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Effect of hockey-stick-shaped molecules on the critical behavior at the nematic to isotropic
and smectic-A to nematic phase transitions in octylcyanobiphenyl
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In the field of soft matter research, the characteristic behavior of both nematic–isotropic (N−I ) and
smectic-A–nematic (Sm-A–N ) phase transitions has gained considerable attention due to their several attractive
features. In this work, a high-resolution measurement of optical birefringence (�n) has been performed to probe
the critical behavior at the N−I and Sm-A–N phase transitions in a binary system comprising the rodlike
octylcyanobiphenyl and a laterally methyl substituted hockey-stick-shaped mesogen, 4-(3-n-decyloxy-2-methyl-
phenyliminomethyl)phenyl 4-n-dodecyloxycinnamate. For the investigated mixtures, the critical exponent β

related to the limiting behavior of the nematic order parameter close to the N−I phase transition has come out to
be in good conformity with the tricritical hypothesis. Moreover, the yielded effective critical exponents (α′, β ′,
γ ′) characterizing the critical fluctuation near the Sm-A–N phase transition have appeared to be nonuniversal in
nature. With increasing hockey-stick-shaped dopant concentration, the Sm-A–N phase transition demonstrates a
strong tendency to be driven towards a first-order nature. Such a behavior has been accounted for by considering
a modification of the effective intermolecular interactions and hence the related coupling between the nematic
and smectic order parameters, caused by the introduction of the angular mesogenic molecules.
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I. INTRODUCTION

In recent years, liquid crystalline mixtures incorporating
rodlike and other reduced symmetry molecules have gained
considerable attention owing to their competence in bringing
out the effect of the molecular conformation on the inter-
molecular interaction and thereby on the phase behavior of
combined systems. Mixtures obtained by combining rodlike
and bent-core mesogenic molecules have frequently been
endowed with a number of remarkable properties such as
enhancement of chirality in cholesteric [1,2] and smectic C∗
fluids [3], induction of novel smectic mesophases [4], gen-
eration of antiferroelectric order in smectics [5,6], inimitable
temperature dependence of elastic constant [7], or nanophase
segregations [8,9]. It has been observed that introduction
of a very little quantity of bent-core dopant in a rodlike
environment can also significantly revise the phase behavior
of the host mesogen, including the order of their mesophase
transitions [10,11] and extent of a mesophase region, and
may even induce odd characteristic phenomena in known
calamitic mesophases. Thus the exact treatment of phase
transitions in such doped systems is of unparalleled advantage
for obtaining a deeper insight into the unresolved issues
regarding transitional phenomena in soft condensed matter
systems.

Furthermore, it is well known that over the past
few decades, the characteristic behavior of the smectic-
A–nematic (Sm-A–N ) phase transition has been a subject of
extensive theoretical and experimental studies in an effort to
determine the order of the transition and the universality class
to which it belongs. Considerable progress has been made so
far, but still remains a controversial issue in the field of equilib-
rium statistical mechanics of soft condensed matter [12–16].
The one-dimensional positional order in the Sm-A phase can
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be well described in terms of a two-component complex order
parameter (�) and one may expect a three-dimensional XY

