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Identification of core-periphery structure in networks
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Many networks can be usefully decomposed into a dense core plus an outlying, loosely connected periphery.
Here we propose an algorithm for performing such a decomposition on empirical network data using methods
of statistical inference. Our method fits a generative model of core-periphery structure to observed data using a
combination of an expectation-maximization algorithm for calculating the parameters of the model and a belief
propagation algorithm for calculating the decomposition itself. We find the method to be efficient, scaling easily
to networks with a million or more nodes, and we test it on a range of networks, including real-world examples
as well as computer-generated benchmarks, for which it successfully identifies known core-periphery structure
with low error rate. We also demonstrate that the method is immune to the detectability transition observed in the
related community detection problem, which prevents the detection of community structure when that structure is
too weak. There is no such transition for core-periphery structure, which is detectable, albeit with some statistical
error, no matter how weak it is.
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I. INTRODUCTION

Much of the recent work on the structure of networked
systems, such as social and technological networks, has
focused on measurements of local structure, such as vertex
degrees, clustering coefficients, correlations, and so forth
[1,2]. Increasingly, however, researchers have investigated
medium- and large-scale structures as well. The largest part
of the attention has gone to the study of so-called community
structure [3], the archetypal example of large-scale network
structure, in which the nodes of a network are divided into
tightly knit groups or communities that often reflect aspects
of network function. However, other structure types can be
important as well and recent research has also looked at
overlapping or fuzzy communities [4–6], hierarchical structure
[7,8], and ranking [9], among others.

In this paper we focus on another, distinct type of
large-scale structure, core-periphery structure. Many networks
are observed to divide into a densely interconnected core
surrounded by a sparser halo or periphery. Already in the
1990s sociologists observed such structure in social networks
[10] and more recently a number of researchers have made
quantitative studies of core-periphery structure in a range
of different types of networks [11–13]. The identification of
core-periphery structure has a number of potential uses. Core
nodes in a network might play a different role from periphery
ones [14] and the ability to distinguish core from periphery
might thus give us a new handle on function in networked
systems. Distinguishing between core and periphery might
lead to more informative visualizations of networks or find a
role in graph layout algorithms similar to that played today by
community structure. In addition, core nodes, for instance in
social networks, might be more influential or powerful than
periphery ones, so the ability to discern the difference could
shed light on social or other organization.

There have also been studies of some other types of
structure that are reminiscent of, though different in impor-
tant ways from, core-periphery structure: rich-club structure

[15,16], degree assortativity [17,18], and k cores [2,19]. A
rich club is a group of high-degree nodes in a network (i.e.,
nodes with many connections to others) that preferentially
connect to one another. Such a club is a special case of
the core in a core-periphery structure, but the concept of a
core is more general, encompassing cases (as we will see)
in which low-degree nodes can also belong to the core.
The rich-club phenomenon also makes no statement about
connectivity patterns in the remainder of the network, whereas
core-periphery structure does.

Assortative mixing is the tendency of nodes in a network to
connect to others that are similar to themselves in some way
and degree-assortative mixing is the tendency to connect to
others with similar degree, high to high and low to low. This
produces a core of connected high-degree vertices similar to a
rich club, but low-degree vertices also preferentially connect
to one another and tend not to connect to the core, which is the
opposite of core-periphery structure as commonly understood,
in which periphery vertices are more likely to connect to the
core than they are to one another.

A k core is a set of nodes in a network such that each
has at least k connections to others in the set. A k core with
high k value is qualitatively similar to a rich club in being a
set of interconnected high-degree vertices but, also like a rich
club, it says nothing about connection patterns to the rest of
the network. Moreover, again like a rich club, such a k core
consists only of high-degree vertices, whereas our definition
of core-periphery structure allows for low-degree vertices to
belong to the core as well.

A number of suggestions have been made about how,
given the complete pattern of connections in a network, one
could detect core-periphery structure. Many of them take
the approach of defining an objective function that measures
the strength or quality of a candidate division into core and
periphery and then maximizing (usually only approximately)
over divisions to find the best one. In early work, Borgatti and
Everett [10] proposed a quality function based on comparing
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the network to an ideal core-periphery model in which nodes
are connected to each other if and only if they are members
of the core. Rombach et al. [12] built on the same idea, but
using a more flexible model. Holme [11] took a contrasting
approach reminiscent of the clustering coefficient used to
quantify transitivity in networks, while Lee et al. [20] made
use of centrality measures based on notions of local density
and transport in networks.

In this paper we propose a different, statistically prin-
cipled method for detecting core-periphery structure using
a maximum-likelihood fit to a generative network model.
The method is conceptually similar to recently popular first-
principles methods for community detection [21,22] and in
fact uses the same underlying network model, the stochastic
block model, although with a different choice of parameters
appropriate to core-periphery rather than community structure.
Among other results we demonstrate that the method is
able consistently to detect planted core-periphery structure in
computer-generated test networks and that, by contrast with the
community detection problem, there is no minimum amount
of structure that can be detected. Any core-periphery structure,
no matter how weak, is in principle detectable.

