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Modeling the average shortest-path length in growth of word-adjacency networks
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We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such
networks belong to the category of networks with accelerated growth but their shortest-path length appears
to reveal the network size dependence of different functional form than the ones known so far. We thus
compare the networks created from literary texts with their artificial substitutes based on different variants of the
Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics
of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as
a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory
agreement with the empirical result is obtained.
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I. INTRODUCTION

Essential features of many real-world systems can be
expressed by networks with a growing number of nodes and
edges. Hardware structure of the Internet [1–3], its information
content consisting of linked worldwide Web documents [4–7],
social systems [8–10], user-object systems [11], collaborations
[12–14], scientific paper citations [15–17], and epidemic
networks [18], to list a few, are systems, in which continuous
inflow of new elements and relations leads to substantial
system growth.

A system that is the central subject of this work—natural
language—can also be represented by growing networks, both
on the global and local scales. By treating individual words as
the basic constituents of any message transmitted via language,
one may define various relations among the words based on
their positions in this message, function or meaning, and con-
struct a related network with the words as its nodes. From a lo-
cal perspective, the growth of such a network can be realized by
expanding the message (e.g., writing a piece of text) by adding
to the already existing part of it both the new words that were
not used there before, and repeating the old words put in new
contexts. Globally, by considering the network formed from a
giant corpus consisting of all the existing written and spoken
text samples, new nodes may be identified with newly coined
words that appear from time to time in every natural language.

As the succession of words in a piece of text reflects both
the common and individual properties of natural language,
including grammar and author’s style, the word-adjacency
networks seem to be a very interesting example of linguistic
networks. They are constructed from text samples after linking
words that are direct neighbors of each other at least once in
a sample [19,20]. On the statistical level, such networks are
expected to inherit selected properties of the word frequencies
described by the Zipf-Mandelbrot law [21] (or its double-
scaling version [19,22]), the Heaps law [23,24], as well as
certain grammar and stylistic rules, and other properties.

Grammar can influence both the local and global properties
of linguistic networks. Locally it can lead to correlations
or anticorrelations in word usage; this is the obvious action
of grammar. On the other hand, it acts on a global scale
as well, as it can develop hubs corresponding to the words

that play purely grammatical roles in sentences (articles,
prepositions, conjunctions) and thus influencing the overall
network topology. However, the latter effect mingles with
the statistical properties of language, so one may effectively
restrict the role of grammar to local scales only.

It is not a surprise that the empirical word-adjacency
networks constructed from text samples like novels or sci-
entific publications exhibit strong hierarchical structure with
hubs—the nodes of large connectivity that correspond to words
with the highest frequency of use—and peripheral nodes,
which are linked to few neigbors and correspond to rarely used
words. These nodes are connected among themselves in highly
disassortative manner, i.e., the hubs usually form connections
with the peripheral nodes and not with other hubs [19]. The
connectivity distribution of nodes shows scale-free behavior
with the power exponent 2 < α < 3, or, if the samples are
large enough to obtain networks with a sufficient number of
nodes, the connectivity distributions show another power-law
regime with β > 3; this can be related to two such regimes in
the word frequency rank plots [19,22].

The so-defined linguistic networks can in principle be
modeled in three different ways. (1) By defining a stochastic
process that can mimic the process of text creation and, then,
to form the corresponding network in the same manner as the
empirical networks are built. In this context, one may exploit
various derivatives of the Yule-Simon processes [25,26]. (2) By
constructing an explicit growing network model, in which an
initial minimal network core is expanded by adding new nodes
and new edges according to some predefined rules. Here the
most optimal approach uses a class of the accelerated-growth
network models, introduced by Dorogovtsev and Mendes
(DM) [27–29] and further elaborated by others [20,30]. These
models are able to reproduce some characteristics of the
empirical word-adjacency networks like the double-scaling
connectivity distributions, average connectivity, and clustering
coefficients. (3) By considering a random walk on an a priori
existing primary network and then using the so-obtained
sequence of nodes (“words”) as a source for building a
secondary network as in (1). Although in such a case the
secondary network asymptotically reproduces the primary one,
each network may have different properties in early stages of
the process.
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In this work we study topological properties of empirical
word-adjacency networks obtained from literary texts written
in different European languages. In particular, we analyze
growth of these networks with the stress put on temporal
evolution of the average shortest-path length (ASPL). In
contrast to other network measures like the connectivity
distribution or the clustering coefficient, the properties of
ASPL in the linguistic networks have so far been somewhat
rarely studied [31]. We fill this gap by studying the empirical
data and evaluating how well the models agree with the related
results from the data.

II. EMPIRICAL DATA

We consider networks of adjacent words in written texts.
The words are nodes and the edges connect only those words
that are adjacent to each other at least once throughout
a given text. By a word we mean a unique, transformed
to lowercase, sequence of characters (letters, digits, and
inner hyphens) exactly as it appears between two blanks or
punctuation marks, without lemmatization. We ignore full
stops and other equivalent punctuation marks in order to
avoid the ambiguous situations, in which a network under
study forms a few disconnected components between which
no path exists. However, a test study based on the largest
connected components in sample empirical networks showed
that there is no qualitative difference between results of both
the approaches. For our analysis, we selected literary texts
written in one of the following languages: English, French,
German, Polish, Russian or Spanish. We focus on long novels
that comprise 10 000–60 000 distinct words; these numbers
also determine the corresponding network sizes.