(3D-XY ) nature of the transition. But owing to the coupling
between the molecular ordering and their fluctuations, con-
sistent nonuniversal-type behavior has been observed for the
critical coefficients [17]. Previous mean-field predictions of
Kobayashi [18] and McMillan [19] suggested that depending
on the ratio of the smectic-A–nematic (Sm-A–N ) to nematic–
isotropic (N−I ) transition temperatures (i.e., on the extent
of the nematic range), the Sm-A–N transition can either
be of first order or second order along with the existence
of a tricritical point (TCP) where the transition makes a
crossover from second-order to first-order nature. A more
realistic model of de Gennes along with the introduction of
a Landau-Ginzburg–like functional for type I superconductor,
and hence considering a coupling between the nematic (S)
and smectic (�) order parameters, envisages the transition to
be in the three-dimensional XY (3D-XY ) universality class
(corresponding critical exponent αXY = −0.007) like that for
the normal-superconducting transition in metal or the lambda
transition in He4 [14]. However, the transition is driven to a
crossover from XY -like second order to Gaussian tricritical
(αTCP = 0.5) with a decrease in the nematic width indicating a
stronger coupling between S and �; i.e., the 3D-XY model is
an approximation only unless the nematic order has completely
been saturated [13,17,20]. The subsequent work of Halperin,
Lubensky, and Ma (HLM) [21] revealed that the coupling
between the nematic director fluctuation and the smectic
order parameter also put forward a significant contribution
by introducing a correction in the free energy term ∼�3,
thereby making the transition always weakly first order. It was
anticipated that the transitional discontinuity reduces with a
decrease in the McMillan ratio (defined as TSN/TNI , where
TSN and TNI are the Sm-A–N and N−I phase transition
temperatures, respectively); however, it never completely dies
out. Afterward, a model embracing type II superconductor–
like continuous behavior has also been proposed, expecting a
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3D-XY–like behavior with inverted heat capacity amplitude
ratios and ruling out the possibility of any first-order-type
behavior [22,23]. But, the experimentally measured specific
heat capacity values consistently reveal a noninverted XY -like
nature, thereby indicating the insufficiency of the above said
model [24–27]. Further attempts have also been made from the
study of the anisotropy in the critical behavior associated with
the parallel and perpendicular components (with respect to the
director) of the correlation length and its subsequent analysis
employing various physical models such as gauge transforma-
tion theory [28–30], dislocation-loop melting theory [31,32],
and self-consistent one-loop theory [33,34].

However, none of the above theoretical models fit com-
pletely with all the available experimental data and hence
they fail to portray a clear scenario of universality. It has
been observed that the effective critical exponent is extremely
sensitive to the nematic temperature range and demonstrates
a systematic variation depending on it. A value of 0.87
of the McMillan ratio points toward the tricritical limit,
but experimental findings provide somewhat higher values,
ranging between 0.942 and 0.994, suggesting a nonuniversal-
type behavior, which again is found to rely on the molecular
properties [16]. In the past few decades, the specific heat
capacity measurements, light scattering, x-ray diffraction,
volumetric studies, and dielectric techniques have been widely
employed to study the nature of the phase transitions as
well as the universality class of the critical exponents in
a wide range of calamitic mesogens embracing the diverse
form of core structures, and also in their mixtures. However,
reports relating the study of such transitional phenomena
in mixtures consisting of rodlike and bent-core molecules
are still scanty [10,11] even though such unconventional
candidates may prove to be quite helpful in extracting valuable
information regarding transitional anomaly and order character
of a transition.

Furthermore, in the field of liquid crystal research the N−I

phase transition has also appeared to be quite attractive due to
its several surprising features. In a mean-field approach Landau
and de Gennes [14] gave a simple description of the dynamical
behavior of the N−I phase transition by expressing the free
energy density in powers of the nematic order parameter
S(T ). It has been observed that the mean-field theory [35]
can satisfactorily explain the behavior of the mesophase over
most of the temperature ranges, but at very close to transition
it fails to describe the critical region. In an effort to analyze
this critical region, as well as to disclose the unique aspects of
the N−I phase transition, a number of attempts employing
diverse experimental techniques have been considered so
far. Yet, none of them have been able to offer a complete
description depending upon the molecular features. However,
besides a few disagreements, most of them reveal a tricritical
nature [36–38] for the N−I phase transition which again can
be explained in the context of Landau–de Gennes theory with
the free energy density expanded up to sixth order in powers
of the nematic order parameter S(T ).

