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Universal phase transition in community detectability under a stochastic block model
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We prove the existence of an asymptotic phase-transition threshold on community detectability for the spectral
modularity method [M. E. J. Newman, Phys. Rev. E 74, 036104 (2006) and Proc. Natl. Acad. Sci. (USA)
103, 8577 (2006)] under a stochastic block model. The phase transition on community detectability occurs as the
intercommunity edge connection probability p grows. This phase transition separates a subcritical regime of small
p, where modularity-based community detection successfully identifies the communities, from a supercritical
regime of large p where successful community detection is impossible. We show that, as the community
sizes become large, the asymptotic phase-transition threshold p∗ is equal to

√
p1p2, where pi (i = 1,2) is the

within-community edge connection probability. Thus the phase-transition threshold is universal in the sense that
it does not depend on the ratio of community sizes. The universal phase-transition phenomenon is validated by
simulations for moderately sized communities. Using the derived expression for the phase-transition threshold,
we propose an empirical method for estimating this threshold from real-world data.

DOI: 10.1103/PhysRevE.91.032804 PACS number(s): 89.75.Hc, 02.70.Hm, 64.60.aq, 89.20.−a

I. INTRODUCTION

Community detection is an active research field that arises
in technological, social, and biological networks. The goal of
community detection is to detect tightly connected subgraphs
in a graph [1]. The spectral modularity method proposed by
Newman [2,3] is widely applied to community detection. It has
been observed that community detectability (i.e., the fraction
of correctly identified nodes) degrades rapidly as the number
of intercommunity edges increases beyond a certain critical
value [4–12]. This paper establishes a mathematical expression
for the critical phase-transition threshold in modularity-based
community detection under a stochastic block model. This
phase-transition threshold governs the community modularity
measure of the graph as a function of the respective edge
connection probabilities p1 and p2 within community 1 and
community 2. Defining p as the edge connection probability
between the two communities, the critical phase transition
threshold on p takes on the simple asymptotic form p∗ =√

p1p2 in the limit as the two community sizes converge (at
comparable rate) to infinity. Remarkably, p∗ does not depend
on the community sizes, and in this sense it is a universal
threshold.

Let n denote the total number of nodes in an undirected
graph and let A be the associated adjacency matrix. Specif-
ically, A is an n × n binary symmetric matrix characterizing
the connectivity structure of a graph, where Aij = 1 if an edge
exists between node i and node j , and Aij = 0 otherwise.
Newman proposed a measure called modularity that evaluates
the number of excessive edges of a graph compared with
the corresponding degree-equivalent random graph. More
specifically, define the modularity matrix as B = A − bddT ,
where d is the degree vector of the graph and b is the reciprocal
of the total number of edges in the graph. The last term
bddT can be viewed as the expected adjacency matrix of
the degree-equivalent random graph. Newman proposed to
compute the largest eigenvector of B and perform K-means
clustering [13] or take the sign function on this vector to cluster
the nodes into two communities. Since the n-dimensional
vector of all 1’s, 1n, is always in the null space of B, i.e.,

B1n = 0n, where 0n is the n-dimensional vector of all 0’s, the
(unnormalized) modularity is the largest eigenvalue of B and
has the representation

λmax(B) = max
xT x=1,xT 1n=0

xT Bx. (1)

Consider a stochastic block model [14] consisting of two
community structures parameterized by edge connection prob-
ability pi within community i (i = 1,2) and edge connection
probability p between the two communities. Let ni denote the
size of community i such that n1 + n2 = n. The overall n × n

adjacency matrix of the entire graph can be represented as

A =
[

A1 C
CT A2

]
, (2)

where Ai is the ni-by-ni adjacency matrix of an Erdos-Renyi
random graph with edge connection probability pi , and C is
the n1-by-n2 adjacency matrix of the intercommunity edges
where each entry in C is a Bernoulli(p) random variable. A
similar network model is studied in [15] for interconnected
networks. However, in [15] the communities (subnetworks)
have the same size and the intercommunity edges are known
(i.e., nonrandom). The main purpose of [15] is to study the
eigenstructure of the overall graph Laplacian matrix with
different interconnected edge strengths, as contrasted with
community detection. In [16], the network model (2) is used
to study community detectability of spectral algorithms based
on the eigenvectors of the graph Laplacian matrix.

