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Phase transition and winding properties of a flexible polymer adsorbed
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Motivated by the noncovalent binding of polypeptides to DNA, the adsorption of a flexible polymer to a rigid
periodic copolymer is studied in two dimensions and three dimensions. The fraction of adsorbed monomers,
the specific heat, and the Binder cumulant are analyzed and compared with analytical results for an ideal chain.
As the interaction strength ε increases, a second-order phase transition occurs from a nonadsorbed state to an
adsorbed state, in two dimensions, and a higher-order transition occurs in three dimensions. The transition point
is estimated as ε0 ∼ 2.2 for d = 2 and ε0 ∼ 2.1 for d = 3, where ε is given in units of kBT . The dependence
of the number of adsorbed monomers Nads on the chain length L of the flexible polymer shows a power law
scaling relation Nads ∼ Lφ , with φ ∼ 0.46,0.42 for d = 2,3, respectively. We also find an optimal ε ∼ 2.8 for the
winding of the flexible polymer around the rigid one in three dimensions. Compared to the adsorbed monomers,
the successive nonadsorbed monomers contribute more to the winding. When the interaction is strong, ε > 3.5,
the winding value or the number of winding turns of the flexible polymer becomes linearly dependent on the
chain length.
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I. INTRODUCTION

Contrary to the traditional view that a functional protein
usually possesses a stable three-dimensional structure, more
and more functional intrinsically disordered protein domains
of significant size are reported [1,2]. They interact with DNA,
RNA, and other protein domains, and play several important
roles in cells such as transcriptional regulation, translation,
and cellular signal transduction [3,4]. Many intrinsically
disordered proteins undergo a transition from a random-
coil-like unbound state to a more ordered bound state of
stable secondary or tertiary structure, i.e., a so-called folding
while binding process [5,6]. For example, the binding of the
multi-C2H2 zinc finger protein, which behaves like a wormlike
chain [7], to its target DNA sites results in an orientational
restraint of successive zinc fingers and facilitates the whole
protein to wind around the DNA along its helical major groove
[8]. It is well known that the giant loss of entropy of a protein
from unbound to bound state should be compensated with the
protein-DNA binding enthalpy gain [9,10].

Another macromolecular system of current interest is the
polymer-carbon nanotube hybrid, which consists of a carbon
nanotube (CNT) coated with a self-assembled monolayer
of flexible or semiflexible polymer chains [11,12]. Several
experiments confirmed that wrapping is a general phenomenon
occurring between polymers and CNTs, and some polymers
are reported to wrap CNTs in a distinct, helical-type confor-
mation, like poly(sacchrides) [13], poly(dialkylsilanes) [14],
and single-stranded DNA [15,16]. This noncovalent polymer
wrapping can affect the properties of the CNTs, such as the
solubility, dispersity, strength, toughness, and conductance,
and hence enhances its functionality in numerous proposed
applications [17–19].

There are studies on both intrinsically disordered protein
DNA and polymer CNT, with either Monte Carlo or molecular
dynamics methods on a coarse-grained or atomistic scale

[20–22]. For example, Levy’s group uncovered the asymmetric
role of zinc fingers in the DNA-scanning process of the
inducible transcription factor Egr-1 based on a Go-type model
[23,24]. Tallury and Pasquinelli found that polymers with
stiff and semiflexible backbones, but not those with flexible
backbones, tend to wrap around the CNTs in a periodic helical
way via atomistic molecular dynamics simulations [25,26].
However, all these studies focused on one or a few specific
molecular systems, and it was not fully understood how the
adsorptive interaction between the polypeptides and DNA, or
the polymer and CNT, influences the binding and the winding.

To answer these questions, a generic polymer-polymer
coarse-grained model was developed. The intrinsically dis-
ordered protein is modeled as a flexible polymer chain.
Since the adsorbing sites for proteins along DNA usually
are not consecutive, the DNA molecule is modeled as a
rigid periodic copolymer. Conformation properties of the
polymer-polymer complex were investigated with different
adsorptive interaction and different chain lengths. The phase
transition from a nonadsorbed state to an adsorbed state and
the characteristics of the flexible polymer wrapping around the
rigid one are analyzed. In Sec. II, we discuss the theoretical
work on the adsorption of an ideal chain. In Sec. III, the model
and the simulation method are briefly introduced. Then the
results for the phase transition and winding are discussed in
two different parts. Finally, we present a short summary of our
main conclusions.