The work envisaged in the present article is princi-
pally dedicated to focus on an extensive optical inves-
tigation of the critical behavior in vicinity of both the
N−I and Sm-A–N phase transitions in a binary sys-
tem comprising calamitic octylcyanobiphenyl (8CB) and

a laterally methyl substituted hockey-stick-shaped com-
pound, 4-(3-n-decyloxy-2-methyl-phenyliminomethyl)phenyl
4-n-dodecyloxycinnamate (H-22.5), from a simple yet quite
high resolution (in both the birefringence and temperature)
temperature scanning measurement of optical birefringence
(�n). This technique provides a sufficient number of data
points for �n near the phase transitions, thus enabling us
to characterize the transitional anomaly quite precisely. The
critical behavior near the N−I phase transition has been
analyzed and compared with the available literature data. By
analyzing the temperature derivative of optical birefringence
�n near the Sm-A–N phase transition, power-law divergence
with the critical exponent α′ has also been observed and found
to be in accord with that obtained from the specific heat
capacity measurements. Moreover, from an analysis of the �n

data below the Sm-A–N phase transition, the effective order
parameter critical exponent β ′ has been assessed and from the
extracted α′ and β ′ values it has also become possible to make
an estimation of the related susceptibility critical exponent γ ′.
The effective critical exponents (α′, β ′, γ ′) have been explored
along the path of the variation of dopant concentration and the
observed outcomes for the exponents are discussed in light
of crossover behavior. The effect of the bent-shaped dopant
on the intermolecular interactions and hence on the resultant
molecular ordering in the host medium has also been discussed.

II. EXPERIMENT

A. Materials

The pure hockey-stick-shaped compound H-22.5 was syn-
thesized and purified at the Institute of Physical Chemistry,
Martin-Luther-University, Germany, while the compound 8CB
was purchased from E. Merck, UK (having purity higher
than 99.9%) and was used without further purification. The
structural formulas and the mesophase behavior of both the
dopant and host molecules are given in Fig. 1.

Cry 74.2oC Sm-Ca 101.4oC Sm-Cs 109.8 oC N 110.1oC I 

(a)

Cry 21.5oC Sm-A 33.7oC N 40.5oC I 

(b)

FIG. 1. The chemical structure and phase behavior of (a) the
hockey-stick-shaped compound (H-22.5) and (b) the rodlike com-
pound (8CB).
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Several mixtures have been prepared by adding small
amounts of the hockey-stick-shaped compound (having molar
concentrations ranging between 0.021 and 0.08) into the host
medium. The phase diagram has been constructed by studying
the sample texture under a polarizing optical microscope
(Motic BA 300) equipped with a Mettler FP900 hot stage.

B. Optical birefringence measurements

In the present work, precise measurements of optical
birefringence (�n) have been accomplished by measuring
the intensity of a laser beam transmitted through a planar
aligned liquid crystal–filled cell of suitable thickness and then
probing the related phase retardation (�ϕ). A He-Ne laser
(λ = 632.8 nm) beam was employed for this purpose. The
cell was placed in a custom built brass heater between two
crossed linear polarizers (Glan-Thomson) and its temperature
was simultaneously regulated and measured with the aid of a
temperature controller (Eurotherm PID 2404) with a resolution
of ±0.1 ◦C. To attain a better thermal stability, a two-stage
heating arrangement was employed by placing the heater
inside another hollow cylindrical oven. The temperature of the
outer oven was controlled by employing another temperature
controller (Eurotherm PID 2404). Typically a temperature
difference of about 3–5 K was maintained between inner
and outer ovens. During measurement, the transmitted light
intensity was acquired with the aid of a photodiode at an
interval of 2 s while the heater temperature was varied at a rate
of 0.5 ◦C min–1. This translates into a temperature difference
of 0.017°C between two successive readings.

The normalized light intensity or transmittance when
expressed in terms of the phase retardation (�ϕ) may be given
as

It = sin22θ

2
(1 − cos �ϕ), (1)

where θ is the angle made by the polarizer with the optic axis
and the phase retardation,

�ϕ = 2π

λ
�nd, (2)

where �n = ne − no, ne and no being the two principal
refractive indices of the liquid crystal medium; λ is the
wavelength of the light used and d is the sample thickness.
For optimizing the measurement, θ was kept at 45°.