II. STOCHASTIC BLOCK MODEL

The stochastic block model is a well established and widely
used model for community structure in networks. It is a
generative model, meaning its original purpose is to create
artificial networks that contain community structure. It is also
commonly used, however, for community detection by fitting
the model to observed network data. The parameters of the fit
tell us the best division of the network into communities.

The model is defined as follows. We take n nodes, initially
without any edges connecting them, and divide them into
some number of groups. We will consider the simplest case
where there are just two groups (which will represent the core
and periphery). Each vertex is assigned randomly to group 1
with probability γ1 or group 2 with probability γ2 = 1 − γ1.
Then between every vertex pair we place an undirected edge
independently at random with probability prs or not with
probability 1 − prs , where r and s are the groups to which
the two vertices belong. Thus the probability of connection of
any two vertices depends solely on their group membership.
The probabilities prs form a matrix, sometimes called the
mixing matrix or affinity matrix, which is a 2 × 2 matrix
in our two-group example. Since the edges in the network
are undirected it follows that the mixing matrix is symmetric
p12 = p21, leaving three independent probabilities that we can
choose p11, p12, and p22.

In the most commonly studied case the probabilities for
connection within groups are chosen to be larger than the
probabilities between groups, so p11 and p22 are both greater
than p12. This gives traditional community structure, also
called assortative mixing, with denser connections within
groups than between them. A contrasting possibility is the
disassortative choice where p11 and p22 are smaller than p12,
so edges are more probable between groups than within them.
This choice, as well as the structure it describes, has received
a modest amount of attention in the literature [23,24].

There is, however, a third possibility that has rarely been
studied, in which p11 > p12 > p22. This is the situation we
refer to as core-periphery structure. Since the group labels are
arbitrary we can, without loss of generality, assume p11 to be
the largest of the three probabilities, so group 1 is the core.
Connections are most probable within the core, least probable
within the periphery, and of intermediate probability between
core and periphery. Note that this means that periphery vertices
are more likely to be connected to core vertices than to
each other, a characteristic feature of core-periphery structure
that distinguishes it from either assortative or disassortative
mixing.

As we have said, the stochastic block model can be used
to detect structure in network data by fits of the data to the
model. For instance, the assortative version of the model can
be used to fit and hence detect community structure in networks
[21,22,25,26]. As shown in [27], however, it often performs
poorly at this task in real-world situations because real-world
networks tend to have broad degree distributions that dominate
their large-scale structure and the fit tends to pick out this
gross effect rather than the more subtle underlying community
structure: Typically the fit just ends up dividing the network
into groups of higher- and lower-degree vertices rather than
traditional communities. A more nuanced view has been given
by Decelle et al. [28], who show that in fact both the degree-
based division and the community division are good fits to
the model—local maxima of the likelihood in the language
introduced below—but the degree-based one is better.

However, when we turn to core-periphery structure this bug
becomes a feature. In networks with core-periphery structure
the vertices in the core typically do have higher degree than
those in the periphery, so a method that recognizes this fact is
doing the right thing. Indeed, as we show in Sec. V, one can in
certain cases do a reasonable job of detecting core-periphery
structure just by separating vertices into two groups according
to their degrees. On the other hand, one can do better still using
the stochastic block model.

III. FITTING TO EMPIRICAL DATA

We propose to detect core-periphery structure in networks
by finding the parameters of the stochastic block model that
best fit the model to a given observed network. This we do
by the method of maximum likelihood, implemented using an
expectation-maximization (EM) algorithm [29,30]. The use of
EM algorithms for network model fitting is well established
[31,32], but it is worth briefly running through the derivation
for our particular model, which goes as follows.

A. The EM algorithm

Given a network, the question we ask is, if this network
were generated by the stochastic block model, what is our best
guess at the values of the parameters of that model? To answer
this question, let Aij be an element of the adjacency matrix A

of the network having value one if there is an edge between
vertices i and j and zero otherwise and let gi be the group
to which vertex i belongs. Then the probability, or likelihood,
that the network was generated by the model, given the values
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of the model parameters prs and γr for all groups, is

P (A|p,γ ) =
∑

g

P (A|p,g)P (g|γ )

=
∑

g

∏
i<j

p
Aij

gigj

(
1 − pgigj

)1−Aij
∏

i

γgi
, (1)

where
∑

g indicates a sum over all assignments of the vertices
to groups.

To determine the most likely values of the parameters prs

and γr , we maximize this likelihood with respect to them. In
fact, it is technically simpler to maximize the logarithm of the
likelihood

log P (A|p,γ ) = log
∑

g

∏
i<j

p
Aij

gigj

(
1 − pgigj

)1−Aij
∏

i

γgi
,

(2)

which is equivalent since the logarithm is a monotonically
increasing function. Direct maximization is still quite difficult,
however. Simply differentiating to find the maximum leads to
a complex set of implicit equations that have no easy solution.

