
PHYSICAL REVIEW E 91, 032808 (2015)

Entropic determination of the phase transition in a coevolving opinion-formation model
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We study an opinion formation model by the means of a coevolving complex network where the vertices
represent the individuals, characterized by their evolving opinions, and the edges represent the interactions
among them. The network adapts to the spreading of opinions in two ways: not only connected agents interact
and eventually change their thinking but an agent may also rewire one of its links to a neighborhood holding
the same opinion as his. The dynamics, based on a global majority rule, depends on an external parameter that
controls the plasticity of the network. We show how the information entropy associated to the distribution of
group sizes allows us to locate the phase transition between a phase of full consensus and another, where different
opinions coexist. We also determine the minimum size of the most informative sampling. At the transition the
distribution of the sizes of groups holding the same opinion is scale free.
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I. INTRODUCTION

The behavior of large communities of individuals may
be studied using the concepts and methods of statistical
physics [1]. We follow this line to consider the case of the
build up of opinion groups in a population. Opinions spread
within a population via person-to-person contacts where they
are subject to controversy and discussion. Any two agents
holding different opinions may, after being in contact, either
keep their previous opinions or change them and eventually
coincide. In this process agents with the same thinking may
become more numerous, constituting large opinion groups
while opinions held by few agents may lose relevance and
eventually disappear.

The social changes involved in the spread of opinions and
the formation of opinion groups can be studied by mapping
this problem into the evolution of a social graph in which each
node represents an agent characterized by a scalar variable
representing its opinion, while the links represent the contacts
(interactions) among the agents.

Early works that study the case of binary opinions use
the framework of the Ising model, such as, for example, in
Ref. [2–4]. The case of three-opinion states has also been
studied, mapping it into a Blume-Emery-Griffith model [5].
On the other extreme, as may be the case of religious beliefs,
opinions may actually appear in the way of a continuum
spectrum, reflecting the shades and very refined differences
of interpretation that individuals may show on a particular
subject. In this case, opinions are described by continuous
variables. The bounded confidence model considers the situa-
tion where the interaction between two agents depend on how
similar their opinions already are [6]. An intermediate situation
is considered in the continuous opinion, discrete actions
(CODA) model [7], which interpolates between discrete
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actions, taken at some stage of the dynamics, based on evolving
continuous opinion variables. Another intermediate situation,
appears when several discrete opinions are possible, as for an
election with many candidates. In this case, the opinions are
described by a variable that can take many discrete values as
in Ref. [8].

While people exchange opinions on a personal basis, it is
also true that agents that agree, naturally tend to gather in closer
communities while those with different opinions, segregate.
In studying the formation of these groups, the problem is
what comes first: either opinions spread over the topology
of the network forming clusters of agreeing individuals, or a
change in the topology brings together agents having the same
opinion that were not in contact before. While early studies
dealt with evolving opinions on fixed networks with different
topologies, the situation where the opinions and the network
contacts may change on time scales that are comparable, starts
to be considered. A recent review of these adaptive networks
may be found in Ref. [9].

Recently this point has been studied introducing the
coevolution of nodes and links. Two mechanisms that mutually
interfere with each other are considered: one is the change of
the individual opinions by the successive interactions with
other agents, and the other is the change in the structure of
the neighborhood of each agent, thus conditioning its possible
interactions [8,10]. The coevolution of both adaptation mecha-
nisms may be controlled by an external parameter, as in Ref. [8]
where a change in the opinion is produced with probability
1 − �, (� ∈ [0,1]), while the topology of the network is
changed with probability �. Alternatively, the coevolution of
nodes and links may depend on a dynamical variable as in
Ref. [11] or finally both dynamics may be independent [10].

In order to study any complex system, it is very common to
sample its states, either as part of a measurement process on a
real system or in the statistical treatment of the model supposed
to describe it. The fact that this sampling is always incomplete
has been pointed out in recent work [12]. In this work a
theoretical framework is given for the use of information
entropy to characterize the sampling of the complex system,
in the case where a function to be optimized may be identified.
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In the present work we apply this approach to the study of
an opinion formation model where the dynamics of the nodes
and that of the network coevolve on the same time scale. Our
model studies a dynamics based on a global majority rule.
This choice represents the situation where, after discussion,
two agents finally choose to agree on the best accepted opinion
of the two. This differs from the invasive imitation dynamics
where the active agent simply copies the opinion of one of
its neighbours, chosen at random, with a given probability.
Our choice also differs from the local majority rule, where the
active agent is only influenced by its nearest neighbors.