II. THEORY

Research interest on similar problems dates back to the
1960’s. Rubin studied the adsorption of an ideal chain on a long
rigid-rod molecule by the transfer-matrix method [27]. There
the adsorbing rodlike molecule is represented by the lattice
sites on the z axis of a cubic lattice. The adsorptive interaction
strength is ε, and the adsorption energy per monomer is −ε in
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units of kBT . Given that the first monomer is grafted on the z

axis and the length of the flexible chain approaching infinity,
the average fraction of adsorbed monomers fads is found to be
equal to zero below a transition point ε < ε0. What is more, the
kth derivative of fads at ε0 equals zero for any k � 1, suggesting
an infinite-order phase transition. Numeric results of fads and
the specific heat C = 〈(E − 〈E〉)2〉/LkBT 2, where E is the
energy of the system, are plotted in the insets of Figs. 2(a)
and 2(b), respectively.

For the adsorption of an ideal chain to an impenetrable
straight line in two dimensions, one can directly apply the
solution of the adsorption of an ideal chain to an impenetrable
flat surface [28]. Consider a lattice model of the chain-surface
system in which the adsorbing surface corresponds to the x-y
plane and the chain is represented by a random walk in half of
the space z > 0. Each lattice site is surrounded by Z nearest-
neighbor sites, while Z0 of them of the same z value are called
to locate in the same layer. At any moment, the walker can
only move to one of the current nearest-neighbor sites in the
next step. For a random walker who starts on the adsorbing
surface, the probability that at the N th step the random walker
is located in the kth lattice layer is Pk(N ). The key recurrence
equation for adsorption on a plane is

Pk(N ) = 1
2aPk+1(N − 1) + (1 − a)Pk(N − 1)

+ 1
2aPk−1(N − 1) (1)

for k � 1, where a = (Z − Z0)/Z. This describes that if at
the N th step the random walker is in the kth layer he must
be in the k − 1, k, or (k + 1)th layer at the (N − 1)th step.
On the adsorbing surface where k = 0, we have the boundary
condition

P0(N ) = 1
2aeεP1(N − 1) + (1 − a)eεP0(N − 1), (2)

where the factor eε accounts for a greater probability of a step
lying on the adsorbing surface. It is reported [28] that this
system undergoes a second-order phase transition as the chain
length L → ∞. Again the chain is nonadsorbed (fads = 0)
below ε0, but the specific heat C jumps discontinuously from
zero to a finite peak at ε0. The insets in Figs. 2(c) and 2(d) give
the corresponding numeric solution of fads and C as a function
of ε.

Concerning the problem of the adsorption of an ideal chain
on an axis in two dimensions, Pk(N ) can be also regarded as the
probability that a random walker, in a half x − y plane (y > 0),
is located in the kth lattice layer (y = k) at the N th step, when
he starts from the attracting x axis. Then in a two-dimensional
simple square lattice, one simply sets a = (4 − 2)/4 = 0.5 and
it should have the same phase transition behavior as above.

A more general scaling analysis for the adsorption of
flexible chain onto any object S [29] shows that fads = 0 for
ε < ε0 and fads > 0 for ε > ε0 when the chain length L → ∞.
Close to ε0, the number of adsorbed monomer Nads follows the
relation [30]

Nads = LφF [(ε − ε0)Lν], (3)

where F (x) is a scaling function. The relation between the
crossover exponent φ and the critical exponent ν has been
studied. Regarding the adsorption of a polymer on a surface in
three dimensions, a lattice simulation by Eisenriegler, Kremer,

and Binder reports that φ � 0.59 � ν3D [31], which is also
obtained by Descas et al. [32]. Using a different algorithm,
Hegger and Grassberger find φ ∼ 0.5 [33], and this result
is supported by other simulations [34]. If the surface is
penetrable and neutral (with ε0 = 0), φ is related to ν via
φ = 1 − ν [35]. Bhattacharya et al. found that the value of
φ depends essentially on the degree of interaction between
different loops in a polymer, and varies in the range of
0.34 � φ � 0.59 [36].