The fundamental limits on community detectability have
been investigated for the spectral modularity method under
more restrictive assumptions [6,9] than assumed in this paper.
In [9], the community detectability of the spectral modularity
method is studied in sparse random networks where the
average degree is fixed and the two communities have the same
community size and identical within-community edge con-
nection probability, i.e., n1 = n2, p1 = p2 = O( 1

n
), and p =

O( 1
n

). The critical value for community detectability is shown
to depend on the average degree of the within-community and
intercommunity edges. Similar phase-transition phenomena
have been found under the same network assumption in
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[6,7,10]. The planted clique detection problem in [17] is a
further restriction of the stochastic block model when p2 = p.
For spectral methods that use the eigenvectors of linear
operators associated with the graph for community detection
(e.g., the modularity, adjacency, Laplacian, or normalized
Laplacian matrices), the phase-transition threshold under the
general stochastic block model can be derived by investigating
the eigenvalue spectra [18].

Different from the aforementioned works, our network
model relaxes the assumptions of identical community size
and within-community edge connection probability, and we
assume that the parameters p1 and p2 are fixed. Under this
general setting, we prove an asymptotic universal phase-
transition threshold of p on community detection using the
spectral modularity method, where the asymptotic critical
value of p is p∗ = √

p1p2. We also derive asymptotic forms
for the modularity and the largest eigenvector of B, which are
directly affected by the phase-transition phenomenon. Note
that the same phase-transition threshold has been derived in
[19] in terms of the consistency of the modularity and the
log-likelihood of the degree-corrected stochastic model [20],
whereas in this paper we explicitly show that the spectral
modularity method can achieve the same phase-transition
threshold. Also note that under the same stochastic block
model (2), the phase-transition threshold of the spectral
modularity method established in this paper coincides with
the phase-transition threshold of several spectral community
detection methods derived from Eq. (6) in [18]. This suggests
that this phase-transition threshold might be universal for many
spectral methods.

II. PHASE-TRANSITION ANALYSIS

Using the network model in (2), let d = A1n = [dT
1 dT

2 ]T

denote the degree vector of the graph with d1 ∈ Rn1 and d2 ∈
Rn2 . Then b = (1T

n A1n)−1 = (dT
1 1n1 + dT

2 1n2 )−1. Let d̃i =
Ai1ni

denote the degree vector of community i. Since A1n = d,
with (2) the degree vectors d1, d2, d̃1, and d̃2 satisfy the
following equations:

d1 = d̃1 + C1n2 and d2 = d̃2 + CT 1n1 . (3)

Let bi = (̃dT
i 1ni

)−1. The modularity matrix of community i

is denoted by Bi = Ai − bi d̃i d̃T
i . Using these notations, the

modularity matrix of the entire graph can be represented as

B =
[

B1 + b1d̃1d̃T
1 − bd1dT

1 C − bd1dT
2

CT − bd2dT
1 B2 + b2d̃2d̃T

2 − bd2dT
2

]
.

(4)

Let y = [yT
1 yT

2 ]T denote the largest eigenvector of B, where
y1 ∈ Rn1 and y2 ∈ Rn2 . Following the definition of modularity
in (1) and (4), y = arg maxx �(x), where

�(x) =xT
1 B1x1 + xT

2 B2x2 + b1
(̃
dT

1 x1
)2 + b2

(̃
dT

2 x2
)2

− b
(
dT

1 x1
)2−b

(
dT

2 x2
)2+2xT

1 Cx2 − 2b
(
dT

1 x1
)(

dT
2 x2

)
− μ

(
xT

1 x1 + xT
2 x2 − 1

) − ν
(
xT

1 1n1 + xT
2 1n2

)
, (5)

and x = [xT
1 xT

2 ]T , x1 ∈ Rn1 , and x2 ∈ Rn2 . μ and ν are
Lagrange multipliers of the constraints xT x = 1 and xT 1n = 0
in (1), respectively.