Now, let us look at the procedure of real text creation. This
procedure is not stationary and consists of at least two phases.
Starting from a single word taken (effectively) at random from
a dictionary, new words are subsequently added under strict
rules of grammar and influence of the planned information
content and style. These factors together lead typically to a
situation, in which an opening sequence of several unrepeated
words form a chain network [see Fig. 1(d)] with the number
of edges following the number of nodes: E(τ ) = N (τ ) − 1,
where τ is the length of a piece of text being created (measured
in words). This is an infancy phase of the network’s growth.
After this phase ends, one of the already-used words occurs
repeatedly and the network can no longer be represented by a
pure chain, receiving loops and side branches [E(τ )>N (τ )−1,
Figs. 1(a), 1(b), and 1(e)]. Despite this, the repetitive use of the
old words is still rather limited and new words are frequently
added. However, as the text grows further, more and more old
words can be exploited again without compromising style and
clarity of the message. This leads to a situation that many more
new edges linking the existing nodes are added than are the
edges that attach new nodes to the existing ones. At this phase
the diameter of the network decelerates its increase and the
network optically condensates [Figs. 1(c) and 1(f)].

Further phases of the network’s development crucially
depend on the rate of adding new words. Typically, vocabulary
(a set of unique words) of real texts grows sublinearly with the
text’s length, which means that the number of edges E(τ )
increases faster than the number of nodes N (τ ). For moderate

FIG. 1. (Color online) Growing word-adjacency networks for
sample literary texts: Ulysses by J. Joyce (English, left) and Lalka
by B. Prus (Polish, right). Each picture represents a different stage of
the network’s development. (a) and (d) An initial phase with few or
even no repeated words (N = 40); (b) and (e) a phase in which hubs
start to be distinguishable (N = 100); (c) and (f) a phase in which old
words are used more often than new ones (N = 1000). The words
that play a role of network hubs in (b) and (e) are distinguished in all
panels by larger size and different color [green (light gray)].

values of N , this growth approximately obeys the Heaps law
stating that vocabulary grows as a power-law function of τ

[23,24]:

N (τ ) ∼ τ δ, 0.4 < δ < 1 (1)

(the range of δ according to Ref. [32]). In this case, the text
growth is more and more dominated by repeating the words
that were already in use before, while new words arrive with
decreasing frequency. In the network representation, a peculiar
situation is possible for sufficiently large N : The paths between
pairs of nodes tend to decrease with increasing N . This
property can statistically be expressed by the average shortest-
path length (ASPL). For binary networks, this quantity is
defined as

L(N ) = 1

N (N − 1)

∑

i,j

d(i,j ), (2)

where d(i,j ) is the shortest path between the nodes i,j . The
functional character of L(N ) crucially depends on the network
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FIG. 2. (Color online) Evolution of the average shortest-path
length L(N ) for growing word-adjacency networks created from
sample literary texts: (a) Ulysses by J. Joyce (written in English),
(b) La Comédie humaine by H. de Balzac (French), (c) Der Zauber-
berg by T. Mann (German), (d) Trylogia by H. Sienkiewicz (Polish),
(e) Anna Karenina by L. Tolstoy (Russian), and (f) Don Quijote by
M. de Cervantes (Spanish). Each text was divided into a number of
pieces in order to obtain an ensemble of samples. Results for these
pieces are shown denoted by different lines in each panel, as well as
their average behavior (thick line).

topology. For equilibrium networks, ASPL is typically an
increasing function of the network size with a rate of this
increase dependent on the connectivity distribution P (k). For
both the classical Erdös-Rényi (ER) random graphs [33] and
the scale-free networks with γ > 3, in the large network size
limit, L(N ) ∼ ln N ; for the BA networks (γ = 3): L(N ) ∼
ln N/ ln ln N . For the fat-tailed networks with 2 < γ < 3,
one observes either the ultrasmall-world dependence: L(N ) ∼
ln ln N [34] or even complete saturation of ASPL at [35]

lim
N→∞

L(N ) = 1

2
+ 2

3 − γ
, 2 < γ < 3. (3)

In this context, Figs. 2 and 3 show how striking is
the contrast between these generic model networks and the
empirical ones. Initially, for the first added nodes, the size of
the world-adjacency networks parametrized by ASPL grows
approximately linearly with N , then it abruptly switches to
the next phase with overall decreasing L(N ). This effect can
be put in a context of the network’s aging: If the network is
mature enough, the distances between the nodes tend to assume
small values, typically above 2.5 and below 4 for N = 10 000,
depending on a piece of text (Fig. 3). This is achieved by
the increasing frequency of adding intranetworks edges as the
texts grow.

