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Spatial spread of the Hantavirus infection
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The spatial propagation of Hantavirus-infected mice is considered a serious threat for public health. We analyze
the spatial spread of the infected mice by including diffusion in the stage-dependent model for Hantavirus infection
recently proposed by Reinoso and de la Rubia [Phys. Rev. E 87, 042706 (2013)]. We consider a general scenario
in which mice propagate in fronts from their refugia to the surroundings and find an expression for the speed of
the front of infected mice. We also introduce a depletion time that measures the time scale for an appreciable
impoverishment of the environment conditions and show how this new situation may change the spreading of the
infection significantly.
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I. INTRODUCTION

In 1993 the deer mouse, Peromyscus maniculatus, the most
widespread mammal in the United States, was identified as
the host of a new kind of Hantavirus [1,2], named sin nombre
virus (SNV), which causes a severe disease in humans called
pulmonary Hantavirus syndrome (HPS), a disease with a
mortality rate as high as 40%. Despite the large number
of studies made since then, no successful vaccine has been
obtained [3]. In order to understand the appearance and
propagation of the disease, and eventually prevent its effects,
different attempts have been carried out to understand the
major features that characterize the population dynamics of
deer mice.

In this way, several simplified models have been introduced
that come to describe many of the known characteristics of the
process in the long term [4–6]. The models consider the same
well-known basic processes (birth, death, competition, and
transmission of the infection through contact mainly among
adults) and have as a fundamental parameter the carrying
capacity, K , whose variations are very sensitive to climatic
changes. These climatic variations play a fundamental role
in the evolution of the population of mice, which is directly
related with the appearance and propagation of the infection
[7,8]. All the models present a transcritical bifurcation con-
trolled by a critical carrying capacity, Kc, that characterizes the
dynamics. Above it, the system evolves to a state with infected
mice, and below the critical value, the infection does not occur.
However, there are significant differences among them, and in
Ref. [6] we considered a division of the population in terms
of age and incorporated the effect of the initial infection-free
period (due, for instance, to the transfer of maternal antibodies)
and the maturation time to become an adult mouse susceptible
to be infected [9,10].

An important aspect of the spreading of the infection is the
spatial propagation of mice from refugia to its surroundings.
This has already been analyzed in the original AK model and
some of its variants [4,5,11,12].
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In this work we study the spatial spreading of the infection
in the model introduced in Ref. [6]. We set a scenario where
waves of mice propagate and characterize its main features
such as stationarity, speed of fronts, and infection. In Sec. I,
we introduce and describe the model. Sections II and III are
devoted to the numerical and analytical study of the model in
a general scenario. We particularize the scenario in Sec. IV to
consider a depletion time of the landscape resources. Finally,
in Sec. V we present some concluding remarks.

II. MODEL

One fundamental characteristic of the Hantavirus infection
is that the mice are born free from the infection, and this
condition is maintained for an appreciable period of time.
To include this fact in the analysis of the propagation of
the Hantavirus, in Ref. [6] we proposed a homogeneous
stage-dependent model with three variables: MY , MAs, and
MAi, representing the density of virus-free young mice, adults
susceptible to being infected by the virus, and adults already
infected, respectively. The model evolves in agreement with
the following processes: births, deaths, competition for the
resources, transmission of the infection among adults, and
maturation of the young mice to become susceptible adults
(mice that were born in t − τ and were able to survive until
a time t become adults susceptible to contracting the virus).
With all these ingredients, the model is

dMY

dt
= bM − cMY − MY M

K
− be−γ τM(t − τ ), (1)

dMAs

dt
= be−γ τM(t − τ ) − cMAs − MAsM

K
− aMAsMAi,

(2)

dMAi

dt
= −cMAi − MAiM

K
+ aMAsMAi, (3)

where M = MY + MAi + MAs and a, b, c, K , γ , and τ are
positive parameters. The different terms on the right-hand
sides of Eqs. (1)–(3) represent the following processes: births
with rate b, deaths for natural reasons with rate c, competition
for the resources characterized by the carrying capacity K ,
transmission of the virus with rate a, and maturation of the
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young mice with a time constant τ and depletion risk parameter
γ describing the difficulty of passing from youth to adulthood.
We refer the reader to Ref. [6] for the details and features of
the model.