Differentiating (5) with respect to x1 and x2 respectively,
and substituting y to the equations, we obtain

2B1y1 + 2b1
(̃
dT

1 y1
)̃
d1 − 2b

(
dT

1 y1
)
d1 − 2b

(
dT

2 y2
)
d1

+ 2Cy2 − 2μy1 − ν1n1 = 0n1 , (6)

2B2y2 + 2b2
(̃
dT

2 y2
)̃
d2 − 2b

(
dT

2 y2
)
d2 − 2b

(
dT

1 y1
)
d2

+ 2CT y1 − 2μy2 − ν1n2 = 0n2 . (7)

Left multiplying (6) by 1T
n1

and left multiplying (7) by 1T
n2

and
recalling that Bi1ni

= 0ni
and bi = (̃dT

i 1ni
)−1, we have

2
(̃
dT

1 y1
) − 2b

(
dT

1 y1
)(

dT
1 1n1

) − 2b
(
dT

2 y2
)(

dT
1 1n1

) + 21T
n1

Cy2

− 2μyT
1 1n1 − νn1 = 0, (8)

2
(̃
dT

2 y2
) − 2b

(
dT

2 y2
)(

dT
2 1n2

)− 2b
(
dT

1 y1
)(

dT
2 1n2

) + 21T
n2

CT y1

− 2μyT
2 1n2 − νn2 = 0. (9)

Summing (8) and (9) and using (3) gives ν = 0. Left multiply-
ing (6) by yT

1 and left multiplying (7) by yT
2 , substituting ν = 0,

and summing the equations, with (4) we have μ = λmax(B).
Let C̄ = p1n1 1T

n2
, a matrix whose elements are the means

of entries in C. Let σi(M) denote the ith largest singular
value of a rectangular matrix M, and write C = C̄ + �, where
� = C − C̄. Latala’s theorem [21] implies that the expected
value of σ1( �√

n1n2
) converges to 0 as n1 and n2 approach infinity,

denoted E[σ1( �√
n1n2

)] → 0 as n1,n2 → ∞. This is proved
in Appendix A. Furthermore, by Talagrand’s concentration
theorem [22],

σ1

(
C√
n1n2

)
a.s.−→ p and σi

(
C√
n1n2

)
a.s.−→ 0, ∀ i � 2

(10)

when n1,n2 → ∞, where
a.s.−→ means almost sure conver-

gence. This is proved in Appendix B. Note that the convergence
rate is maximal when n1 = n2 because n1 + n2 � 2

√
n1n2 and

the equality holds if n1 = n2.
Throughout this paper, we further assume n1

n2
→ c > 0 as

n1,n2 → ∞. This means the community sizes grow with
comparable rates. As proved in [23], the singular vectors of C
and C̄ are close to each other in the sense that the square of
the inner product of their left/right singular vectors converges
to 1 almost surely when

√
n1n2p → ∞. Consequently, the

concentration results in (10) and [23] imply that

C1n2

n2

a.s.−→ p1n1 and
CT 1n1

n1

a.s.−→ p1n2 . (11)

Furthermore, since under the stochastic block model setting
each entry of the adjacency matrix Ai in (2) is a Bernoulli(pi)
random variable, following the same concentration arguments
in (10) and (11) we have

A11n1

n1

a.s.−→ p11n1 and
A21n2

n2

a.s.−→ p21n2 . (12)
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By the fact that d̃i = Ai1ni
, (12) implies that

d̃1

n1

a.s.−→ p11n1 and
d̃2

n2

a.s.−→ p21n2 . (13)