A better approach, and the one taken in the EM algorithm,
involves the application of Jensen’s inequality, which says that
for any set of positive-definite quantities xi ,

log
∑

i

xi �
∑

i

qi log
xi

qi

, (3)

where qi is any probability distribution satisfying the normal-
ization condition

∑
i qi = 1. One can easily verify that the

exact equality is achieved by choosing

qi = xi∑
i

xi

. (4)

For any properly normalized probability distribution q(g)
over the group assignments g, Jensen’s inequality applied to
Eq. (2) gives

log P (A|p,γ ) �
∑

g

q(g) log

[
1

q(g)

∏
i<j

p
Aij

gigj

(
1 − pgigj

)1−Aij
∏

i

γgi

]

=
∑

g

q(g)

[∑
i<j

[
Aij log pgigj

+ (1 − Aij ) log
(
1 − pgigj

)] +
∑

i

log γgi
− log q(g)

]

= 1

2

∑
ij

∑
rs

[
Aijq

ij
rs log prs + (1 − Aij )qij

rs log(1 − prs)
] +

∑
ir

qi
r log γr −

∑
g

q(g) log q(g), (5)

where qi
r is the marginal probability within the chosen

distribution q(g) that vertex i belongs to group r ,

qi
r =

∑
g

q(g)δgi ,r , (6)

and q
ij
rs is the joint or two-vertex marginal probability that

vertex i belongs to group r and vertex j simultaneously
belongs to group s,

qij
rs =

∑
g

q(g)δgi ,r δgj ,s , (7)

with δij being the Kronecker delta.
Following Eq. (4), the exact equality in (5) is achieved when

q(g) =
∏

i<j p
Aij

gigj

(
1 − pgigj

)1−Aij
∏

i γgi∑
g

∏
i<j p

Aij

gigj

(
1 − pgigj

)1−Aij
∏

i γgi

. (8)

Thus calculating the maximum of the left-hand side of (5) with
respect to the parameters p,γ is equivalent to first maximizing
the right-hand side with respect to q(g) (by choosing the value
above) so as to make the two sides equal and then maximizing
the result with respect to the parameters. In this way we turn
our original problem of maximizing over the parameters into
a double maximization of the right-hand side expression over
the parameters and the distribution q(g). At first glance, this
seems to make the problem more difficult, but numerically
it is in fact easier, since it splits a challenging maximization

into two separate and relatively elementary operations. The
maximization with respect to the parameters is achieved by
straightforward differentiation of (5) with the constraint that∑

r γr = 1. Note that the final term on the right-hand side
does not depend on the parameters and hence vanishes upon
differentiation and we arrive at the following expressions for
the parameters:

prs =
∑

ij Aij q
ij
rs∑

ij q
ij
rs

, (9)

γr = 1

n

∑
i

qi
r , (10)

where n is the total number of vertices as previously. The
simultaneous solution of Eqs. (8)–(10) now gives us the
optimal values of the parameters.

The EM algorithm solves these equations by numerical
iteration. Given an initial guess at the parameters p and γ ,
we can calculate the probability distribution q(g) from Eq. (8)
and from it the one- and two-vertex marginal probabilities
(6) and (7). From these we then calculate a new estimate
of p and γ from Eqs. (9) and (10). It can be proved that
upon iteration this process will always converge to a local
maximum of the log-likelihood [29]. It may not be the global
maximum, however, so commonly one performs the entire
calculation several times with different starting conditions,
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choosing from among the solutions so obtained the one with
the highest likelihood.

Equation (9) can be simplified a little further by using
Eq. (7) to rewrite the denominator thus:∑

ij

qij
rs =

∑
g

q(g)
∑

i

δgi ,r

∑
j

δgj ,s = 〈nrns〉, (11)

where 〈· · · 〉 indicates an average within the probability
distribution q(g) and nr = ∑

i δgi ,r is the number of vertices
in group r . In the limit of large network size, the number
of vertices in a group becomes narrowly peaked and we can
replace 〈nrns〉 by 〈nr〉〈ns〉 with

〈nr〉 =
∑

g

q(g)
∑

i

δgi ,r =
∑

i

qi
r , (12)

where we have used Eq. (6). Then

prs =
∑

ij Aij q
ij
rs∑

i q
i
r

∑
j q

j
s

. (13)

This expression has the advantage of requiring only a sum
over edges in the numerator (since one need sum only those
terms for which Aij = 1) and single sums over vertices in
the denominator, not the double sum in the denominator of
(9). This makes evaluation of prs significantly faster for large
networks. [Note, however, that despite appearances, Eq. (13)
does not assume that qij

rs = qi
rq

j
s , which would certainly not be

correct in general. Only the sum over all vertex pairs factorizes,
not the individual terms.]