To go a step further one has to consider that the deer mouse
changes eventually its burrow, particulary after leaving its dam,
looking for a new one in its surroundings [11]. To describe
this process, we generalize the homogeneous model (1)–(3)
by introducing diffusive terms to characterize the movement
of the mice population on a two-dimensional space. However,
this diffusive movement also affects the maturation process,
since a mouse born in t − τ at point (x,y), and that remains
alive, becomes an adult at point (x0,y0). Therefore, assuming
the mice are performing an unbiased random walk, we have
to consider the diffusion process over the distance between
the birth and maturation points, and following Ref. [13] we
replace each one of the two delayed terms appearing in the
homogeneous model by the term

be−γ τ

4πDY τ

∫ ∞

−∞

∫ ∞

−∞
e−[(x−x0)2+(y−y0)2]/4DY τM(x,y,t−τ )dxdy,

(4)

where DY is the diffusion coefficient for the young mice popu-
lation, and the integration takes into account the contributions
from the whole domain.

Moreover, in this space-dependent model the carrying
capacity will depend now on time and space K(x0,y0,t). This
change is substantial since the dynamics is characterized by
the critical value Kc = beγ τ /[a(b − c)] that marks the onset
of the infection and therefore defines a map of refugia, in
which the infection prevails. If the circumstances change, as
we describe in the next sections, there will be a diffusive
movement from refugia to uninfected areas, that differs for
young and adults, and controlled by the diffusion coefficients
DY and DA, respectively.

With all these ingredients, we study the propagation of
infection on a two-dimensional space. To make things simpler,
we also consider the model with axial symmetry and use
polar coordinates (r,θ ). With this simplifying assumption
the diffusion operator is ∂2

∂x2 + ∂2

∂y2 = ∂2

∂r2 + 1
r

∂
∂r

and we can
integrate the angular variable in the maturation term to make
it depend only on the radial variable

be−γ τ

4πDY τ

∫ ∞

0
ρM(ρ,t − τ )dρ

∫ π

−π

e−(r2+ρ2−2ρr sin θ)/4DY τ dθ

= be−γ τ

2DY τ

∫ ∞

0
e−(r2+ρ2)/4DY τ I0(rρ/2DY τ )ρM(ρ,t−τ )dρ

(5)

with I0(rρ/2DY τ ) as the modified Bessel function of the first
kind [14].

In this situation, the model takes advantage of the axial
symmetry and depends only on the distance, r . It reads

∂MY

∂t
= DY

(
∂2MY

∂r2
+ 1

r

∂MY

∂r

)
+ bM − cMY − MY M

K(r,t)

− be−γ τ

2DY τ

∫ ∞

0
e−(r2+ρ2)/4DY τ I0(rρ/2DY τ )

× ρM(ρ,t − τ )dρ, (6)

∂MAs

∂t
= DA

(
∂2MAs

∂r2
+ 1

r

∂MAs

∂r

)
− cMAs − MAsM

K(r,t)

− aMAsMAi + be−γ τ

2DY τ

∫ ∞

0
e−(r2+ρ2)/4DY τ

× I0 (rρ/2DY τ ) ρM(ρ,t − τ )dρ, (7)

∂MAi

∂t
= DA

(
∂2MAi

∂r2
+ 1

r

∂MAi

∂r

)
− cMAi − MAiM

K(r,t)

+ aMAsMAi. (8)

Note that if we add Eqs. (6)–(8) we obtain an equa-
tion governing the evolution of the total number of mice,
M = MY + MAs + MAi,

∂M

∂t
= DY

(
∂2MY

∂r2
+ 1

r

∂MY

∂r

)
+ DA

(
∂2MA

∂r2
+ 1

r

∂MA

∂r

)

+ (b − c)M − M2

K(r,t)
, (9)

where MA = MAs + MAi. When DY = DA = D, Eq. (9) is
the well-known Fisher’s equation, extensively studied in the
literature [15,16].

In general terms, we may expect the system (6)–(8) having
wavelike solutions moving with an r-dependent velocity.
However, for large-enough r the 1/r terms in the equations
become negligible, and the wavelike solutions end up being
traveling wave fronts moving with a constant velocity [16].
The numerical analysis of the system shows that this is indeed
the case and that after a short transient and for moderate values
of r the system spreads within well-defined fronts.

III. SCENARIO

The infection under harsh enviromental conditions survives
only in a limited number of places called refugia in which
K1 > Kc (we denote by K1 the generic carrying capacity of
the refugia). However, some changes in the environment may
be significant enough to trigger a migration movement from
the refugia, with the mice invading the surrounding landscape
looking for an ecological opportunity. Where this ecological
opportunity is high, the corresponding carrying capacity, K2,
is also high. If K2 > Kc the infection could appear in that area,
while for K2 < Kc no infection arises.