Applying (11), (12), and (13) to (3) and recalling that n1
n2

→
c > 0, we have

d1

n1

a.s.−→
(

p1 + p

c

)
1n1 and

d2

n2

a.s.−→ (p2 + cp)1n2 . (14)

Therefore, the reciprocal of the total degree in the graph b has
the relation

n1n2b = n1n2

dT
1 1n1 + dT

2 1n2

a.s.−→ 1

cp1 + 2p + p2

c

. (15)

Substituting these limits to (8) and (9) and recalling that ν = 0
and yT

1 1n1 = −yT
2 1n2 , we have

yT
1 1n1

(
μ

n
− p1p2 − p2

cp1 + 2p + p2

c

)
a.s.−→ 0, (16)

yT
2 1n2

(
μ

n
− p1p2 − p2

cp1 + 2p + p2

c

)
a.s.−→ 0. (17)

Since μ = λmax(B), for each intercommunity edge connection
probability p, one of the two cases below has to be satisfied:

Subcritical regime:
λmax(B)

n

a.s.−→ p1p2 − p2

cp1 + 2p + p2

c

, (18)

Supercritical regime: yT
1 1n1

a.s.−→ 0 and yT
2 1n2

a.s.−→ 0. (19)

In the subcritical regime, observe that λmax(B)
n

converges

to p1p2−p2

cp1+2p+ p2
c

almost surely such that the corresponding

asymptotic largest eigenvector y of B remains the same (unique
up to its sign) for different p. Left multiplying (6) by yT

1 and
left multiplying (7) by yT

2 , summing these two equations, and
using the limiting expressions (4), (11), (12), (13), (14), (15),
and (18) in the subcritical regime, we have

yT
1 B1y1

n
+ yT

2 B2y2

n
+ f (p)

a.s.−→ 0, (20)

where f (p) = p1p2−p2

cp1+2p+ p2
c

[
(
√

c+ 1√
c

)2(yT
1 1n1 )2

n
− 1]. Since f (p) is

a Laurent polynomial of p with finite powers, and (20) has to
be satisfied over all values of p in the subcritical regime,

yT
1 B1y1

n
+ yT

2 B2y2

n

a.s.−→ 0 and f (p)
a.s.−→ 0. (21)

Furthermore, we can show that, in the subcritical regime, y1

and y2 converge almost surely to constant vectors with opposite
signs, √

nn1

n2
y1

a.s.−→ ±1n1 and

√
nn2

n1
y2

a.s.−→ ∓1n2 . (22)

This is proved in Appendix C. Therefore, in the subcritical
regime the two communities can be almost perfectly detected.
On the other hand, in the supercritical regime the spectral
modularity method fails to detect the two communities since
by (19) y1 and y2 must have both positive and negative entries.

Next we derive the asymptotic universal phase-transition
threshold p∗ for transition from the subcritical regime to the
supercritical regime that occurs as p increases. Note that in
the supercritical regime, since yT

1 1n1

a.s.−→ 0 and yT
2 1n2

a.s.−→ 0,
using (1), (4), (11), (12), (13), and (14) we have

λmax(B)

n
= 1

n

[
yT

1 B1y1 + yT
2 B2y2 + b1

(̃
dT

1 y1
)2 + b2

(̃
dT

2 y2
)2 − b

(
dT

1 y1
)2 − b

(
dT

2 y2
)2 + 2yT

1 Cy2 − 2b
(
dT

1 y1
)(

dT
2 y2

)]
a.s.−→ 1

n

{
yT

1

(
p11n1 1T

n1
− p11n1 1T

n1

)
y1 + yT

2

(
p21n2 1T

n2
− p21n2 1T

n2

)
y2 + b1

(
n1p1Y

T
1 1n1

)2 + b2
(
n2p2y

T
2 1n2

)
− b

[
(n1p1 + n2p)yT

1 1n1

]2 − b
[
(n2p2 + n1p)yT

2 1n2

]2 + 2p
(
yT

1 1n1

)(
yT

2 1n2

)
− 2b

[
(n1p1 + n2p)yT

1 1n1

][
(n2p2 + n1p)yT

2 1n2

]} = 0. (23)