At this point two observations have to be stressed. First,
for the majority of texts the asymptotic behavior of L(N ) (in
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FIG. 3. (Color online) Evolution of the average shortest-path
length L(N ) for growing word-adjacency networks created from
opening pieces of sample literary texts representing different Eu-
ropean languages: (a) English (23 texts), (b) French (14 texts),
(c) Polish (17 texts), and (d) Russian (12 texts). Thin lines correspond
to individual texts, while thick lines denote the average over the texts
written in the same language. The texts with peculiar behavior of
L(N ) are denoted by acronyms: VoB, The Voyage of the Beagle by C.
Darwin; FW, Finnegans Wake by J. Joyce; MH, Mémoires d’Hadrien
by M. Yourcenar; PT, Pan Tadeusz by A. Mickiewicz; TD, Tikhiy
Don by M. Sholokhov; and P, Peterburg by A. Bely.

practice, for N ≈ 104 or larger) depends little on a sample
(Fig. 2). Even more, if one compares different texts written
by different authors who share the same language, it appears
that typically the corresponding networks also share their
topological properties measured by ASPL. This means that
such large-scale properties of text samples express the overall
statistical properties of language rather than revealing any
individual fingerprints of authors or styles (Fig. 3). Only the
texts that are significantly atypical can develop structure that
for large N notably deviates from this common picture. For
English literature such an example is doubtlessly the novel
Finnegans Wake written by J. Joyce. Indeed, its ASPL assumes
the distinctly largest values among the considered English
works. The only texts that show comparative distinctness are
two Russian novels: Petersburg by A. Bely and Tikhiy Don
by M. Sholokhov, the latter notable for its exuberant style
that might be the origin of their unequally long internode
paths. Thick lines in Fig. 3 indicate also that the average
values of ASPL are larger for the languages with strong
flexion, like Polish and Russian, and smaller for the western
European languages, like English and French, in which flexion
is reduced. This effect is obvious as strong flexion generates
many extra words that reduce the ratio of edges to nodes in the
related networks.

Second, a different situation is seen for small networks with
10 < N < 1000 (N represents the number of unique words,
so the corresponding actual text lengths can be substantially
larger than this). Such networks are an emanation of text
fragments with the length ranging from a printed line to a
chapter. These lengths are by far insufficient to reflect the
global statistical properties of language, but—apart from the
statistical fluctuations of using the words, which manifest
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themselves here—this is exactly these lengths that are the
principal carriers of both the grammatical rules and author
styles. Generally, they describe local properties of texts and
language, and a significant part of language complexity is
encoded just on this level. Each panel of Fig. 2 shows
ASPL calculated for growing a different piece of a novel.
The variability among the maximum magnitudes of L(N )
for different pieces of the same novel illustrate the statistical
fluctuations, but not all the observed differences are equally
trivial. For example, let us look at the plots obtained for Ulysses
[Fig. 2(a)]. The curves representing ASPLs for different pieces
of this work show not only the different maximum heights,
but also their variable widths and locations. Such changing
behavior of ASPL is observed for no other novel shown.
However, what Ulysses is known for is its unequal stylistic
heterogeneity: Each chapter represents different style, literary
epoch, or even literary genre. This suggests that the results for
ASPL in this case reflect just this heterogeneity. Other notable
indications of the style influence on ASPL are The Voyage of
the Beagle by C. Darwin, the only nonliterary work in our set,
with its largest maximum height seen in Fig. 3(a), Pan Tadeusz
by A. Mickiewicz [Fig. 3(c)], the only poem, and Memoires
d’Hadrien by M. Yourcenar, which uses peculiar style.

How literary styles or authors’ own writing styles influence
statistical properties of the corresponding networks is rather
a complex issue that is beyond the purpose of the present
work, but it seems doubtless that stylistic fingerprints have a
tendency to manifest themselves in local network structures,
while the global structure is largely style-free. This may be
viewed as a parallel phenomenon to the one known from
the Zipfian analysis of word frequencies, where the global
power-law form of the corresponding rank distributions has
rather a universal character, while the particular authors’ styles
are encoded locally, primarily in attributing specific ranks to
specific words.

In the present context, we may say that the stylistic
fingerprints can have two main appearances: the above-
mentioned specific word ranks and the local correlations in
word occurrences. While the former is difficult to be reflected
in the results of our statistical analysis, the latter can to
some extent be seen in the behavior of ASPL. Let us notice
that local correlations can be context related and can lead to
local distortion of the overall word-usage frequencies, e.g., by
increasing the frequency of certain words. From the network
perspective, an increased frequency of any word causes
shortening of ASPL with respect to an uncorrelated text. Thus,
one may expect that the original texts show shorter ASPLs than
the surrogate texts obtained by randomly shuffling the order of
words. Magnitude of this effect and the range of network size
in which it is observed may be different for different texts, but
its existence should be universal. Indeed, Fig. 4 exhibits that
ASPL increases after reshuffling for each considered text and
that the magnitude of the difference is text dependent. This
effect is the most pronounced for Ulysses and the weakest
for La Comédie humaine. The error bars reflect the statistical
significance of the result. What is equally important is that
any difference between the related ASPLs asymptotically
decreases with increasing N (except for Ulysses), which
supports our statement that the large-scale network properties
are more universal than the local-scale ones.
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FIG. 4. (Color online) Evolution of the average shortest-path
length L(N ) for growing word-adjacency networks created from the
original (black) and randomly reshuffled (red) literary texts (the same
ones as in Fig. 2). The curves representing L(N ) for the original texts
were averaged over 22–30 different pieces of each text (depending
on a text’s length), while for the surrogate texts they were averaged
over 20 independent realizations of text reshuffling. Error bars denote
standard error of the mean. Note that the qualitatively similar shape
of the curves for both kinds of data is by no means surprising: The
word-frequency statistics is one of the key factors that exert influence
on topology of the word-adjacency networks and this statistics is
invariant under text randomization.

