the time of the kth spike of neuron b, 7,  is the
time of the spike of neuron a that is largest while being less
than # 4, t, 441 is the time of the spike of neuron a that is
smallest while being greater than or equal to #; x, and N}, is the
number of spikes of neuron b. Burst synchronization x was
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quantified using the measure of Golomb et al. [33]:

2
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where a‘% is the time-averaged variance of the mean voltage
signal from all N neurons in the network, and 0‘2,‘_ is
the variance of just the i th voltage trace. This intuitive measure
depends upon the increase in the variance of the mean voltage
signal as bursting synchronization increases. Both MPC and
x are bounded on the interval [0,1], with MPC attaining a
value of 1 when all neurons are perfectly phase locked, and x
attaining a value of 1 when all neurons continually fire together
(or “burst”) at exactly the same time.

Figures 3(a) and 3(b) show how these synchronization
measures varied with proportion of type 2 cells present in the
network. For both measures, synchronization of WS and SF
networks increased monotonically with percentage of type 2
cells, and synchronization for the two connectivity paradigms
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FIG. 4. (Color online) Effects of type 2 placement on the synchronization of SF networks. (a) Mean phase coherence of network activity
as a function of proportion of type 2 cells composing the network, for three different type 2 placement procedures: (1) type 2 cells placed as
the most highly connected cells, (2) random placement of type 2 cells, and (3) type 2 cells placed as the least-connected cells. (b) Bursting
synchronization as a function of proportion of type 2 cells, with the type 2 placement procedures described in (a). (c)—(e) Raster plots depicting
network activity for the three different placement procedures, with type 2 composition fixed at 25%. Blue (dark gray) dots indicate type 1
spikes, red (light gray) dots type 2 spikes. Note how when the most highly connected cells are type 2, they not only form their own cluster of
elevated synchronization, but also increase synchronization throughout the rest of the network.

was virtually identical at the homogeneous extremes of either
entirely type 1 or entirely type 2 network composition. This
result accords well with the nearly identical PFS calculated
for the two networks (Fig. 2) since MSF theory assumes
homogeneous oscillator dynamics. More interesting is the
nearly identical synchronization displayed by WS and SF
networks for the various degrees of heterogeneity between
these two extremes. For all values of type 2 percentage
composition, WS and SF networks exhibited nearly identical
phase locking and bursting synchronization. It should be noted
that although Fig. 3 shows results for a rewiring parameter of
p = 0.8 in WS networks, we also obtained nearly identical
results using a value of p = 1.0 (data not shown).

Further investigation revealed that this effect was not
generic, but depended upon the placement of type 2 cells within
the network. Simulations of SF networks were conducted in
which the placement of type 2 cells was correlated with the
total degree (k™™ + k°!) of each neuron, using three different
placement procedures: for a given type 2 composition, (i) the
most highly connected cells were switched from type 1 to type
2, (ii) the least highly connected cells were switched to type 2,
and (iii) cells were randomly selected to be switched to type
2, irrespective of connectivity (as in Fig. 3). Figure 4 shows
that these dynamical-structural correlations dramatically in-

fluenced network dynamics, with placement of type 2 cells
as highly connected hubs leading to dramatically enhanced
network synchronization. Compared to the least-connected
and random placement procedures, placing type 2 cells as
hubs resulted in network synchronization increasing much
more rapidly as type 2 composition increased. This is clearly
demonstrated in the raster plots of Figs. 4(c)—4(e), which
show how type 2 hub cells not only formed a cluster of tight
synchronization amongst themselves, but also recruited the
remaining type 1 neurons to a higher level of synchronization
than was observed when type 2 placement was uncorrelated or
negatively correlated with neuronal degree.

In order to better investigate how type 2 hub cells were
capable of “hijacking” type 1 cells to synchronization, we
measured the mean phase coherence and burst synchronization
of type 1 and type 2 populations separately, as a function of
percent type 2 hub cells composing the network [Figs. 5(a) and
5(b)]. There was an interesting interval, from 20% to 50% type
2 composition, in which type 2 cells exhibited higher phase
locking than type 1 cells, but type 1 cells showed better burst
synchronization than type 2 cells. This indicated that type 2
cells were more consistent in their firing pattern from burst
to burst, but that individual type 2 bursts were not as tightly
synchronized as type 1 bursts. This phenomenon is clearly
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FIG. 5. (Color online) Synchronization of type 1 and type 2 populations of SF networks with type 2 hub cells. (a) Mean phase coherence
of type 1 cells (lower line), type 2 cells (upper line), and all cells (middle line) as a function of type 2 network composition. (b) Burst
synchronization of type 1, type 2, and all cells as a function of type 2 network composition (same color coding as in panel (a). (c)—(e) Raster
plots of network activity for 20%, 50%, and 80% type 2 cells. Blue (dark gray) dots indicate type 1 spikes, red (light gray) dots type 2 spikes.