Consequently, by (18) and (23), the phase transition occurs at

p = p∗ almost surely when p1p2−p∗2

cp1+2p∗+ p2
c

= 0. This implies an

asymptotic universal phase-transition threshold on community
detectability:

p∗ a.s.−→ √
p1p2 (24)

as n1,n2 → ∞ and n1
n2

→ c > 0. Note that the limit (24) does
not depend on the community sizes. In this sense, the phase
transitions are universal as they only depend on the within-
community connection probabilities p1 and p2.

Moreover, the same phase-transition results hold for a more
general setting where pi = O( 1

nε ) and p = O( 1
nε ) for any

ε ∈ [0,1) by following the same derivation procedures. As
a comparison, the phase-transition threshold under the sparse

network setting, where pi = O( 1
n

) and p = O( 1
n

) [6–11], is
different from the threshold established in this paper, where
pi = O( 1

nε ) and p = O( 1
nε ) for any ε ∈ [0,1). Also note

that when pi = O( 1
nε ) and p = O( 1

nε ) for any ε ∈ [0,1), the
community detectability undergoes an abrupt transition at the
threshold whereas the transition is more smooth for sparse
networks.

III. PERFORMANCE EVALUATION

A. Numerical results

We validate the asymptotic phase-transition phenomenon
predicted by our theory, and in particular the critical
phase-transition threshold (24), showing that the asymptotic
theory provides remarkably accurate predictions for the case
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FIG. 1. (Color online) Validation of theoretical critical phase-
transition threshold (24) for two communities generated by a
stochastic block model. The curves represent averages over 100
realizations of the model. Here n1 = n2 = 2000 and p1 = p2 = 0.25
so that the predicted critical phase transition is p∗ = 0.25. (a) When

p < p∗, λmax(B)
n

converges to p1p2−p2

cp1+2p+ p2
c

as predicted in (18). When

p > p∗, λmax(B)
n

converges to 0 as predicted by (23). (b) Fraction
of nodes that are correctly identified using the spectral modularity
method. Community detectability undergoes a phase transition from
perfect detectability to low detectability at p = p∗. (c) The spectral
modularity method fails to detect the communities when p > p∗ since
the components of the largest eigenvector of B, y1 and y2, undergo
transitions at p = p∗ as predicted by (19) and (22).

of finite small community sizes. Figure 1(a) shows that λmax(B)
n

converges to p1p2−p2

cp1+2p+ p2
c

when p < p∗ and λmax(B)
n

converges

to 0 when p > p∗, as predicted by (16) and (23). Figure 1(b)
shows the phase transition from perfect detectability to low
detectability at the critical value p = p∗. The numerical
phase-transition thresholds are accurately predicted by (24).
Figure 1(c) further validates the predictions in (19) and (22)
that y1 and y2 converge almost surely to constant vectors
with opposite signs in the subcritical regime of p < p∗,
and yT

1 1n1 and yT
2 1n2 converge to 0 almost surely in the

supercritical regime of p > p∗. Similarly in Fig. 2, the results
are shown for a different stochastic block model where the
sizes of the two communities are not the same. These results
validate that the asymptotic phase-transition threshold p∗ in
(24) is a universal phenomenon that does not depend on the
community sizes. We have observed (see Appendix D) that
the asymptotic phase-transition expression in (24) is accurate
even in cases of relatively small community sizes, e.g., down
to sizes as small as 100.