The exception of Ulysses, where the surrogates’ L(N ) falls
below the original one for N > 2000, reflects another effect
that acts opposite to the correlation-based one. Actually, it is an
artifact of our definition of the network edges: We use binary
edges irrespective of how often a given word pair occurs in
a piece of text. Therefore, in any original text the number of
edges is smaller than the number of actual word-neighbor pairs,
while in a surrogate text, owing to destruction of such repeated
2-grams, the number of edges increases, which obviously
leads to L(N ) decrease. In Ulysses there are more frequent
2-grams than in typical literary texts and this can account for
the observed peculiarity.

Taking all our results into consideration, it should be
underlined that the observed shape of ASPL cannot be treated
purely as a statistically meaningless effect of a small sample. In
spite of this it often happens that a network model is considered
appropriate if it reproduces some properties of real data only
in the limit of large samples. Here we definitely cannot follow
this path: As indicated above, in natural language some of the
most important features like grammar and style may shape the
corresponding network’s topology on a local scale causing it to
be substantially different than the global topology. This is why
we believe that a satisfactory linguistic model has to reproduce
both the local and the global properties of empirical data.
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III. MODELING LINGUISTIC NETWORKS

A. The Dorogovtsev-Mendes model

A relation between the accelerated growth of a network
and the growth of a piece of text was noticed soon after
such networks were introduced, so their linguistic applications
already have a long record [29]. Our objective is to inspect how
well the accelerated-growth network models can reproduce
the ASPL shape known from the empirical data. We start
with the generic model introduced by Dorogovtsev and
Mendes (the DM model henceforth) [27].

Let us consider a network of size N (t) = t + n0, i.e., such
that the growth starts from an initial “network seed” with n0

nodes interconnected by e0 � n0 − 1 edges, and at each time
step t a new node is added. This node connects itself to m

existing nodes by undirected, binary edges with probabilities
π (i) ∼ ki , where ki stands for the ith node’s connectivity. At
the same time, c(t) new edges are formed among the existing
nodes in such a way that neither multiple nor self-looping edges
are allowed and the probability of connecting the nodes i,j is
defined by π (i,j ) ∼ kikj . Thus, at each moment the network
grows by one node and m + c(t) edges. In general, c(t) can
have either discrete or continuous values, but it is convenient
to assume the latter. In the trivial case m > 0 and c(t) = 0
and the network grows according to the Barabási-Albert (BA)
model of pure preferential attachment with no edges formed
inside the network. As it is well known, this scheme leads to
a scale-free connectivity distribution P (k) ∼ k−γ with γ = 3.
Although satisfactorily describing some real-world systems,
this model cannot be applied to the word-adjacency networks,
because it does not reflect the real procedure of text creation.

The accelerated growth can be attained by a monotonously
increasing function c(t). Let it be a power function of time:

c(t) = c0t
α, (4)

with c0 > 0 and α > 0. The so-defined network consists of the
same number of nodes as before, i.e., N (t) = t + n0, but now
the number of edges increases in a nonlinear way:

E(t) = mt + c0

α + 1
tα+1 + e0. (5)

Note that if α > 1, the fully connected state is an attractor and
it will be reached in finite time. From the linguistic perspective,
however, such a state, in which every word neighbors all other
words, is forbidden by grammar. Thus, in a realistic approach
α < 1 or, if c0 � 1 and one considers networks of a limited
size not exceeding its empirical values, α � 1 + ε with ε � 1.

In simulations, the continuous character of c(t) can be
approximated by expressing it by a sum of two terms: c(t) =
cint(t) + p(t), where cint(t) is the integer part of c(t). Then
at each time step cint(t) edges are added to the network with
probability 1 and an additional edge—with probability p(t) if
p(t) > 0.

It is worthwhile to notice that the exponent α in Eq. (4)
is related to the Heaps exponent δ in Eq. (1). First, note that
a step of t in Eq. (4) corresponds to adding a new node to
the network (i.e., writing a new word), while a step of τ in
Eq. (1) corresponds to adding a new edge (i.e., writing any
word). Now, if one neglects multiple occurrences of the same
word pairs in text, τ is equal to the total number of edges

E(t) in Eq. (5). In parallel, N (τ ) can be identified with t .
This means that in this case the Heaps law may be expressed
by t ∼ [E(t)]δ , which gives E(t) ∼ t1/δ . Thus, for sufficiently
large t one may neglect mt + e0 in Eq. (5) and arrive at the
following relation:

α = 1

δ
− 1. (6)

This relation implies that reasonable values of α are determined
by the empirical Heaps exponents and fall in the range between
α ≈ 0.1 for δ = 0.9 and α = 1.0 for δ = 0.5. Actually, in
empirical data the Heaps law is not valid for the whole range of
τ (see, e.g., [36]) and both the exponents α and δ are functions
of t .