The final output of the EM algorithm gives us not only the
values of the parameters, but also the marginal probabilities qi

r

for vertices to belong to each group. In fact, it is normally this
latter quantity that we are really interested in. In the community
structure context it gives the probability that vertex i belongs
to community r . In the core-periphery case, it gives the
probability that the vertex belongs to either the core (group 1)
or the periphery (group 2). Typically, the last step in the
calculation is to assign each vertex to the group for which
it has highest probability of membership, producing the final
division of the network into core and periphery.

B. Belief propagation

The EM algorithm is an elegant approach, but it has
its shortcomings. Principal among them is the difficulty
of performing the sum over group assignments g in the
denominator of Eq. (8). Even for the current case where
there are just two groups, this sum has 2n terms and would
take prohibitively long to perform numerically for any but
the smallest of networks. The most common way around
this problem is to make an approximate estimate of the sum
by Monte Carlo sampling, but in this paper we employ an
alternative technique proposed by Decelle et al. [22,28], which
uses belief propagation. This technique is of interest both
because it is significantly faster than Monte Carlo sampling
and also because it lends itself to further analysis, as discussed
in Sec. IV.

Belief propagation [33], a generalization of the Bethe-
Peierls iterative method for the solution of mean-field models
[34,35], is a message-passing technique for finding probability

distributions on networks, which we can use in this case to find
the distribution q(g) of Eq. (8). We define a message η

i→j
r ,

which is equal to the probability that vertex i belongs to group
r if vertex j is removed from the network. The removal of j

allows one to derive a set of self-consistent of equations that
must be satisfied by these messages [22,36]. The equations
are particularly simple for the case of a sparse network where
prs is small so that terms of order prs can be ignored by
comparison with terms of order 1, which appears to describe
most real-world networks. For this case, the equations are

ηi→j
r = γr

Zi→j

∏
k

Aik=0

[
1 −

∑
s

qk
s prs

] ∏
k (�=j )
Aik=1

∑
s

ηk→i
s prs, (14)

where Zi→j is a normalizing constant whose value is chosen
to ensure that

∑
r η

i→j
r = 1 so that

Zi→j =
∑

r

γr

∏
k

Aik=0

[
1 −

∑
s

qk
s prs

] ∏
k (�=j )
Aik=1

∑
s

ηk→i
s prs . (15)

Equation (14) is typically solved numerically, by starting
from a random initial condition and iterating to convergence.
In addition to calculating new values for the messages η

i→j
r on

each step of this iteration we also need to calculate new values
for the one-vertex marginal probabilities qi

r , which satisfy

qi
r = γr

Zi

∏
k

Aik=0

[
1 −

∑
s

qk
s prs

] ∏
k

Aik=1

∑
s

ηk→i
s prs, (16)

with Zi being another normalization constant

Zi =
∑

r

γr

∏
k

Aik=0

[
1 −

∑
s

qk
s prs

] ∏
k

Aik=1

∑
s

ηk→i
s prs . (17)

Equation (14) is strictly true only on networks that are
trees or are locally treelike, meaning that in the limit of large
network size the neighborhood of any vertex looks like a
tree out to arbitrarily large distances. The stochastic block
model itself generates networks that are locally treelike, but
many real-world networks are not, meaning that the belief-
propagation method is only approximate in those cases. In
practice, however, it appears to give good results, comparable
in quality with those from Monte Carlo sampling [36] (which
is also an approximate method).

Once the belief propagation equations have converged, we
can use the results to evaluate Eq. (13). This requires values of
the two-vertex marginals, which are given by Bayes’ theorem,
to be

qij
rs = P (gi = r,gj = s|Aij = 1)

= P (gi = r,gj = s)

P (Aij = 1)
P (Aij = 1|gi = r,gj = s), (18)

where all elements of the adjacency matrix other than Aij

are assumed given in each probability. In terms of our other
variables we have

P (gi = r,gj = s) = ηi→j
r ηj→i

s ,

P (Aij = 1|gi = r,gj = s) = prs

(19)
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and the normalization P (Aij = 1) is fixed by the requirement
that q

ij
rs sum to unity. So

qij
rs = η

i→j
r η

j→i
s prs∑

rs η
i→j
r η

j→i
s prs

. (20)

Substituting the values of qi
r and q

ij
rs into Eqs. (10) and (13)

then completes the EM algorithm.
Note that there are now two entirely separate iterative

sections of our calculation: the EM algorithm, which consists
of the iteration of Eqs. (8), (10), and (13), and the belief
propagation algorithm, which consists of the iteration of
Eq. (14). Using the belief propagation algorithm is far faster
than calculating q(g) directly from Eq. (8). Equations (14)–
(17) require the evaluation of only O(m + n) terms for a
network with n vertices and m edges, meaning an iteration
takes linear time in the common case of a sparse network
with m ∝ n. There is still the issue of how many iterations are
needed for convergence, for which there are no firm results
at present, but heuristic arguments suggest that the number of
iterations needed is of order the diameter of a network, which
is O(log n) in typical real-world networks, so the algorithm is
expected to converge in a small number of iterations.