B. Empirical estimator of the phase-transition threshold

Using the derived expression of the phase-transition thresh-
old in (24), we propose an empirical method for estimating the
threshold in order to evaluate the reliability of community
detection on real-world data a posteriori. Let n̂i and m̂i denote
the size and the number of edges of the identified community

FIG. 2. (Color online) Validation of theoretical critical phase-
transition threshold (24) for two communities generated by a
stochastic block model. The curves represent averages over 100
realizations of the model. Here n1 = 1000, n2 = 2000, p1 = 0.5,
and p2 = 0.25 so that the predicted critical phase transition is
p∗ = 0.3536. Similar phase-transition phenomenon can be observed
for this network setting.

i. Define the empirical estimators

p̂ = number of identified external edges/̂n1n̂2, (25)

p̂i = m̂i

n̂2
i

, (26)

p̂∗ =
√

p̂1p̂2. (27)

We apply these estimators to the political blog data in [24],
where this dataset contains 1222 blogs, labeled as either
conservative or liberal, and an edge corresponds to a hyperlink
reference between blogs. The detectability using the spectral
modularity method is 0.9419 (the labels are predicted by
taking the sign function on the leading eigenvector of the
modularity matrix). The corresponding empirical estimates
are p̂ = 0.0042, p̂1 = 0.0244, p̂2 = 0.0179, and p̂∗ = 0.0209.
The high detectability of the spectral modularity method is
consistent with the fact that the empirical estimate p̂ is below
the empirical phase-transition threshold p̂∗.

IV. CONCLUSION

This paper establishes a universal phase-transition thresh-
old p∗ a.s.−→ √

p1p2 on community detectability using the
spectral modularity method for a general stochastic block
model. The critical phase transition is universal in the sense
that it does not depend on the community sizes. An empirical
method is proposed to estimate the phase-transition threshold
from real-world data.
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APPENDIX A: PROOF OF THE FACT THAT
E[σ1( �√

n1n2
)] → 0 AS n1,n2 → ∞

Since � = C − C̄, we have �ij = 1 − p with probability
p and �ij = −p with probability 1 − p. Latala’s theorem
[21] states that for any random matrix M with statistically
independent and zero mean entries, there exists a positive
constant c1 such that

E[σ1(M)] � c1

(
max

i

√∑
j

E
[
M2

ij

] + max
j

√∑
i

E
[
M2

ij

]
+ 4

√∑
ij

E
[
M4

ij

])
. (A1)

It is clear that E[�ij ] = 0 and each entry in � is independent.
By using M = �√

n1n2
in Latala’s theorem, since p ∈ [0,1],

we have maxi

√∑
j E[M2

ij ] = O( 1√
n1

), maxj

√∑
i E[M2

ij ] =
O( 1√

n2
), and 4

√∑
ij E[M4

ij ] = O( 1
4√n1n2

). Therefore,

E[σ1( �√
n1n2

)] → 0 as n1,n2 → ∞.

APPENDIX B: PROOF OF (10)

Talagrand’s concentration theorem is stated as follows. Let
g : Rk 	→ R be a convex and 1-Lipschitz function. Let x ∈ Rk

be a random vector and assume that every element of x satisfies
|xi | � K for all i = 1,2, . . . ,k, with probability 1. Then there
exist positive constants c2 and c3 such that for any ε > 0,

Pr(|g(x) − E[g(x)]| � ε) � c2 exp

(−c3ε
2

K2

)
. (B1)

It is well known that the largest singular value of a matrix M
can be represented as σ1(M) = maxzT z=1 ||Mz||2 [25] so that
σ1(M) is a convex and 1-Lipschitz function. Recall that �ij =
1 − p with probability p and �ij = −p with probability 1 −
p. Therefore, applying Talagrand’s theorem by substituting
M = �√

n1n2
and using the facts that E[σ1( �√

n1n2
)] → 0 and

FIG. 3. (Color online) n1 = 100, n2 = 100, p1 = 0.25, and p2 =
0.25.

FIG. 4. (Color online) n1 = 200, n2 = 200, p1 = 0.25, and p2 =
0.25.