As a side remark, it is interesting to notice that shape of
the declining phase of L(N ) for the empirical data in Fig. 2
can easily be approximated by a simple function that can be
derived from an assumption that the word-adjacency networks
show both the features of the classical ER graphs and the
graphs with accelerated growth. ASPL for ER graphs is given
by L(N ) ∼ ln N/ ln〈k〉, where 〈·〉 denotes the average [37].
Then, by substitution of 〈k〉 = 2E(t)/N (t), where N (t) ≈ t ,
after some algebra one arrives at the following relation valid
for sufficiently large N :

L(N ) ∼ ln N

ln c0
α+1 + α ln N

. (7)

This form of L(N ) may be fitted to its empirical values and one
can obtain acceptable agreement between both (not shown).
Obviously, the word-adjacency networks are not of the ER
type, but nevertheless they can possess some features that
allow for such rough approximation. We do not discuss this
analogy further, though.

The plots in Fig. 5 present L(N ) for the accelerated-
growth networks constructed according to the DM model
with different values of the parameters c0 and α. The third
parameter was fixed at m = 2, because this value approximates
the topology of real texts the best. In such texts, each new
word immediately receives two direct neighbors: a preceding
and a subsequent word. (No word in any piece of text has
the connectivity k = 1 except for the first and the last ones,
and even in this case this is so only if these words are used
once in the whole text, which happens rarely). As one might
expect, for a given value of N , the stronger the acceleration
expressed by α is, the more intranetwork edges appear at each
step and the shorter ASPL is. Obviously, the same refers to the
ASPL dependence on the parameter c0, which is effectively
responsible for how early the acceleration mechanism enters
the network growth. In regard to the ASPL dependence on N ,
for small networks with several tens of nodes, if α and c0 are
also small, the acceleration has not started yet and the network
grows according to the standard preferential attachment with
increasing L(N ). Then the acceleration is switched on for some
N and L(N ) starts to decrease owing to the appearance of the
intranetwork edges. This leads to the formation of a maximum
of ASPL. On the other hand, if c0 and α are sufficiently large,
the shortening of ASPL due to acceleration is present since the
very beginning and no maximum has a chance to form.

If one compares the behavior of L(N ) observed for the
empirical networks (Figs. 2 and 3) with that obtained from

032810-5



ANDRZEJ KULIG et al. PHYSICAL REVIEW E 91, 032810 (2015)

1

2

3
4
5

7

10

15

L
(N

)

c0 = 0.0005
c0 = 0.001
c0 = 0.002
c0 = 0.005

2

3
4
5

7

10

15
L

(N
)

α = 0.5
α = 0.6
α = 0.7

10 100 1000 10000
N

2

3
4
5

7

10

15

L
(N

)

c0 = 0.01
c0 = 0.02
c0 = 0.05
c0 = 0.1

2

3
4
5

7

10

15
L

(N
)

α = 0.8
α = 0.9
α = 1.0

(a)

(b)

m = 2,   c0 = 0.01

m = 2,   α = 1.0

FIG. 5. (Color online) Evolution of the average shortest-path
length L(N ) for networks with accelerated growth simulated ac-
cording to the Dorogovtsev-Mendes model. The networks are
characterized by three parameters: m,α,c0 [see Eq. (5)], one of which
is varied [α in (a) and c0 in (b)], while the other two are fixed. In
both panels vertical axes have the same range as in Figs. 2 and 3 in
order to facilitate comparison. Only the results for N > 15 are shown,
because for smaller N the particular choice of the initial condition as
a chain of n0 = 7 nodes distorts the behavior of ASPL. The legends
describe the lines as they appear from top (α = 0.5 or c0 = 0.0005)
to bottom (α = 1.0 or c0 = 0.1).

simulations (Fig. 5), a strong discrepancy is evident for
N < 104. The simulated networks are much more condensed
and unable to develop sufficiently high initial values of L(N )
for any of the possible parameter combinations. Actually, this
is achievable, but only for a specific choice of the initial
condition, in which the network seed forms a long chain
consisting of a number of serially connected nodes. In this
case L(N ) can be escalated up to any conceivable level and
then, obviously, it can only decrease to more standard values,
which leads to L(N ) that is more or less concordant with the
empirics. However, we ignore this case being both trivial and
topologically inappropriate.

A reason for which the DM model does not work well
for ASPL in the case of the word-adjacency networks can be
learned from visualizations shown in Fig. 6. The presented
graphs constitute three snapshots of the same simulated DM
network corresponding to different values of N . What can
immediately be noticed is the complete absence of the long
loops of serially connected nodes that are so characteristic
for empirical data (compare Fig. 1). These loops are products
of writing the passages of text that consist solely of words
not used before. While this is the most frequent case in the
beginning stages of text creation, such pure sets of novel words
can be found at any later stage as well, although they are
then less frequent and many of the earlier formed loops are
already destroyed by the long-distance edges. Nevertheless,
the loops are an important property of the empirical networks’

FIG. 6. (Color online) Visualization of a typical network con-
structed according to the DM model (c0 = 0.01, α = 0.8, m = 2,
with a network seed being a chain of n0 = 7 nodes). Three snapshots
of the network development are shown with the same values of N as
in Fig. 1: N = 40 (a), 100 (b), and 1000 (c).

topology and, as such, their existence cannot be ignored in
designing a model. Unfortunately, the DM model was applied
to language merely as a minimal tool of modeling its large-
scale properties like the connectivity distributions P (k) or the
asymptotic behavior of ASPL, and therefore it ignores the local
aspects of network topology. However, what the model also
does satisfactorily, it is reproducing the early emergence of
local hubs, which are seen even for small empirical networks
with N < 100 [Figs. 6(a) and 6(b)]. Here we find a good
agreement with the data.