The complete algorithm for detecting core-periphery struc-
ture in networks consists of the following steps.

(1) Make an initial random guess at the values of the
parameters p,γ .

(2) From a random initial condition, iterate to convergence
the belief propagation equations (14) for vertex pairs con-
nected by an edge and the one-vertex marginal probabilities
(16).

(3) Use the converged values to calculate the two-vertex
marginal probabilities (20).

(4) Use the one- and two-vertex probabilities to calculate
an improved estimate of the parameters from Eqs. (10) and
(13).

(5) Repeat from step 2 until the parameters converge.
(6) Assign each vertex to either the core or the periphery,

whichever has the higher probability qi
r .

IV. DETECTABILITY

One of the most intriguing aspects of the community
detection problem is the detectability threshold [22,37,38].
When a network contains strong community structure—when
there is a clear difference in density between the in-group and
out-group connections—then that structure is easy to detect
and a wide range of algorithms will do a good job. When
the structure becomes sufficiently weak, however, at least in
simple models of the problem such as the stochastic block
model, it becomes undetectable. In this weak-structure regime
it is rigorously provable that no algorithm can assign nodes
to communities with success any better than a random coin
toss [39,40]. Given the strong connection between community
detection and the core-periphery problem studied here, it is
natural to ask whether there is a similar threshold for core-
periphery detection. Is there a point at which the core-periphery
structure becomes so weak as to be undetectable by our method
or any other?

0 10 20
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FIG. 1. (Color online) In the stochastic block model both core
(red) and periphery (blue) vertices have Poisson degree distributions,
but the mean degree is higher in the core than in the periphery, so the
overall degree distribution of the network is a sum of two overlapping
Poisson distributions as shown here. A simple division of vertices by
degree (vertical dashed line) classifies most vertices into the correct
groups, red in the core and blue in the periphery. Only those in the
overlap (shown in purple) are classified incorrectly.

At the most naive level, the answer to this question is no. The
core-periphery problem differs from the community detection
problem in that the vertices in the core have higher degree
on average than those in the periphery and hence one can use
the degrees to identify the core and periphery vertices with an
average success rate better than a coin toss.

Consider in particular the common case of a stochastic
block model where

prs = crs

n
(21)

for some constants crs . This is the case for which the
detectability threshold mentioned above is observed. Then the
average degrees in the core and periphery are, respectively,

d̄1 = γ1c11 + γ2c12, d̄2 = γ1c12 + γ2c22 (22)

and the difference is d̄1 − d̄2 = γ1(c11 − c12) + γ2(c12 − c22).
Since, by hypothesis, c11 > c12 > c22, this quantity is always
positive and d̄1 > d̄2. Because the edges in the network are
independent, the actual degrees have a Poisson distribution
about the mean in the limit of large n and hence the degree
distribution consists of two overlapping Poisson distributions,
as sketched in Fig. 1. By simply dividing the vertices according
to their observed degrees, therefore, we can (on average)
classify them as core or periphery with success better than
chance. (This assumes we know the sizes of the two groups,
which we usually do not, but this problem can be solved; see
Sec. IV A.)

So rather than asking whether our ability to detect structure
fails completely in the weak-structure limit, we should instead
ask whether we can do any better than simply dividing vertices
according to degree. The answer to this question is both yes
and no. As we now show, in the limit of weak structure no
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algorithm can do better than one that looks at degrees only, but
for stronger structure we can do better in most cases.

To demonstrate these results, we take a standard approach
from statistics and ask whether our detection algorithm based
on the stochastic block model can detect core-periphery
structure in networks that are themselves generated using the
stochastic block model. This is a so-called consistency test and,
in addition to providing a well-controlled test of the algorithm,
it has one very important advantage. It is known that on average
the best way to detect the structure in a data set generated by
a model is to perform a maximum-likelihood fit to that same
model, exactly as our algorithm does. No other algorithm will
return better performance on this test, on average, than the
maximum-likelihood method.

Bearing this in mind, consider applying the algorithm of
this paper to a network generated using the stochastic block
model with two equally sized groups (γ1 = γ2 = 1

2 ) and weak
core-periphery structure of the form

c11 = c + α1δ, c12 = c, c22 = c − α2δ, (23)

where α1, α2, and c are O(1) positive constants and δ is a small
quantity. In the limit as δ → 0 the core-periphery structure
vanishes and the network becomes a uniform random graph of
average degree c. For small values of δ the structure is weak
and it is this regime that we are interested to probe.