The transmitted intensity is an oscillatory function with
maxima and minima occurring for �ϕ = (2m + 1)π and
2mπ , where m is an integer. Analyzing the intensity data
accordingly, the birefringence values may be evaluated from
the resultant phase retardation provided λ and d are known.
The details of the measuring procedure have already been
reported elsewhere [39].

For the present study, planar or homogeneously aligned
(HG) standard indium–tin oxide (ITO) coated cells of thick-
ness 5μm (procured from AWAT PPW, Warsaw, Poland) were
used. The empty cells were heated to 5 ◦C–10 ◦C above the
sample clearing temperature and then the samples were intro-
duced via capillary action. To ensure proper alignment, the
sample-filled cells were observed under the same polarizing
optical microscope (Motic BA 300) in all the investigated
phases. All the measurements were carried out for several

cooling and heating cycles and reproducible results were
obtained. In our setup the sensitivity in �n is found to be
better than 10−5 for the 5-μm-thick sample. This method was
also extended to the Sm-A phase, as it is well known that
the Sm-A modification is also uniaxial in nature and suitable
stable alignment may be obtained by using a planar oriented
cell.

III. RESULTS AND DISCUSSION

A. Phase diagram

The pure 8CB compound as being cooled from the isotropic
phase shows the following stable mesophase sequence
I − N–Sm-A–Cry, where the smectic phase is partially bilayer
in nature (smectic layers comprise two strongly interdigitated
polar sublayers with oppositely faced terminal dipoles).
Such a smectic structure is realized owing to some sort
of dimerization, induced by the dipole-dipole or dipole-
induced dipole interactions, which again tend to cause an
antiparallel arrangement of the neighboring polar molecules
with one terminal dipole being next to the other or next to
a strongly polarizable biphenyl unit [40,41]. On the other
hand the present hockey-stick-shaped compound as previously
observed comprises a nematic phase, appearing in a quite
small temperature range (∼0.3 K) and two polymorphic
tilted smectic phases—the synclinic smectic C(Sm-Cs) as
well as the anticlinic smectic C(Sm-Ca) phases [42]. In the
Sm-Cs phase, the direction of the tilt is the same in adjacent
smectic layers, whereas it alternates between the layers of the
Sm-Ca phase. Figure 2 depicts the experimental phase diagram
of the present binary system where the nematic–isotropic
(TNI ) and smectic-A–nematic (TSN ) transition temperatures
of the mixtures are plotted against the mole fractions of the
hockey-stick-shaped compound (H-22.5). Both the transition
temperatures have been ascertained during cooling cycles
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FIG. 2. Partial phase diagram of the binary system comprising
H-22.5 and 8CB. xH−22.5 denotes the mole fraction of H-22.5.
I: isotropic phase; N: nematic phase; Sm-Ad : smectic-Ad phase.
Open circles: nematic to isotropic transition temperature; filled
squares: smectic-Ad to nematic transition temperature. Inset shows
concentration dependence of the nematic range for the present system.
Dashed and solid lines are drawn for guidance to eye.
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with the aid of polarizing optical microscopy and the optical
transmission techniques. We have particularly focused on the
region where the concentration of the guest compound is
much less compared to that of the host. It has been observed
that addition of the hockey-stick-shaped molecules enhances
both the N−I and Sm-A–N transition temperatures. However,
the enhancement in transition temperature relating to the
concentration variation is a little more gradual for the N−I

phase transition than for the Sm-A–N phase transition. The
variation of the nematic range against molar concentration is
also presented in the inset of Fig. 2. Nematic range has been
found to decrease from a value of 6°C to 3°C, where the
shrinkage follows a nearly linear trend with the variation of
molar concentration. It is obvious that addition of the angular
mesogenic molecules leads to a destabilization of the nematic
phase in the host medium and thereby decreases the nematic
range.