Our findings that the DM model cannot reproduce important
properties of linguistic networks go in parallel with the results
reported in Ref. [20], according to which the DM model
also misses the empirical values of the average clustering
coefficient obtained from the word-adjacency networks. The
authors of Ref. [20] managed to improve performance of the
model by extending it to incorporate different mechanisms of
attachment, both the preferential and random ones. However,
while those new mechanisms offer some interesting modifica-
tions that are in the spirit of real language (like, e.g., reducing
the probability of creating triangles among the nodes), from the
point of view of ASPL they are still not satisfying, because
they do not create the long loops of nodes. The same can be
said about other extensions of the DM model discussed earlier
in the linguistic context, like the model with edge rewiring.
We considered both its original static form with a constant
number r of rewired edges in each step and its modified version
with variable r(t) being a power function of t , in analogy to
c(t) [Eq. (4)]. However, both versions generate networks that
qualitatively resemble the ones in the generic model, so neither
of them is satisfactory from the ASPL perspective.

B. Alternative models

1. Network Simon-Heaps model

In order to find a mechanism that can generate networks
with the chainlike loops, but also with hubs and short ASPL,
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we focus our attention on stochastic processes that resemble
writing text. One of the simplest processes of this kind is the
Simon process, known for its Zipf-like statistics of values and
the preferential attachment paradigm [26]. According to the
Simon algorithm, new words are added to a piece of text with
constant probability p0 < 1, while the already-used words
are added with probability proportional to their frequency in
the written part of the text. However, this algorithm leads
to the equilibrium growth, so it cannot reproduce texts that
fulfill the Heaps law, for example. A more realistic case can
be obtained if we allow for variable probability p(τ ) of adding
new words, where τ is the current length of text. Its functional
form can be derived from the Heaps law [Eq. (1)]:

p(τ ) ∼ τ δ−1, (8)

with δ < 1. Like in real texts, as τ grows, the probability of
using new words decreases. In particular, for every new word
written, K(τ ) = 1/p(τ ) − 1 old words have to be written as
well, with K(τ ) increasing. From the network perspective, this
is equivalent to adding K(τ ) intranetwork edges for every new
node connected to the network. The resulting network may
thus be counted among the networks with accelerated growth,
but not of the DM type.

Purely on the network level, the Simon-Heaps (SH) algo-
rithm can be realized as follows. Let us start with a network
seed consisting of a single node or a group of n0 connected
nodes forming, e.g., a chain. In the first step of the algorithm,
a new node is connected to one of the seed nodes chosen at
random. In each of the subsequent steps t , the network can
be grown by adding strictly one new node or one new edge
with the probability p(t) and 1 − p(t), respectively. If this is
a new node, it has to be connected to the latest involved node
[by the involved node we mean (1) the one that was added in
the step t − 1, or (2) the one that was connected by an edge
in the step t − 1 and that was not added in the step t − 2]. If
a new edge is added, one of its ends has to be attached to the
latest involved node, while the other end has to be attached
to a node i chosen preferentially according to its degree ki .
We also imply a restriction that no edge may be doubled. This
algorithm can be viewed as a kind of preferential random walk
on a set of initially disconnected nodes with each step creating
an edge.

Equation (8) implies that the time-dependent probability
p(t) of adding a new node is a decreasing power function of t :

p(t) = p0t
−μ, (9)

where μ > 0 that guarantees the accelerated growth. As at
the beginning new words have to dominate the network’s
growth, a choice of p0 = 1 is justified, which effectively
gives us a very simple, one-parameter model. For small
values of μ (μ � 1) the growth is realized principally by
creation of long loops of nodes with k = 2, while the hubs
are numerous and of moderate degree. On the other hand, the
larger is μ, the faster is the p(t) decrease, and for μ ≈ 1 the
structure is based on 1–2 hubs of extremely high centrality
and it almost completely lacks significant loops. The optimum
structure can thus be found somewhere in between these
two extremes—an example is shown in Fig. 7. If compared
with Figs. 1 and 6, one can see that the SH model produces
networks whose visual structure resembles more the empirical

FIG. 7. (Color online) Visualization of a network constructed
according to the Simon-Heaps model with p0 = 1.0 and μ = 0.075.
Three snapshots of the network development are shown: N = 40 (a),
100 (b), and 1000 (c). The earliest developed hubs are distinguished
by larger symbols [green (light gray)].

ones than the generic DM networks do. However, we still do
not observe a satisfying agreement. This impression receives
strong quantitative support from Fig. 8, where ASPL for the
SH networks with the same choice of μ = 0.075 as in Fig. 1 is
exhibited. Its dependence on the network size N does not show
any maximum and it is, on average, a monotonous increasing
function up to N ≈ 104, where it saturates. By varying a value
of μ, we observe a related variation of the saturation level, but
there is no qualitative change in the overall ASPL behavior
(not shown).

This suggests that a one-parameter model is insufficient.
What we therefore need in a more realistic model, is to secure
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FIG. 8. (Color online) Different realizations of the average
shortest-path length L(N ) for sample networks constructed according
to the Simon-Heaps algorithm with p0 = 1.0 and μ = 0.075 (thin
lines) together with the respective average of all the individual
realizations (thick line).