III. MODEL AND SIMULATION

In our model, both in two dimensions and three dimensions,
the rigid molecule (e.g., DNA) is represented by an infinitely
long copolymer with periodically distributed adsorption sites
on it (see Fig. 1). The flexible molecule (polypeptides) is
modeled as a flexible polymer of length L. We implement
this using the bond fluctuation model [37] for the cubic lattice,
where the bond lengths of the flexible polymer can vary from 2
to

√
10. The rigid polymer lies on the x axis. Since the closest

integer to the a priori mean bond length of a polymer in the
bond fluctuation model is 3, the distance between the adsorbing
sites is chosen to be 3. Because of the excluded volume,
one adsorption site cannot be occupied by two monomers
simultaneously, and the distance from the monomer of the
flexible polymer to the rigid one is s � 2. One monomer of
the flexible polymer is considered to locate on the surface of
the rigid molecule if s = 2 in two dimensions, or 2 � s �

√
8

in three dimensions, but it is adsorbed only when it resides
on the surface of an adsorbing site, i.e., it has the same x

coordinate value as an adsorbing site.
The simulations were performed using the standard

Metropolis algorithm [38], where an adsorbed monomer can
only leave the adsorption site with a probability exp(−ε/kBT ).
It is guaranteed that at least one monomer of the flexible
polymer, not adsorbed necessarily, is on the surface of the rigid
copolymer. For different L ∈ {10,20,40,80,160,200} and ε ∈

FIG. 1. (Color online) An illustration of our model in two di-
mensions (a) and in three dimensions (b). The z axis is perpendicular
to and points out of the plane. Monomers of the rigid polymer are
represented by squares, where the adsorbing sites are colored gray.
Monomers of the flexible polymer are represented by circles of solid
black edges (z = 0), dashed red edges (z > 0), and dash-dotted blue
edges (z < 0). Circles representing adsorbed monomers are filled.
In (b), bonds from monomer i to i + 1 are drawn using solid lines
(parallel to the plane), solid arrows (going out of the plane), and
dashed arrows (going into the plane).
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[0.0,5.0] with a step 0.1, we first calculated the sampling
interval �t from the autocorrelation time of the radius of
gyration Rg of the flexible polymer (e.g., �t ∼ 107 Monte
Carlo steps for L = 200, ε = 3.0). Then after equilibration,
104 independent conformations with interval �t were sampled
for each pair of parameters {L,ε} to calculate the ensemble
averaged properties of interest.

Since the first monomer of the flexible chain is always fixed
and adsorbed in the theoretical work, we also calculated the
adsorption with the first monomer grafted.

IV. RESULTS

A. Phase transition

The dependence of the fraction of adsorbed monomers fads

and the specific heat C on the adsorptive interaction strength
ε for various chain lengths are presented in Fig. 2. In both
dimensions, due to the finite size effect, the transition gets
sharper when L increases. For longer polymers, the fads is
almost zero for small ε. It is apparent that there is a steeper
rise within the transition region in two dimensions than in three
dimensions. Also a higher fraction of the flexible polymer is
adsorbed in two dimensions than in three dimensions when the
interaction is strong (e.g., ε = 5.0). Concerning the specific
heat, for L = 200, C roughly jumps vertically to a higher peak
in two dimensions, while it climbs up to a lower maximum with
a flatter slope in three dimensions. All of these features appear
in the theoretical results for an ideal chain too. Therefore
we expect a second-order phase transition for d = 2, and a

higher-order (larger than 2) transition for d = 3. In addition,
as the flexible polymer becomes longer and longer, the peak
height of the specific heat increases monotonically in two
dimensions, and it starts increasing followed by a decline in
three dimensions. However, it converges in either case. Taking
the number of adsorbed monomers Nads as an order parameter,
the dependence of susceptibility χ = 〈N2

ads〉 − 〈Nads〉2 on ε as
L → ∞ (data not shown here) also supports the conclusion
drawn from the specific heat.

In order to determine the transition point ε0, we
perform the analysis of the Binder cumulant U = 1 −
〈N2

ads〉/3〈Nads〉2 [30,38]. It is known that, providing the chain
length L → ∞, U approaches 2/3 for ε > ε0, and it tends
to a nonzero value at ε0 independent of L. Hence, for pairs
of different finite chain lengths {L,L′}, the ratio between the
Binder cumulants UL/UL′ should equal to 1 near the transition
point. Figures 3(a) and 3(c) show U as a function of L−1 around
ε0 for d = 2,3, respectively. U shows different behavior for
ε > ε0 and ε < ε0 in both dimensions. This suggests that
ε0 ∼ 2.3 in two dimensions and ε0 ∼ 2.1 in three dimensions.
The ratios of the Binder cumulants for different pairs of
chain lengths versus the interaction strength are plotted in
Figs. 3(b) and 3(d). According to the points, which cross over
the horizontal line UL/UL′ = 1, we found 2.25 < ε0 < 2.35
and 2.05 < ε0 < 2.15, for d = 2 and 3, respectively, but this
only gives us a rough range of the transition point.