In the following we analyze numerically and analytically
the scenario with K1 > Kc and K2 > Kc and discuss the main
features of the propagation. We consider as initial conditions
a finite number of mice, some of them infected, in the refugia
and no mice in the surroundings.

A. Numerical studies

To study numerically the model (6)–(8) we take the
following values for the parameters: a = 0.4, b = 2, c = 0.6,
DY = 5 DA = 2.5, τ = 2, and γ = 0.7 leaving K as variable
[4,6,11].

An example of the spatial spreading of mice at a given
time and the temporal evolution at a given point is depicted in
Figs. 1 and 2.
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FIG. 1. (Color online) Spatial distribution of the spreading of
mice from a refugium at a time t = 19 for K1 = K2 = 40 > Kc =
14.48. The curve labeled M represents the total number of mice.
Other system parameters are indicated in the main text.

Mice spread from the refugium, located in the middle of the
domain. After a transient, when r is large enough, the spreading
enters a state where mice move out within well-defined
fronts. First, healthy mice, mainly young mice, MY , and new
susceptible adults, MAs, invade the domain at a constant speed
(independent of K2) and at a rate given by a logistic growth.
This defines the M front, the vanguard of mice. Later, the wave
of infection arises, propagating asymptotically to a constant
speed, lower or equal to the speed of the M front, depending
on the value of K . This general behavior is depicted in Fig. 3.

B. Analytical results

We consider the set of fronts that move from the refugium
to its surroundings. After the transient we may neglect the 1/r

terms in Eqs. (6)–(9), and each front starts moving at a constant
speed (see Fig. 3). If we then shift the frame of reference to
the comoving frame, fronts look frozen, and we can get rid of

FIG. 2. (Color online) Temporal evolution of the mice spreading
at the point x = 78. Parameters as in Fig. 1.

FIG. 3. (Color online) Propagation of fronts in time. The two
dashed lines depict the M and MAs fronts, respectively, propagating
at the same speed. The solid lines represent MAi fronts for different
values of K . For K = 40 and K = 36, the speeds go asymptotically
to the same speed as the M and MAs fronts, while for K = 18 the
speed is lower. The curve for K = 10 represents a front that does not
move, as in this case K < Kc = 14.48.

the temporal dependence in Eqs. (6)–(8) and (9). Since at the
leading edge of the propagating front M is the sum of MY and
MAs, it is enough to consider the fronts of M and MAi. We have

(b−c)M− M2

K(r,t)
+DY

d2MY

dr2
+DA

d2MA

dr2
+vM

dM

dr
= 0,

(10)

−cMAi− MAiM

K(r,t)
+ aMAsMAi +DA

d2MAi

dr2
+ vMAi

dMAi

dr
= 0.

(11)

The way to analyze these equations to obtain the speed
of the fronts is standard [16]. We approach each front as an
abrupt transition between two homogeneous solutions. For
the M front, we study it locally at the border with the no
mice solution and write M = δM , MY = δMY , MAs = δMAs,
MAi = δMAi. Moreover, at that point the front is mainly made
of young mice and the wave of adults has not arrived yet (see
Fig. 1). It is, therefore, justified to assume dδMA/dr ≈ 0 and
δMY ≈ δM . Substituting in (10) and retaining only first-order
terms, we get

vM

dδM

dr
+ DY

d2δM

dr2
+ (b − c)δM = 0. (12)

If we now analyze its eigenvalues, considering that the
front is not oscillatory, we obtain a criteria for the speed of the
front, and the minimum speed (which is the one observed in
the numerical simulations [11]) is

vM = 2
√

DY (b − c). (13)

The front of infected mice (MAi front) is studied in the
same way, performing a linear stability analysis around the
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FIG. 4. (Color online) Spatial distribution of mice for an scenario with depletion time (solid line: M front; dashed line: MAi front). After
a time τd , the original carrying capacity of the region, K2, diminishes to a new value, K3. (a) K1 = K2 = 40 > K0, K3 = 7. (b) K1 = 40,
K2 = 30 < K0, K3 = 7. The infection propagates in (a) but it does not in (b). System parameters as in Fig. 1 (Kc = 14.48, Ko = 34.76).

homogeneous unstable stationary state, M = K(b − c),MY =
K(b − c)(1 − e−γ τ ),MAs = K(b − c)e−γ τ ,MAi = 0, leading
to

vMAi

dδMAi

dr
+DA

d2δMAi

dr2
+ [ae−γ τK(b − c) − b]δMAi =0

(14)

and performing an analysis of the eigenvalues under the same
conditions as before of a nonoscillatory front, we obtain the
minimum speed

vMAi = 2
√

DA[aK(b − c)e−γ τ − b]. (15)

It is interesting to notice the effect of the risk parameter
(γ ) or the maturation time (τ ) in the above equation. As
compared with the AK model [11], both parameters lower
the propagation speed of the infection.