032810-7



ANDRZEJ KULIG et al. PHYSICAL REVIEW E 91, 032810 (2015)

1 10 100 1000 10000
N

1

2

3

4

5

7

10

15

L
(N

)

p
0
 = 1.0,   μ = 0.05,   c

1
 = 12.0,   η = 0.25

Nonlinear  Simon−Heaps  model

FIG. 9. (Color online) Average shortest-path length L(N ) for
sample networks constructed according to the Simon-Heaps model
with the parameters p0 = 1.0 and μ = 0.05 and with nonlinear
preference expressed by the parameters c1 = 12.0 and η = 0.25.
Different realizations of the model are denoted by thin lines, while
the average is denoted by the thick line.

that the resulting networks in their juvenile stage show both the
loops and the well-developed hubs—a requirement that was
impossible to be met in the one-parameter model. This can be
achieved by amplifying connectivity of the hubs via nonlinear
preferential attachment, while leaving μ in Eq. (9) as it is.
The amplification should be in action mainly for small t , so
we postulate the nonlinear preference to be of the following,
double-power form:

π (k) ∼ kξ (t), ξ (t) = c1t
−η, (10)

where c1 > 0 and η > 0. This form assures that as the
network grows, the preferential attachment rule becomes
closer and closer to the standard, linear one. Now, the so-
defined nonlinear version of the SH model comprises three
parameters: μ, c1, η, and works much better in regards to
the evolution of ASPL. In Fig. 9 we present L(N ) for this
model with a particular choice of parameters giving ASPL
that qualitatively reproduces its empirical behavior for such
texts as Ulysses [Fig. 2(a)]—something that can be achieved
neither by the DM model nor by the linear SH model. Despite
the fact that if we look at the early stages of the network
growth displayed in Figs. 10(a) and 10(b), some similarity
between the empirical and the model networks can be pointed
out, the main disappointment from the model comes from
the emergence of a hub with unrealistically high centrality,
which gradually dominates the whole structure [Fig. 10(c)].
Obviously, this failure eliminates the nonlinear SH model in
its current form from our further consideration. However, in the
following subsection we do not abandon the idea of attaching
new nodes to the latest involved nodes as we view it being
realistic.

2. Hybrid model with acceleration and chain growth

The preceding discussion has shown that both variants of
the networks with accelerated growth, i.e., the DM models

FIG. 10. (Color online) Visualization of a network constructed
according to the nonlinear Simon-Heaps model with the same
parameter values as in Fig. 9. Three snapshots of the network
development are shown: N = 40 (a), 100 (b), and 1000 (c). The
earliest developed hubs are distinguished by larger symbols [green
(light gray)].

(Sec. III A) and the SH models (Sec. III B), have significant
drawbacks that make them rather insufficient as potential tools
for modeling the word-adjacency networks. Nevertheless,
these models also have advantages that are worth preserving.

We therefore propose a hybrid model that goes in this
direction by inclusion of two distinct regimes of adding new
nodes: a new node can be attached to the latest involved node,
like in the SH models or, alternatively, it can be attached to
one or more old nodes via linear preferential attachment, like
in the generic DM model. The first regime is responsible for
forming locally the chainlike loops, while the second regime
is responsible for forming the large-scale structure. Switching
between these regimes is probabilistic with time-dependent
probability p(t) that the chain regime is chosen in a step t and
probability 1 − p(t) that the accelerated-growth (DM) regime
is chosen. p(t) should be defined as a monotonous decreasing
function of t in order to be in agreement with the empirical
data, where the probability of forming long loops decreases
with the network size. As in the case of the SH model [Eq. (9)],
we propose a power function:

p(t) = p0t
−μ, (11)

where p0 ≈ 1, μ > 0, and μ � 1 for a slow decay of p(t).
In the accelerated growth regime, the network behaves in

almost exactly the same manner as in the generic DM model
(or one of its extensions, if needed). The only difference is
that the first new node that appears after the regime switching
is obligatorily connected by one of its edges to the previously
added node, in order to close the formed loop. This means
that only the remaining m − 1 edges of such a node may be
connected preferentially. In the case of m = 1 such a loop
remains open unless one of the new intranetwork edges closes
it. From the ASPL perspective, the accelerated-growth regime
reassures that this quantity shows a monotonous decline with
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FIG. 11. (Color online) Average shortest-path length L(N ) for
networks constructed according to the hybrid model with m = 2,
c0 = 0.05, α = 1.0, p0 = 1.0, and μ = 0.075. Different realizations
are represented by thin lines, while the average is denoted by the thick
line.

the network size N (for the adequate values of the parameters),
while the chain regime can drive ASPL high for small N .
This dual behavior can be seen in Fig. 11, indeed. What is
especially welcome is that the average evolution of L(N ) is
now able to mimic the one for real language (see Figs. 2 and
3) to an even better degree than the nonlinear SH model does.
Moreover, the structure of a corresponding sample network of
size N = 1000, visualized in Fig. 12(c), displays no sign of the
strong centrality seen in Fig. 10 for the nonlinear SH model.
We feel that this structure seems the most realistic among the
models considered in this work.