To make the problem as simple as possible, suppose that we
allow our algorithm to use the exact values of the parameters
γr and prs , meaning that we need only perform the belief
propagation part of the calculation to derive an answer. There
is no need to perform the EM algorithm iteration as well,
since this is only needed to determine the parameters. This is
a somewhat unrealistic situation; in practical cases we do not
normally know the values of the parameters. However, if, as we
will show, the algorithm performs poorly in this situation then
it will surely perform no better if we give it less information,
i.e., if we do not know the values of the parameters. Thus this
choice gives us a best-case estimate of the performance of the
algorithm.

To gain a theoretical understanding of how the belief
propagation process works, we consider the odds ratio qi

1/q
i
2

between the probabilities that a vertex belongs to the core
and the periphery. Making use of Eq. (16), expanding the first
product to leading order in prs = crs/n, and dividing top and
bottom in the second product by a factor of n, this quantity is
given by

qi
1

qi
2

= γ1

γ2
ed̄2−d̄1

∏
k

Aik=1

η
i→j

1 c11 + η
i→j

2 c12

η
i→j

1 c12 + η
i→j

1 c22

, (24)

where d̄1 and d̄2 are defined as in Eq. (22) and we have made
use of Eq. (10). Note how the normalization Zi→j cancels,
making calculations simpler.

Now we substitute for crs from Eq. (23), set γ1 = γ2 = 1
2 ,

and note that as δ → 0 the probabilities of any vertex being in
one group or the other become equal, so that

η
i→j

1

η
i→j

2

= 1 + βi→j δ (25)

to leading order for some constant βi→j . Keeping terms to first
order in δ, we then find that

qi
1

qi
2

= 1 + 1

2
(α1 + α2)

ki − c

c
δ, (26)

where ki is the degree of vertex i as previously.
Note that βi→j has dropped out of this expression, meaning

that when δ is small and the structure is weak the probabilities
depend only on the degree ki of the vertex and not on any
other properties of the network structure. More specifically,
vertex i has a higher probability of belonging to group 1, i.e.,
the core, whenever its degree ki is greater than the average
degree c in the network as a whole. When its degree is below
average the vertex has a higher probability of belonging to
the periphery. Thus a simple division based on probabilities
is precisely equivalent to dividing based on degree. Moreover,
since, as we have said, no other algorithm can do better at
distinguishing the structure, it immediately follows that there
is nothing better one can do in the weak-structure limit than
divide the vertices based on degree.

The same is also true in the limit of strong structure. If
the core-periphery structure is strong, meaning that there is a
big difference between connection probabilities for core and
periphery vertices, then the two Poisson distributions of Fig. 1
will be far apart, with very little overlap, and vertices can
be accurately classified by degree alone. The means of the
two distributions are μ1 = 1

2 (c11 + c12) and μ2 = 1
2 (c12 + c22)

and, since the width of a Poisson distribution scales as the
square root of its mean, we will have easily distinguishable
peaks provided μ1 − μ2 � √

(μ1 + μ2)/2, or

c11 − c22 � 2
√

c, (27)

where c = 1
2 (μ1 + μ2) is the average degree of the network as

a whole.
In fact, even between the limits of strong and weak structure

there are some networks for which a simple division by degrees
is optimal. Consider the two-parameter family of models
defined by

c11 = θr, c12 = θ, c22 = θ

r
(28)

for any choice of γr , where θ > 0 and r > 1. Substituting this
choice into Eq. (24) gives

qi
1

qi
2

= γ1

γ2
ed̄2−d̄1rki , (29)

so again the results depend only on the vertex degrees.
So are there any cases where we can do better than the

algorithm that looks at degrees only? The answer is yes: For
structure of intermediate strength, neither exceptionally weak
nor exceptionally strong, and away from the plane in parameter
space defined by Eq. (28), the messages are not simple
functions of degree but depend in general on the details of the
network structure. Since, once again, the belief propagation
algorithm is optimal, it follows that any algorithm that gives a
result different from the belief propagation algorithm must give
an inferior one, including an algorithm that looks at degrees
only. Hence, in this regime one can do better than simply
looking at vertex degrees. Moreover, this regime contains most
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cases of real-world interest. After all, core-periphery structure
so weak as to be barely detectable is presumably not of great
interest and real-world networks rarely have strongly bimodal
degree distributions of the kind considered above that make
degree-based algorithms work well in the strong-structure
limit.

There is also, we note, no evidence in this case of a
detectability threshold or similar sharp discontinuity in the
behavior of the algorithm. Everywhere in the parameter
space the algorithm can identify core and periphery with
performance better than chance.