Since it is reported [30,32,34] that the ratio between the
perpendicular and parallel components of the mean square
radius of gyration 〈R2

g⊥〉/〈R2
g‖〉 should be independent of the

FIG. 2. (Color online) Fraction of adsorbed monomers (a, c) and specific heat (b, d) for different chain lengths L ∈
{10,20,40,80,160,200,320} and different adsorptive interaction strength ε in dimension d = 2,3. Subplot (b, d) has the same legend as
(a, c), respectively. The corresponding theoretical results for an ideal chain in two dimensions [28] and in three dimensions [27] are shown in
the insets, while the vertical dashed lines indicate the location of the transition point ε0.
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FIG. 3. (Color online) Binder cumulant U vs the inverse of chain length L−1 around ε0 (a, c), and the ratio between U of different pairs of
chain lengths {L/L′} ∈ {20/320,40/320,80/320,160/320} vs the adsorptive interaction strength ε (b, d) in d = 2,3. The intersection points
are located within the pair of vertical dashed lines in (b, d).

chain length L at the transition point in the surface adsorption
problem, the dependence of this ratio on the interaction
strength for different chain lengths is presented in Fig. 4.
In two dimensions, the curves for different L intersect at
ε0 = 2.2, but in three dimensions they collapse onto each
other at low adsorptive interaction and do not intersect at
one clear point. The difference can be explained if one
notices that the flexible polymer can wrap around the rigid
polymer in three dimensions, but not in two dimensions (due
to the dimensionality of the space and the excluded volume
interaction between the flexible polymer and the rigid one).
Swelling perpendicularly at small ε leads to a larger Rg⊥.
Because of the same reason, 〈R2

g⊥〉/〈R2
g‖〉 ∼ 1 for d = 2, but

〈R2
g⊥〉/〈R2

g‖〉 > 2 for d = 3, for weak adsorptive interaction.
We have also measured the dependence of the number of

adsorbed monomers Nads on L in the transition region [see
Figs. 5(a) and 5(c) for d = 2,3, respectively]. In agreement
with the scaling analysis, a linear curve in the log-log plot
indicates a power law relation Nads ∼ Lφ for both dimensions.
The exponent values of {φ,ν} are further calculated by fitting
the scaling

NadsL
−φ = a0 + a1(ε − ε0)Lν + O[(ε − ε0)2Lν], (4)

following the method from Luo [30]. In brief, taking two
dimensions as an example, Nads at ε ∈ [2.0,2.4] with a step
of 0.01 are obtained from quadratic interpolation from the
simulation data at ε ∈ {2.0,2.1,2.2,2.3,2.4}. Then, {ε0,φ} are
determined by a best fit to a power law. ν is the value
which minimizes the deviation from the relation NadsL

φ ∼
(ε − ε0)Lν of the simulation data to a parabolic function.

FIG. 4. (Color online) The ratio between the perpendicular and
parallel components of the mean square radius of gyration 〈R2

g⊥〉/
〈R2

g‖〉 vs ε in two dimensions (a) and three dimensions (b). The
vertical dashed line in (a) indicates the location of the intersection
point.
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FIG. 5. (Color online) Log-log plot of the number of adsorbed monomers Nads vs the chain length L around ε0 (a, c), and the scaling of
Nads with {ε,φ,ν} equals {2.20,0.46,0.58} in two dimensions (b) and {2.05,0.42,0.57} in three dimensions (d) for various chain lengths.

Figures 5(b) and 5(d) show the scaled Nads with ε0 = 2.20,
φ = 0.46, ν = 0.58 for d = 2, and ε0 = 2.05, φ = 0.42,
ν = 0.57 for d = 3. We can see that all data collapse quite
well even for ε far from ε0. It is quite interesting to find that
our fitted values satisfy φ ∼ 1 − ν, which was proposed by De
Gennes [35].