The aim of this work is to show how the ideas described
in Ref. [12] can be used to study the phase transition of the
model, and to compare the relevance of different samplings in
terms of the amount of information that they give about the
behavior of the system. Moreover, it points out the importance
of a pertinent choice of variables in order to have access to
this information. This method also allows us to determine the
minimum size of the most informative sample.

II. THE MODEL

We consider a society of N agents, each one having an
opinion that is labeled by an integer variable, ωi = 1, . . . ,�.

No ordering or metrics are assigned to the opinion labels.
We describe the community as a graph in which each node
represents an individual. The interaction among agents is only
allowed when the corresponding nodes are neighbors, i.e., they
are joined by a link of the graph. The total number M of links
of the graph, as well as the opinions, are initially distributed at
random.

Starting from that initial configuration, the social graph is
allowed to evolve. Such evolution takes place in discrete time
steps in which links and opinions are assumed to coevolve.

At each step a node is chosen at random, we call it the active
agent. Then, one randomly chooses one of its neighbors among
those holding a different opinion. With probability 1 − �, the
active agent confronts its opinion with the chosen neighbor.
The result of such interaction is obtained applying a global
majority rule by which the node holding the opinion with
fewer supporters of the two adopts that of its counterpart.
With probability �, rewiring takes place. This means that the
link joining the active agent to the chosen neighbor is cut and
the active agent is reconnected at random to any other agent
of the system that holds its opinion.

According to this algorithm, in each step, either an opinion
or a link, is changed. When � ≈ 0 opinions are changed very
often and the topology of the network remains essentially
unchanged, while if � ≈ 1 the opposite happens: opinions
are left unchanged but the topology of the graph is largely
modified. This procedure keeps the total number of links,
M , constant. In either case links between agents having
different opinions are gradually eliminated and replaced by
links between agents with the same thinking. The adaptation
process therefore converges to a situation in which there are
no links between agents with different opinions.

In this model, as in Ref. [8], the two coevolving dynamics
are related by the external parameter �. Nevertheless, the
evolution rules for the nodes and for the links are different.
Here the opinions evolve following a global majority rule,

which stands for the discussion between the two agents, who
finally choose to agree on the opinion that is most popular in the
society at that moment. On the other hand, the rewiring allows
the agent to connect to a neighborhood already favorable to its
own opinion.

We will see that this dynamics not only accelerates
convergence, as can be expected, but also changes the nature
of the critical behavior of the system. This global majority rule
(notice that it also differs from a local majority rule, where the
active agent is only influenced by its nearest neighbors) may be
interpreted as a simple model for recommendation networks,
where the popularity of an opinion in the society (for instance,
the quality of a product or a service) is an argument taken into
account by the agent to build his own opinion.

During the adaptation process, opinion groups may change
size by either growing or dwindling, causing eventually some
opinions to disappear. Once the number of links between
agents with different opinions vanishes, the social graph
remains segmented into a set of disconnected subgraphs, each
one with agents supporting the same opinion. This does not
mean that each opinion is represented by a connected graph:
agents with a same opinion may occupy the nodes of several
disconnected subgraphs.

Once the convergence of each realization is achieved, each
agent has acquired one opinion ωi ∈ [1,2, . . . ,�]. So the N

agents are distributed in several opinion groups with k(ω)
adherents [0 � k(ω) � N ]. The opinions that have disap-
peared in the final state correspond to k(ω) = 0. Therefore,∑�

ω=1 k(ω) = N . The number of opinion groups with size
k(ω) = k is

mk =
�∑

ω=1

δk,k(ω). (1)

Since
∑N

k=0 mk = �, we can define the probability of
finding a group with k members as P (mk) = mk/�. Notice
that these mk groups do not necessary hold the same opinion
and that m0, the number of groups with no member, counts
the number of initial opinions that eventually disappear in the
coevolution.

Following the ideas of Ref. [12], we calculate the informa-
tion entropy contained in the distributions of the variables sam-
pled in this model. Studying the evolution of the corresponding
entropy one can determine the most informative sampling.