�ij√
n1n2

� 1√
n1n2

, we have

Pr

[
σ1

(
�√
n1n2

)
� ε

]
� c2 exp(−c3n1n2ε

2). (B2)

Note that, since for any positive integer n1,n2 > 0, n1n2 �
n1+n2

2 ,
∑

n1,n2
c2 exp(−c3n1n2ε

2) < ∞. Hence, by the Borel-

Cantelli lemma [26], σ1( �√
n1n2

)
a.s.−→ 0 when n1,n2 → ∞.

Finally, a standard matrix perturbation theory result [25] is
|σi(C̄ + �) − σi(C̄)| � σ1(�) for all i, and as σ1( �√

n1n2
)

a.s.−→
0, we have

σ1

(
C√
n1n2

)
= σ1

(
C̄ + �√

n1n2

)
a.s.−→ σ1

(
C̄√
n1n2

)
= p,

σi

(
C√
n1n2

)
a.s.−→ 0, ∀ i � 2 (B3)

when n1,n2 → ∞.

FIG. 5. (Color online) n1 = 500, n2 = 500, p1 = 0.25, and p2 =
0.25.
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FIG. 6. (Color online) n1 = 1000, n2 = 1000, p1 = 0.25, and
p2 = 0.25.

APPENDIX C: PROOF OF (22)

We prove the result by showing yT
1 B1y1

n

a.s.−→ 0 and
yT

2 B2y2

n

a.s.−→ 0 such that
√

nn1
n2

y1
a.s.−→ ±1n1 and

√
nn2
n1

y2
a.s.−→

∓1n2 due to the facts that the vector of all 1’s is always in
the null space of a modularity matrix and yT

1 1n1 + yT
2 1n2 = 0.

We prove this statement by contradiction. Assume y1 and y2

converge almost surely to other vectors such that yT
1 B1y1

n
→

c4 
= 0 and yT
2 B2y2

n
→ c5 
= 0 and c4 + c5 = 0 in order to satisfy

(21). By the concentration results in (12) and (13), we have

yT
1 B1y1

n
= yT

1

(
A1 − b1d̃1d̃T

1

)
y1

n

a.s.−→
yT

1

(
p11n1 1T

n1
− 1

n1
2p1

· n1
2p2

11n1 1T
n1

)
y1

n

= 0, (C1)

and similarly yT
2 B2y2

n

a.s.−→ 0, which contradicts the assumption

that yT
1 B1y1

n

a.s.−→ c4 
= 0 and yT
2 B2y2

n

a.s.−→ c5 
= 0. Therefore,√
nn1
n2

y1
a.s.−→ ±1n1 and

√
nn2
n1

y2
a.s.−→ ∓1n2 .

FIG. 7. (Color online) n1 = 4000, n2 = 4000, p1 = 0.25, and
p2 = 0.25.

APPENDIX D: THE EFFECT OF COMMUNITY
SIZE ON PHASE TRANSITION

To investigate the effect of community size on phase tran-
sition, we generate synthetic communities from the stochastic
block model with different community sizes by fixing c = 1
and p1 = p2 = 0.25. The predicted phase transition threshold
in (24) is p∗ = 0.25. The results (averaged for 100 runs)
are shown in Figs. 3–7. The phase transition is apparent
for small community size in the sense that the spectral
modularity method fails to detect the communities in the
supercritical regime (i.e., the p > p∗ regime). In the subcritical
regime (i.e., the p � p∗ regime), we observe an intermediate
regime of community detectability for small community size,
and this intermediate regime vanishes as we increase the
community size. This can be explained by the fluctuation of
finite community size on the concentration results in (18),
(19), (22), and (24). By concentration theory the fluctuation
decreases with the increase of community size, and an abrupt
transition occurs at the phase transition threshold p∗ when
n1,n2 → ∞ and n1

n2
→ c > 0.
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