Finally in Figs. 6(a) and 6(c) we compare fads for the
chain having the first monomer always grafted to the rigid
polymer with that for the nongrafted polymer used in our
model. When the polymer is short, the grafted polymer always
has a higher fraction of adsorption than the nongrafted one,
but the difference between them diminishes as the polymer
gets longer. Hence the above discussion about the phase
transition should also apply to the grafted polymer, providing
L approaches infinity. However, deviations can be found if one
looks at the perpendicular monomer density ρ⊥ profile for the
grafted and nongrafted polymer in Figs. 6(b) and 6(d). At low
adsorptive interaction, compared to the nongrafted polymer,
the grafted one is expelled further away from the rigid polymer.
At high interaction, since most of the polymer is adsorbed on
the surface, this difference disappears.

B. Winding properties

Another property of special interest is how the flexible
polymer winds or wraps around the rigid one in three
dimensions. The winding value w is defined as a function of the
contour length l of the flexible polymer, for l ∈ {1,2, . . . ,L}.
We have

w(i + 1) = w(i) + dϕ, (5)

while the flexible polymer rotates around the rigid one from
monomer i to i + 1 by an angle dϕ (see Fig. 7). One turn is
counted if |�w| = |we − ws | exceeds 2π , where ws and we

are the winding values at the head and tail of a segment of
the flexible polymer, respectively. Looking along the rigid
molecule, the flexible polymer can wind either clockwise

FIG. 6. (Color online) Fraction of adsorbed monomers for non-
grafted (dashed blue line) and grafted polymer (solid purple line) with
L = 10,200 in (a, c), respectively, and the perpendicular monomer
density ρ⊥ vs the distance from the monomer to the rigid polymer
surface for nongrafted (dashed blue line) and grafted polymer (solid
purple line) with L = 200 and ε = 0.3,2.5 in (b, d), respectively.
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FIG. 7. (Color online) Winding and turn. The winding value w,
as a function of the contour length l along the flexible polymer, varies
from w(i) to w(i + 1) with dϕ, by which the flexible polymer rotates
around the rigid one from monomer i to i + 1. One turn is counted if
|�w| exceeds 2π .

(w > 0) or anticlockwise (w < 0) with equal probability, and
one would expect 〈w〉= 0. Hence we choose w2 and plot
〈w2/L〉 versus ε for various chain lengths in Fig. 8.

With strong adsorptive interaction, monomers of the flexi-
ble polymer are almost adsorbed. A local move parallel to the
rigid polymer, from an adsorbing site to a nonadsorbing site, is
energetically unfavorable. One can assume that each monomer
moves only perpendicular to the rigid polymer stochastically
clockwise and anticlockwise, while still keeping its distance
to an adsorbing site not larger than

√
8, i.e., still adsorbed.

Similar to 〈�2
D〉 ∼ t , where �D is the displacement and t is

the elapsed time in one-dimensional diffusion, this assumption
yields that with large ε

〈w2〉 ∼ L, (6a)

Nturn ∼ L, (6b)

where Nturn is the mean number of turns. For ε > 3.5, the
curves of 〈w2/L〉 for different chain lengths collapse (see
Fig. 8), which validates Eq. 6(a). We have also plotted the
Nturn as a function of L at ε ∈ {3.0,3.5,4.0,4.5,5.0} in Fig. 9.
The linearly fitted dashed lines for all these interaction strength
confirm the above analysis too.

The flexible polymer is divided into three kinds of segments
to further understand the dependence of 〈w2〉 on ε. The
nonadsorbed successive monomers at the terminals of the
chain are called tail and in the middle are called loop,

FIG. 8. (Color online) The chain length normalized mean square
winding value 〈w2〉/L vs the adsorption energy ε for different L.

FIG. 9. (Color online) The mean number of turns Nturn vs the
chain length L at strong adsorptive interaction ε � 3.0. The dashed
lines are the linear fitted curves.

and the adsorbed successive monomers are called train (see
Fig. 10). Given the length of a segment Ls , we define the
squared winding value per monomer for this segment as
w2

mono = w2/Ls .
Figure 11(a) shows the fraction of monomers in tail ftail,

loop floop, and train ftrain as a function of ε. With low attractive
interaction strength, the tails dominate the polymer. With high
attractive interaction strength, the majority of the monomers
belong to the trains (see also Fig. 10). As ε increases, ftail

decreases and ftrain increases monotonically. When ε is slightly
larger than ε0, since ftail decreases faster than the increase of
ftrain, floop = 1 − ftail − ftrain starts increasing. Hence there
appears a maximum of floop in the range 2.5 < ε < 3.0, which
is larger than ε0. A similar relation between the adsorptive
interaction strength of maximum floop and the transition point
holds for adsorption of a polymer to a surface [39].