In the present case, a state of the system is given by the out-
come of the adaptation process providing a distribution of the
opinions across the population. The probability distribution,
P (ω), that a randomly chosen agent has the opinion ω encodes
part of the information that can be extracted by sampling the
system. In the large N limit, this is defined by

P (ω) = k(ω)

N
. (2)

Correspondingly, it is possible to define the opinion entropy
Sω as

Sω = −
�∑

ω=1

P (ω) log[P (ω)]. (3)
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One can also be interested in the probability P (k) that an
agent taken at random belongs to a group of size k, which in
the large N limit is

P (k) = kmk

N
(4)

with the corresponding information entropy:

Sk = −
N∑

k=1

P (k) log[P (k)]

= −
N∑

k=1

kmk

N
log

[
kmk

N

]

= −
N∑

k=1

kmk

N
log(mk) −

N∑
k=1

kmk

N
log

[
k

N

]
. (5)

Replacing the value of mk from Eq. (1) and changing the sums
over k to sums over ω one obtains

Sk = −
N∑

k=1

kmk

N
log(mk) −

�∑
ω=1

k(ω)

N
log

[
k(ω)

N

]
(6)

= −
N∑

k=1

kmk

N
log(mk) + Sω, (7)

thus, Sk � Sω.
Within the present model there is some degree of ambiguity

concerning the way to perform averages when Nr realizations
are sampled in order to obtain statistically significant results.
All the above derivations are valid for each realization
separately; thus if each realization is labeled by r , one can
rewrite the above equations as

Sω(r) = −
�∑

ω=1

P (ω,r) log[P (ω,r)], (8)

Sk(r) = −
N∑

k=1

kmk(r)

N
log

[
kmk(r)

N

]
, (9)

and averages can trivially be defined by

Sω = 1

Nr

∑
r

Sω(r), (10)

Sk = 1

Nr

∑
r

Sk(r). (11)

Average entropies also fulfill Sk < Sω.
However, there is a second possibility, namely to work

with the distribution of group sizes measured over the Nr

realizations. Then the average number of groups of a given
size is

mk = 1

Nr

∑
r

mk(r). (12)

One can then define the information entropy associated to this
global distribution of group sizes mk as

S〈k〉 = −
N∑

k=1

kmk

N
log

[
kmk

N

]
(13)

= −
N∑

k=1

kmk

N
log(mk) + Sω. (14)

In this case S〈k〉 �= Sk showing that the result of calculating
the group entropy of each realization and averaging over
the sample (average of group size entropies over the Nr

realizations, Sk) is different from that of measuring the group
probability distribution over all the realizations of the sample
and calculating the entropy associated with the distribution so
obtained (S〈k〉). Moreover, with this redefinition of the group
size entropy the relation S〈k〉 < Sω does not hold.

III. RESULTS

We have studied systems of N = 400,800,1600,3200, and
6400 agents with a random initial distribution of M links.
We have studied different connectivities of average degree
c = 4,8, and 12. The total number of initial opinions, �, goes
from very low values (� = 2) to very high values (� = 640).
Averages are typically taken over Nr = 5000 realizations,
except for the largest sizes or the highest connectivities, where
we have averaged over 1000 realizations. In the transition
region we have performed up to 10 000 realizations for all the
sizes in order to investigate the evolution of different entropies
with the size of the sampling. Most of the results presented in
this article correspond to the case c = 4.

The topology of the resulting social graph critically depends
upon the value of �. When � ≈ 0, opinion changes are
enhanced, the social graph approaches a consensus state in
which a vast majority of agents merges into a single giant
opinion group. As � grows, a richer spectrum of sizes takes
place until a moment in which the probability distribution
of the sizes of opinion groups approaches a power law. The
same situation was found in Ref. [8] and can be assimilated
to a dynamical phase transition. For even larger values of
� the probability distribution of the sizes of opinion groups
changes into a bell-type distribution that corresponds to the
initial random assignment of opinions. The reason for this
behavior is that for very large �, rewiring is dominant, and
opinions do not evolve much.

In Fig. 1 we show the results for the average opinion
entropy, Sω, the average of group size entropies Sk and the
global entropy of group sizes, S〈k〉, as a function of the
adaptation parameter �. The plot of Sω is easy to interpret:
when � ≈ 0 only a very few opinions survive because the
system approaches the consensus state in which many opinions
are left without any agent to support them, leading to a very
low value of Sω. Sω grows with � because the number of
surviving opinions increases as consensus disappears. In the
limit of high rewiring individual opinions are left essentially
unchanged with respect to the initial random assignment.

Sk , the average entropy associated to the probability that
an agent taken at random belongs to a group of size k, is
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FIG. 1. Entropies corresponding to the probability distributions
of opinions and sizes of opinions groups. The social graph has a
total of N = 1600 agents and and M = 3200 links. They share a total
of � = 160 opinions. Averages are made over 5000 realizations.
Open boxes correspond to S〈k〉 and filled boxes (circles) correspond
to Sk (Sω).

also, for similar reasons, a growing function of �, except
for the fact that for � = 1, where only rewiring is possible,
its value must fluctuate around the one corresponding to the
initial distribution of opinion groups. This is also the case for
S〈k〉, so for � = 1, both entropies are coincident. This can
be understood if one bears in mind that for this value of �,
the number of supporters of each opinion is left unchanged,
and therefore all the opinions are expected to have a number
of followers that fluctuates around N/�, as in the initial
distribution.