depicted in the raster plots of network activity [Figs. 5(c)-5(e)].
Also interesting was that with relatively few type 2 hub cells
[Fig. 5(c)], peak type 1 burst activity lagged peak type 2 burst
activity by ~7 ms, but there were a sizable minority of type 1
cells that fired outside each type 1 burst.

We suspected that heterogeneity in the intrinsic firing
frequencies of cells (which were distributed between 19.5 and
20.5 Hz across the network) was primarily responsible for both
the imprecision of type 2 bursting and the large number of type
1 cells which seemed to randomly fire outside of type 1 bursts
[Figs. 4(c) and 5(c)]. Simulations with homogeneous intrinsic
frequencies (in which each cell naturally fired at exactly 20 Hz)
did lead to much more precise type 2 bursting (Fig. 6), but,
somewhat surprisingly, there were still a sizable minority of
type 1 cells that did not fire with the majority of type 1 cells
within each burst [Fig. 6(a)]. Moreover, we found that the type
1 cells that fired outside of the synchronous bursts was not
consistent, but varied from burst to burst. This was especially
surprising given the highly synchronous input received from
the type 2 population.

Further investigation revealed that globally weakening all
type 1 — type 1 coupling strengths led to a progressive
decrease in the number of type 1 cells firing outside each
network burst [Figs. 6(b)-6(d)]. With type 1 — type 1 coupling
strengths reduced to 60% of their original value, all type 1 cells
burst together. This seems to indicate that the synchronous
“signal” received by type 1 cells from synchronous type 2 hub
cells was somewhat drowned out by the “noise” from other
type 1 cells when type 1 — type 1 coupling strength was high.
Reducing type 1 — type 1 coupling strength would therefore

enhance the signal-to-noise ratio, enabling bursts of type 2 hub
cells to better drive type 1 network synchronization.

100% Type 1—»Type 1 80% Type 1—»Type 1
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FIG. 6. (Color online) Effects of diminished type 1 — type 1
coupling strength on type 1 bursting. Simulations were run with
exactly the same parameters as in Fig. 4(c), except that intrinsic
cellular firing frequencies were homogenous (20 Hz) and type 1 —
type 1 coupling strength was progressively decreased. (a)—(d) Fewer
type 1 cells fired outside type 1 bursts as type 1 — type 1 coupling
strength decreased. Blue (dark gray) dots indicate type 1 spikes, red
(light gray) dots type 2 spikes.
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V. DISCUSSION

Our results demonstrate that networks whose connectiv-
ity structures alone exhibit the same propensity for syn-
chronization may nevertheless show dramatically different
synchronization properties when local dynamical-structural
correlations are taken into account. We have provided specific
examples of two distinct network connectivity paradigms, WS
small-world and scale-free, which have the same propensity
for synchronization according to master stability function
analysis, and show identical levels of synchronization for
dynamically homogeneous networks, yet exhibit different
synchronization properties for dynamically heterogeneous
networks. Both types of networks show remarkably similar
levels of synchronization for all type 1 and type 2 mixing
ratios when type 2 cells are placed randomly, but their
synchronization properties dramatically diverge when type 2
cells are placed either as hubs or as least-connected cells.
(Analogous type 2 placement in WS small-world networks
was not conducted because directed WS degree distribution is
highly homogeneous.)

PHYSICAL REVIEW E 91, 032813 (2015)

The dramatic influence of local dynamical-structural cor-
relations on global network dynamics underscores the impor-
tance of taking these correlations into account when attempting
to reconstruct network structure from measured dynamical
correlations [34,35]. Furthermore, our results indicate that type
2 hub cells are exceptionally capable of “hijacking” neuronal
networks to synchronization, while type 1 hub cells are not
(Fig. 4). This may inform previous studies indicating that hub
cells orchestrate network synchronization in the hippocampus
[17] and contribute to epileptic seizures [36], suggesting that
in some cases the hyperconnectedness of hub cells is not
sufficient to orchestrate network synchronization, but must
work in tandem with appropriate neuronal dynamics.
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