Of course, we do not consider this hybrid model perfect.
First of all, we restricted our analysis to ASPL and to visual

FIG. 12. (Color online) Visualization of a network constructed
according to the hybrid model (c0 = 0.01, α = 1.0, m = 2, μ =
0.075). Three snapshots of the network development are shown with
the same values of N as in Fig. 1: N = 40 (a), 100 (b), and 1000
(c). The earliest developed hubs are distinguished by larger symbols
[green (light gray)].

inspection of the simulated networks. How the proposed
models perform themselves from a point of view of other
network measures like, for example, the clustering coefficient
or the degree distribution of nodes, is beyond the scope of this
analysis. Second, Figs. 12(a) and 12(b) suggest that the model
demands further improvements regarding the early structure of
networks, in which the hubs are fewer and less evident among
the nodes than in the empirical networks, as this property
might influence the later stages of the network growth. So it
is conceivable, that an even more realistic model should also
contain such growth rules as the local preferential attachment
or the attachment of nodes to predefined hubs, as in the model
proposed in Ref. [20].

IV. CONCLUSIONS

Natural language is a complex system and like all other
systems of this kind it develops important features at all scales
of its organization [38]. No scale may be neglected as being
meaningless from the point of view of a correct description and
modeling. This is true for the whole spectrum of scales, from
the scale of letters or phonemes, where the phonetic properties
are expressed, through the scale of words and phrases, where
the key role is played by grammar and style, up to the scale
of large national corpora involving tens of thousands of text
samples, at which the most global statistical properties of
language are manifested. Thus, any approach, in which only
the large-scale (or even asymptotic) statistical properties are of
interest, seems to be by far insufficient. An example of such an
approach is modeling of empirical word-adjacency networks
by the networks with accelerated growth [29,30]. While these
models offer results that agree with the empirical ones for the
word-adjacency networks of large size, they perform worse in
describing local network topology [20], which encodes some
important properties of language.

In our work we studied properties of the word-adjacency
networks constructed from literary texts written in different
European languages. We observed growth of these networks
representing a process of text creation. We focused our
attention on the evolution of the average shortest-path length
L as a function of the network size N . We found that ASPL is
not a monotonous function of N , but it consists of two phases:
a shorter phase, in which L(N ) increases up to its maximum
value of order of 10 (reached for N < 100), and a longer
(perhaps infinite) phase of decline, in which ASPL typically
falls well below L = 5 for N > 1000. Such behavior of ASPL
is related to local topological properties of the empirical
networks, which exhibit loops of nodes connected with each
other like chains. These loops are formed from the very
beginning of the text by the words that were not used before,
and their length slowly decreases with time as more and more
words are repeated and the role of the new words diminishes.

We attempted to reproduce the empirical results regarding
ASPL by simulating network growth with the well-known
Dorogovtsev-Mendes model of accelerated growth [27]. How-
ever, we realized that this model does not offer satisfying
results for small networks with 10 < N < 1000. In particular,
it cannot reproduce the maximum of ASPL. Apart from
the generic DM model, we considered its extensions with
preferential rewiring but none of them succeeded, either.
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Another type of the accelerated-growth networks that we
considered here was the Simon-Heaps models with linear or
nonlinear preference. These models incorporate creation of
the loops by their very construction, which can produce some
interesting agreement with the empirics as regards ASPL, but
their topological structure observed by the naked eye was
nevertheless rather unrealistic.

Based on selected principles of both types of models,
we also proposed a hybrid model exploiting two paradigms:
the preferential-attachment growth with acceleration (after the
DM family of models) and the chainlike linear growth (after
the SH models). While the former is responsible for the
large-scale structure of the network (large N ), the latter is
able to correctly reproduce certain aspects of the local structure

(small N ). Combining these two paradigms in one model
allowed us to generate networks with ASPL reproducing its
behavior for the empirical networks.

It is worth noticing that the hybrid model proposed in
this work, although its motivation was purely linguistic, may
as well be considered an alternative mechanism of network
growth in the abstract sense. Thus, it can perhaps be applied to
model the evolution of other systems whose growth resembles
the one considered here. For example, we suppose that certain
kinds of transportation networks, like those connected with
the distribution of products, might in certain situations reveal
similar properties, i.e., the dual, chainlike, and accelerated
growth. Discussing this issue in more detail is beyond the
scope of the present work, however.
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2261 (2001).

[20] A. P. Masucci and G. J. Rodgers, Phys. Rev. E 74, 026102
(2006).

[21] G. K. Zipf, Human Behavior and the Principle of Least Effort
(Addison-Wesley, Cambridge, 1949).

[22] M. A. Montemurro, Physica A 300, 567 (2001).
[23] G. Herdan, Type-token Mathematics. A Textbook of Mathemati-

cal Linguistics (Mouton, ’S-Gravenhage, 1960).
[24] H. S. Heaps, Information Retrieval: Computational and Theo-

retical Aspects (Academic Press, Orlando, 1978).
[25] G. U. Yule, Philos. Trans. R. Soc. London B 213, 21 (1925).
[26] H. A. Simon, Biometrika 42, 425 (1955).
[27] S. N. Dorogovtsev and J. F. F. Mendes, Europhys. Lett. 52, 33

(2000).
[28] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 63,

025101(R) (2001).
[29] S. N. Dorogovtsev and J. F. F. Mendes, Proc. R. Soc. London B

268, 2603 (2001).
[30] M. Markosova, Physica A 387, 661 (2008).
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