The curve for S〈k〉, where the entropy is evaluated using the
group size distributions of all the realizations in the sample,
is particularly interesting. Starting at a low value for �≈ 0,
where there are very few possible group sizes (consensus
state), it develops a sharp maximum for a particular value,
�c. This maximum signals the occurrence of a phase transition
between a consensus state and a fragmented one, where groups
holding different opinions coexist. This is confirmed by the
behavior of the order parameter �Max, the normalized size of
the maximum cluster. Figure 2 shows the sudden collapse of
�Max at �c, along with the peak of its dispersion, σ� , for
different sizes (its height has been normalized in order to plot
all the curves together).

In Fig. 3 we plot the probability distributions of the group
sizes, calculated over the Nr realizations of the sampling, for
different values of �.

For � ≈ 0.05 the distribution decays fast for very small
group sizes an displays a significant peak for a group sizes of
order N , showing that in most of the samples there is a large
dominant group, corresponding to the consensus state, which
coexists with some minority groups of different opinions. On
the other extreme, the distribution for � ≈ 0.95 corresponds
instead to a bell-shaped distribution with its maximum located
at k ≈ N/�. In the transition region, the distribution function
of group sizes may be fit to a power law, P (mk) ∝ k−α , as is

FIG. 2. (Color online) Average size (full symbols) and normal-
ized dispersion (open symbols) of the largest cluster as a function of
�, for different sizes.

shown by the inset, which displays the group size distributions
curves in the transition region [� ∈ (0.71,0.75)]. It can be
observed that the curve corresponding to the lower bound
shows a reminiscence of the peak of the consensus state (large
k values).

A precise determination of the exponent α is out of the
scope of this work. On one hand, the value of the exponent
is very sensitive to the precision in the determination of �c

and on the other, the finite size cutoff only allows for a fitting
domain that is hardly over two decades. Much larger sizes
of each realization will be needed in order to overcome this
problem. Nevertheless, we have studied the variation of α in
the critical region. From the values shown in Table I we can
see that for the model studied here, the exponent lies below the

FIG. 3. (Color online) Distributions of group sizes for N = 1600
agents average degree c = 4 and � = 160 initial opinions. The results
correspond to a sampling of Nr = 10 000 realizations. In the inset,
for the sake of clarity the plot shows only one every four measured
points. Notice that for � = 0.71 a trace of the peak at high k, still
remains.
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TABLE I. Values of the critical exponent of the global distribution
of cluster sizes, measured over the whole sampling, assuming a power
law fit (extreme low and high values excluded) in the critical region.

� α

0.71 2.4 ± 0.015
0.715 2.36 ± 0.02
0.72 2.2 ± 0.01
0.725 2.18 ± 0.02
0.73 2.03 ± 0.01
0.74 1.97 ± 0.09
0.75 2.03 ± 0.01

one corresponding to mean field percolation universality class
(α = 2.5), while for the invasive dynamics studied in Ref. [8]
it is clearly above (α = 3.5).

The value of �c increases with the connectivity, c, of the
network, we have found �c ≈ 0.85 for c = 8 and �c ≈ 0.9
for c = 12, indicating that when the connectivity is large,
consensus is always reached within this model.

Interestingly, the plot of the number of adaptation steps
required for the social graph to converge to a stationary state
presents a well-developed peak in the critical region, as is
shown in Fig. 4. Adaptation steps bear a close relationship
with computing time; however, it is not a practical measure
of the convergence time because the computing time required
by a single adaptation step strongly depends upon the value of
�. Nevertheless this peak in the number of adaptation steps
is consistent with the power law behavior of the distribution
of group sizes and is reminiscent of the critical slowing
down observed in equilibrium critical phenomena, where the
correlation time is related to the divergence of the correlation
length, revealing the existence of fluctuations at all scales.
Here, instead of domains of all sizes, as in magnetic models
we have broad distribution of the sizes of groups of agents
holding equal opinions.

FIG. 4. Plot of the average number of adaptation steps required
to reach a social graph without links between agents having different
opinions for a system with N = 1600, � = 160. Averages are made
over 5000 realizations.