From (13) and (15) we see that vMAi � vM for K � K0,
where

K0 = [DY (b − c) + DAb]eγ τ

a(b − c)DA

> Kc. (16)

The numerical simulation of the model confirms this
behavior for Kc < K < K0 and, moreover, shows that when
K0 < K all fronts move at a common speed given by the speed
of the M front (see Fig. 3).

IV. SCENARIO WITH DEPLETION TIME

In many cases, the ecological opportunity, which implies a
high carrying capacity, is limited in time by resource depletion.
This may happen by the proper action of the mice in the
region or by the effect of external changes due to climatic
or human causes. It is therefore reasonable to consider a

FIG. 5. (Color online) Same scenarios as in Fig. 4, depicted in space and time. (a) The infection propagates at a constant speed as a
soliton-like solution. (b) The structure is dissipative and the infection disappears after a short time.
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depletion time, τd , to measure the time scale for an appreciable
change in the environment conditions. When this happens,
the corresponding carrying capacity in the region decreases
from K2 to a new value, K3. When K3 < Kc there may
be a significant change in the propagation of the infection
depending on the previous value K2. When K2 > K0, then
vMAi = vM and the infection propagates in space as a soliton-
like solution, but if Kc < K2 < K0 (vMAi < vM ), this solution
is dissipative and the infection stops propagating after a short
time. These two possibilities are depicted in Figs. 4 and 5.

As a first approximation to measure the dissipation time
of the propagated infection, we consider constant speeds.
The initial length traveled by the front of infection before
the drastic decrease of K due to the depletion is given by
	x = vMAi (τd − τi), where τi is the time interval between the
front of mice and the front of infected ones at the beginning.
For the propagation of infected mice τi must be lower than τd .
The expression for the dissipation time is

td = vMAi(
vM − vMAi

) (τd − τi). (17)

V. CONCLUDING REMARKS

The spatial propagation of the Hantavirus infection is a
concern for human communities close to mice reservoirs. In
this work we have extended the model proposed in Ref. [6]
to consider spatial diffusion and axial symmetry. In this
scenario the mice spread out from their refugia, where they
overcome harsh conditions, to their surroundings following
several waves. Young and susceptible adults are at the leading
edge, while the infection, which also spreads from the refugia
and is carried by infected mice, comes at a later time. A
complementary approach between analytical and numerical
studies shows that, after a transient, fronts evolve at stationary
speeds. When K > K0 > Kc both fronts have equal speeds,
while if Kc < K < K0 the front of infection, which is behind
the vanguard of mice, lags at a constant speed. Moreover, the
risk parameter and the maturation time, which are distinctive

ingredients of our model, may play an important role in
establishing the speed of the infection wave.

By introducing a depletion time in the surroundings, we
have shown that the scenario may change significantly. In
particular, depending on the values of the carrying capacity of
the region the infection may propagate as a soliton-like solution
or may become dissipative and vanish after a short time. For
the soliton-like solution, at a given point in the surroundings,
the infection arrives as a wave and lasts a finite time before the
infection disappears.

As a result of our analysis, three theoretical ways to control
the infection spreading have emerged:

(1) K2 < Kc. The carrying capacity in the surroundings of
the refugium is maintained lower than the critical value, so the
infection cannot be propagated in space. This is the most basic
way to control the infection.

(2) K2 > Kc and τi > τd . Even if the carrying capacity is
over the critical value, we could control the depletion time. If
it is shorter than the time it takes the infection to get there, τi ,
there will be no propagation of the infection.

(3) K2 > Kc, τi < τd , and K2 < K0. As a last possibility
to control the spread of the infection, its speed has to be lower
than the M-front speed, and in this case the infection does not
propagate too long.

Finally, we would like to note that in many regions of
South America, the spreading of mice from their refugia
(“ratada” in Spanish) has been widely observed during the
past few centuries [17]. In particular, the Colilargo mouse
(Oligoryzomys longicaudatus), which is the main host of the
Andes virus, a Hantavirus that can be transmitted among
humans, has been involved in the 2011 ratada in western
Argentina [18].
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