Furthermore, Fig. 11(b) presents the mean squared wind-
ing value per monomer 〈w2

mono〉 versus ε for three kinds
of segments. It shows that 〈w2

mono〉(loop) > 〈w2
mono〉(tail) >

〈w2
mono〉(train) for ε < 4.0. Since every monomer in a train is

confined on the surface of the rigid polymer and each bond
of certain length cannot step over a large dϕ, 〈w2

mono〉(train) is
comparatively small. As for 〈w2

mono〉 in the loop, compared

FIG. 10. (Color online) Typical conformations of a flexible poly-
mer of chain length L = 40 adsorbed to a rigid polymer, with the
adsorptive interaction strength ε = 0.4,2.7,4.7 (top-left, top-right,
and bottom panel, respectively). The flexible polymers are divided
into three kinds of segments, tail (blue), train (brown), and loop
(white).
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FIG. 11. (Color online) The fraction of adsorbed monomers (a)
and the mean squared winding value per monomer < w2

mono > (b) in
train, loop, and tail vs ε for L = 200.

to that in the tail, the additional grafted end impedes the
nonadsorbed segment to align parallel to the rigid polymer,
which hence results in a larger winding.

These two factors together explain why there is a peak for
the winding of the whole chain around ε ∼ 2.8 in Fig. 8 (see
also Fig. 10), where we have 〈w2/L〉 ∼ ftrain〈w2

mono(train)〉 +
floop〈w2

mono(loop)〉 + ftail〈w2
mono(tail)〉. Finally, we stress that

the winding properties analyzed here do not necessarily mean a
periodic helical conformation of the flexible polymer wrapping
around the rigid one. It has been pointed out that the bending
rigidity [25,26,40] and weak attraction between nonadjacent
monomers of a semiflexible chain [20] play key roles in
forming periodic helical winding on an adsorbing cylinder
surface. We have also calculated the periodic correlation
function [20] from conformations for all the studied interaction
strength, and no ensemble meaningful periodicity is found.

V. CONCLUSION

In this work, we studied a generic polymer-polymer
model for the adsorption of a flexible molecule onto a
rigid molecule using the Monte Carlo method. In agreement
with the theoretical results for the adsorption of a grafted

ideal chain, our data show a steeper transition, namely, from
a nonadsorbed state to an adsorbed state, in two dimensions
than in three dimensions. Also considering the dependence of
the Binder cumulant on the adsorption interaction strength, we
conclude that there is a second-order phase transition in two
dimensions and a higher-order transition in three dimensions.
Both the crossing of the Binder cumulant and the ratio of the
perpendicular to parallel components of the radius of gyration
indicate the transition point ε ∼ 2.2 in two dimensions and
ε ∼ 2.1 in three dimensions. Further analysis of the scaling
of the number of adsorbed monomers with the chain length
shows an expected power law relation close to the transition
point. In addition, calculation of the winding value of the
flexible polymer around the rigid polymer in three dimensions
shows that the successive nonadsorbed monomers, which we
called the loop, contribute most to the winding. It leads to an
optimum ε of medium strength 2.8 for the winding of the whole
chain. Here the important role played by the loop reminds us
of the similar function of the linker peptide of a protein [8].
Taking the multi-C2H2 zinc finger protein wrapping around
its target DNA site as an example, usually the C2H2 zinc
finger domains are bound to the DNA, while the flexible linker
peptides between these domains are unbound. Finally it is also
shown that, with high interaction strength, the dependence of
the winding and the number of turns of flexible polymer on
the chain length becomes linear.

In our model, the periodicity of the adsorbing sites on
the rigid polymer is set to 3, which is the integer closest
to the priori mean bond length of a flexible polymer in the
bond fluctuation model [37]. The resulting transition energy
ε0 is larger than that of the adsorption onto a homogeneous
rigid polymer. If the periodicity is enlarged, two effects are
expected. First, monomers in the flexible chain cannot be
adsorbed successively any longer, and the saturation value
of fads will decrease. Second, the transition energy ε0 will
increase. These tendencies have been investigated by other
studies, such as a Monte Carlo simulation of the adsorption of
periodic copolymers at a homogeneous planar substrate [41],
and a numeric solution of a directed walk model of a periodic
heteropolymer adsorbed onto a surface with periodic adsorbing
strip pattern [42]. Changing the periodicity will shift the
transition energy and the optimal winding energy, but should
not change the order of the transition and the importance of
loops in winding.
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