FIG. 5. (Color online) Dependence of S〈k〉 on the size of the
sampling for different values of � above, below, and at the critical
region, for a system of N = 1600 agents and � = 160 opinions; di-
amonds: � = 0.05, circles: � = 0.45, squares: � = 0.75, triangles:
� = 0.95. In the inset, the behavior of the three entropies defined
here, with the size of the sampling, in the critical region (� = 0.75);
circles: Sk , tirangles: Sω, squares: S〈k〉.

Figure 5 shows that S〈k〉 grows with the size of the
sampling, Nr , until saturation, except for very large values
of � (corresponding to unchanged opinion groups), where it
remains constant. This allows us to determine the number of
realizations that gives the most informative sampling. Beyond
that number, computing more realizations will not bring
additional information. As expected [12], the most informative
sampling (the one with the largest entropy) corresponds to �

in the transition region.

FIG. 6. (Color online) S〈k〉 as a function of the number of realiza-
tions Nr , for different system sizes in the critical region (� = 0.72),
where all the samples have the same ratio N/� = 10. In order
to detail the transitory regime, the Nr axis shows samplings up
to Nr = 1000 realizations. We have calculated S〈k〉 over samplings
containing up to Nr = 10 000 realizations and the entropy remains
constant.
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The inset of Fig. 5 shows the behavior of the different
entropies calculated here, in the critical region. While S〈k〉
increases with the size of the sampling until saturation, as
described in the inset of the Fig. 2 (right) of Ref. [12], the other
average entropies Sω and Sk remain constant. This means that
if one calculates the entropy for each realization and averages
over many realizations, the fact of increasing the sampling size
will not bring any new information.

Moreover, the system is not self-averaging. If it were, a
sampling consisting of large size networks (large N ) and
relatively few realizations (small Nr ) should give results
similar to those issued from a sampling consisting of many
realizations Nr of smaller systems (provided that N is still
reasonably big so as not to be of the same order of magnitude
as the number of initial opinions). Figure 6 shows that this is
not the case. The entropy in the critical region is measured for
several systems sizes, as a function of Nr . All the sizes reach
saturation at approximately the same value of Nr (obviously
the saturation value of S〈k〉 does depend on N ).

IV. CONCLUSIONS

We have studied the phase transition in a coevolutionary
opinion model, using the information entropies associated
to the distribution of different variables. In this model, the
opinions of the agents and the topology of the social network
evolve on the same time scale. This coevolution is controlled
by an external adaptation parameter �, which controls the
plasticity of the network by allowing us to switch between
opinion updates and link rewiring.

Our results show that the system undergoes a phase
transition between a consensus phase and a fragmented one,
where several opinions coexist, in agreement with Ref. [8].
However, the dynamics used here induces a critical behavior
that is different from the one found in Ref. [8]. First, we obtain
a different critical value of the rewiring parameter, �c ≈ 0.72.
This can be easily understood: in both models the imitation
probability is 1 − �, but as the global majority rule is more
efficient in creating and sustaining consensus than the fact
of simply copying the neighbors’ opinion, the consensus state

may remain in this model, up to values of � that are higher than
the critical value obtained in Ref. [8], namely, �c ≈ 0.46. We
have made tests using the minority rule instead, and we have
found that in these cases the convergence is severely hampered
and even impeded, leading to a frustrated situation. Moreover,
in the critical region, the distribution of group sizes fits a power
law with an exponent that lies below the value corresponding
to mean field percolation universality class (α = 2.5), leading
to a fat tail distribution, at a difference with the findings of
Ref. [8], where (α = 3.5) is found.

We show that �c may be located using the information
entropy associated to the distribution of group sizes measured
over the whole sampling of Nr realizations.

We have found that, within this model, the entropy of the
distribution of groups sizes is not self-averaging: large systems
need as many realizations as small systems in order to reach
the most informative regime (where entropy saturates).

In particular, the way in which the average over the different
realizations is calculated is far from being irrelevant. This
phenomenon is reminiscent of what is observed in disordered
magnetic systems, where for instance, the response functions,
as the specific heat or the susceptibility of each realization,
show a well-developed peak which it is located at a different
temperature for each realization [13–15].

As usual, when dealing with complex systems, the question
of the choice of the variables to be sampled in order to get the
most complete information on the system is crucial. Here the
correct sampling is given by P (mk) and its corresponding
information entropy S〈k〉, which improves with the number
of realizations until saturation, as it is shown in Ref. [12],
which allows us to determine the size of the most informative
sampling. On the other hand, the average entropy Sk will
not give more information if we increase the number of
realizations.
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