A. Degree-based algorithm

We are now also in a position to answer a question raised
parenthetically in Sec. III B. If we choose to classify vertices
based on degree alone, what size groups should we use? We
can answer this question by noting that Eq. (28) defines the
subset of stochastic block models for which degree alone
governs classification. As we have seen, fitting to this model is
equivalent to dividing according to degree, but performing
such a fit using the full EM algorithm, rather than just
looking at degrees, has the added advantage that it gives
us the values of the parameters γr , which in turn give us
the expected sizes nr = nγr of the groups. We can perform
the fit exactly as we did for the full stochastic block model
in Sec. III A. Substituting Eq. (28) into the right-hand side
of (5), differentiating, and neglecting terms of order 1/n by
comparison with those of order 1, we find the optimal values
of the parameters to be

γr = 1

n

∑
i

qi
r , r = κ1

κ2
, θ = κ1κ2

c
, (30)

where c is the average degree of the network as previously and
κr is the expected degree in group r:

κr =
∑

i kiq
i
r∑

i q
i
r

. (31)

The one-vertex probabilities qi
r are given by Eq. (29) to be

qi
1 = γ1e

−d̄1rki

γ2e−d̄2 + γ1e−d̄1rki

, qi
2 = 1 − qi

1. (32)

Hence, for this model, no belief propagation is necessary.
One can simply iterate Eqs. (30) and (32) to convergence
to determine the group memberships. [Note that in fact the
parameter θ is never needed in the iteration; it is sufficient to
calculate only γ1, γ2, and r from Eq. (30).]

V. APPLICATIONS AND PERFORMANCE

We have tested the proposed method on both computer-
generated and real-world example networks.

A. Computer-generated test networks

Computer-generated networks provide a controlled test of
the algorithm’s ability to detect known structure. For these tests
we make use of the stochastic block model itself to generate
the test networks. We parametrize the mixing matrix of the
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θ2

0

10

20

30

Er
ro

r r
at

e 
(%

)

θ1 = 5, degree-based
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FIG. 2. (Color online) Fraction of nodes classified incorrectly in
tests on stochastic block model networks parametrized according to
Eq. (33), as a function of θ2 for fixed r = 2 and three different values of
θ1 as indicated. Closed symbols represent results for the maximum-
likelihood method described in this paper. Open symbols are the
results of a simple division according to vertex degree. Each point is
an average over ten networks of 106 nodes each. Statistical errors are
smaller than the data points. The parameter ranges are different for
different curves because they are constrained by the requirement that
edge probabilities be non-negative and that c11 > c12 > c22, which
means that θ2 must satisfy −θ1/r < θ2 < θ1(r − 1/r).

model as (
c11 c12

c21 c22

)
= θ1u1uT

1 + θ2u2uT
2 , (33)

where u1 = (
√

r,1/
√

r) and u2 = (1/
√

r,−√
r). With this

parametrization, setting θ2 = 0 recovers the (θ,r) model of
Sec. IV, for which, as we showed there, no algorithm does
any better than a naive division according to vertex degree
only. The parameter θ2 measures how far away we are from
that model in the perpendicular direction defined by u2 and we
might guess that when we are further away, i.e., for values of θ2

further from zero, we would see a greater difference between
the belief propagation algorithm and the naive one.

Figure 2 shows this indeed to be the case. The figure
shows, for three different choices of θ1, the error rate of the
algorithm (i.e., the fraction of incorrectly identified vertices)
as a function of θ2 for networks of n = 1 000 000 nodes,
divided into equally sized core and periphery. Also shown
on the plot is the performance of the algorithm that simply
divides the vertices into two equally sized groups according to
degree. As we can see, when θ2 = 0 (marked by the vertical
dashed line) the results for the two approaches coincide as
we expect. However, as θ2 moves away from zero there is a
visible difference between the two, with the error rate of the
naive algorithm being worse than that of belief propagation by
a factor of 10 or more in some cases.

It is fair to say, however, that the error rates of the
two algorithms are comparable in some cases and the naive
algorithm does moderately well under the right conditions,
with error rates of around 10% or 20% for many choices of
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parameter values. There are a couple of possible morals one
can derive from this observation. On the one hand, if one is not
greatly concerned with accuracy and just wants a makeshift
division into core and periphery, then dividing vertices by
degree may be a viable strategy. The belief propagation method
usually does better, but it is also more work to program and
requires more CPU time to execute. For some applications
we may feel that the additional effort is not worth the payoff.
Moreover, since the belief propagation method is optimal in the
sense discussed earlier, we know that, at least for the definition
of core-periphery structure used here, no other algorithm will
outperform it, so the loss of accuracy seen in Fig. 2 is the largest
such loss we will ever incur when using the degree-based
algorithm. In other words, this is as bad as it gets and it is not
that bad.

On the other hand, as we have said, one does not in most
cases know the sizes of the groups into which the network is
to be divided, in which case one must use the EM algorithm
even for a degree-based division. The computations involved,
which are described in Sec. IV A, are less arduous than those
for the full belief propagation algorithm but significantly
more complex than a simple division by degree only and
this eliminates some of the advantages of the degree-based
approach.

Furthermore, while the number of nodes on which our
method and the degree-based algorithm differ is sometimes
quite small, it may be these very nodes that are of greatest
interest. It is true that it is typically the higher-degree nodes
that fall in the core and the lower-degree ones that fall in the
periphery. However, when the two algorithms differ in their
predictions it is precisely because some of the low-degree
nodes correctly belong in the core or some of the high-degree
ones in the periphery, which could lead us to ask what is special
about these nodes. Who are the people in a social network,
for example, who fall in the core even though they do not
have many connections? Who are the well-connected people
who fall in the periphery? These people may be of particular
interest to us, but they can only be identified by using the full
maximum-likelihood algorithm. The degree-based algorithm
will, by definition, fail to find these anomalous nodes.

B. Real-world examples

Figure 3 shows an application of our method to a real-world
network, the Internet, represented at the level of autonomous
systems. This network is expected to have clear core-periphery
structure: Its general structure consists of a large number of
leaves or edge nodes—typically client autonomous systems
corresponding to end users like ISPs, corporations, or educa-
tional institutions—plus a smaller number of well-connected
backbone nodes [11,41]. This structure is reflected in the
decomposition discovered by our analysis, indicated by the
blue (core) and yellow (periphery) nodes in the figure. The
bulk of the nodes are placed in the periphery, while a small
fraction of central hubs are placed in the core. Note, however,
that, as discussed earlier, the algorithm does not simply divide
the nodes according to degree. There are a significant number
of high-degree nodes that are placed by the algorithm in

FIG. 3. (Color online) Core-periphery division of a 1470-node
representation of the Internet at the level of autonomous systems [17].
Nodes placed in the core by our analysis are drawn larger and in blue;
nodes in the periphery are smaller and in yellow. The network was
constructed from data from the University of Oregon Route Views
Project and represents an older snapshot, chosen for the network’s
relatively small size. Our methods can easily be applied to larger
networks, but the results are harder to visualize in an informative
fashion.

the periphery because of their position on the fringes of the
network, even though their degree might naively suggest that
they be placed in the core.

Figure 4 shows a contrasting example. The network in this
figure, drawn from a study by Adamic and Glance [42], is a
web network, representing a set of 1225 weblogs, personal
commentary websites, devoted in this case to commentary
on US politics. Edges represent hyperlinks between blogs,
which we treat as undirected for the purposes of our analysis.
This network has been studied previously as an example of
community structure, since it displays a marked division into
groups of conservative and liberal blogs. The figure is drawn
so as to make these groups clear to the eye—they correspond
roughly to the left and right halves of the picture—and the
core-periphery division is indicated once more by the blue
(core) and yellow (periphery) nodes.

As the figure shows, the analysis finds a clear separation
between core and periphery and moreover finds a separate core
in each of the two communities. In effect, the conservative
blogs are divided into a conservative core and periphery and
similarly for the liberal ones. A direct examination of the list
of core nodes in each community finds them to contain, as we
might expect, many prominent blogs on either side of the aisle,
such as the National Review and Red State on the conservative
side and Daily Kos and Talking Points Memo on the liberal
side.
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FIG. 4. (Color online) Core-periphery division of a network of
hyperlinks between political blogs taken from [42]. The network
naturally separates into conservative and liberal communities, clearly
visible as the two clusters in this picture. Within each group our
algorithm finds a separate core and periphery indicated by the blue
and yellow nodes, respectively.

VI. CONCLUSION

We have examined core-periphery structure in undirected
networks, proposing a first-principles algorithm for identifying
such structure by fitting a stochastic block model to observed
network data using a maximum-likelihood method. The

maximization is implemented using a combination of an
expectation-maximization algorithm and belief propagation.
The algorithm gives good results on test networks and is
efficient enough to scale to networks of 106 nodes or more. By
a linearization of the belief propagation equations we are also
able to show the method to be immune from the detectability
threshold seen in the application of similar methods to
community detection. In the community detection case the
algorithm (and indeed all algorithms) fail when community
structure in the network is too weak, but there is no such
failure for the core-periphery case. Core-periphery structure is
always detectable, no matter how weak it is.

There are many questions that are not answered by the
current work. For example, it is an open question how one
would perform a similar calculation on a weighted network. In
addition, one might reasonably generalize our calculation to
more than two groups: The two-group core-periphery division
is traditional, but one can envisage an onionlike division into
cores within cores, with three, four, or more groups of vertices.
We believe a generalization of this kind using the methods
developed here would be straightforward and would be a
suitable topic for future research.
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[14] R. Guimerà and L. A. N. Amaral, Nature (London) 433, 895
(2005).

[15] V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani,
Nat. Phys. 2, 110 (2006).

[16] S. Zhou and R. J. Mondragon, IEEE Commun. Lett. 8, 180
(2004).

[17] R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Phys. Rev.
Lett. 87, 258701 (2001).

[18] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
[19] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. Lett. 96, 040601 (2006).
[20] S. H. Lee, M. Cucuringu, and M. A. Porter, Phys. Rev. E 89,

032810 (2014).
[21] P. J. Bickel and A. Chen, Proc. Natl. Acad. Sci. USA 106, 21068

(2009).
[22] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Phys.
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