B. Optical birefringence measurements

Figure 3 portrays an overview of the experimentally
measured birefringence (�n = ne − no) values for pure 8CB
at a wavelength of λ = 632.8 nm over a temperature range
embracing both the nematic and smectic-A mesophases. Now
in the present context, along with quality, the reproducibility
of the experimental data is also very important for extracting a
proper knowledge of critical anomaly near a transition. Hence,
testing of the reproducibility of the measured �n values,
particularly near the critical region, is also quite necessary.
Measurements have been carried out in repeated heating and
cooling cycles and the outcomes are compared. The measured
values of birefringence in two such consecutive runs are
illustrated in the inset of Fig. 3. Excellent agreement has
been obtained between the two sets of data with a maximum
deviation of ∼1%, thus certainly validating the high accuracy
and reproducibility of data from our present experimental
method.
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FIG. 3. (Color online) Experimental values of birefringence
(�n = ne − no) for 8CB as a function of temperature. The solid line
presents a fit to Eq. (5), extrapolated to the Sm-A phase. Inset shows
comparison of the temperature dependence of birefringence close to
the Sm-A–N phase transition for the same compound. Blue circles:
first run; red circles: second run. Dashed vertical arrow denotes the
Sm-A–N phase transition temperature (TSN ).
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FIG. 4. (Color online) Experimental values of birefringence
(�n = ne − no) as a function of temperature for different mixtures.
(a) xH−22.5 = 0.021; (b) xH−22.5 = 0.035. Solid lines present fit to
Eq. (5), extrapolated to the Sm-A phase. Dashed vertical arrow
denotes the Sm-A–N phase transition temperature (TSN ).

The temperature dependence of the birefringence (�n)
for two representative mixtures with molar concentrations
xH−22.5 = 0.021 and 0.035 has also been displayed in Figs. 4(a)
and 4(b). On cooling from the isotropic phase, a sharp enhance-
ment in �n is observed following the N−I phase transition,
essentially due to an enhancement in the nematic order. On
further cooling, well within the mesophase, �n retains an
identical trend but now the increase is comparatively sluggish.
The resultant temperature dependence of birefringence (�n) as
well as its magnitude in the mesophase is fairly in accord with
those reported by others employing refractometers [43] and a
high-resolution rotating-analyzer technique [44]. However, the
resolution of our present data is comparatively higher relative
to the refractometer data but comparable with those obtained
from the rotating-analyzer method. From Figs. 3 and 4 it is
apparent that all the �n vs T curves are accompanied with a
small but finite measurable change in birefringence (�n) on
entering the Sm-A phase, essentially due to the impartation of
translational ordering into the mesophase structure. Moreover,
those changes are continuous. This birefringence measurement
has succeeded in probing the transitional variation quite
accurately, thus facilitating a more insightful description of
that transition.
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TABLE I. Values of the fit parameters obtained from the four-parameter fit of the temperature dependence of �n to Eq. (5).

xH−22.5 ζ S∗∗ T ∗∗ in K β χ 2
v

0 0.310 ± 0.005 0.13 ± 0.03 313.54 ± 0.10 0.245 ± 0.012 1.14
0.021 0.324 ± 0.004 0.11 ± 0.02 314.11 ± 0.07 0.249 ± 0.009 1.05
0.035 0.332 ± 0.009 0.09 ± 0.03 316.47 ± 0.15 0.250 ± 0.021 1.23
0.052 0.341 ± 0.014 0.08 ± 0.04 317.92 ± 0.28 0.251 ± 0.034 1.09

C. Critical behavior at the N−I phase transition

According to theoretical requirements, a faithful manifesta-
tion of the optical characteristics of a liquid crystalline media
needs a precise reckoning of the local field surrounding a
molecule. Now, in order to probe the exact behavior of the
scalar order parameter S(T ) [35], specifying the orientational
ordering of a nematic mesogenic medium, one necessitates a
theoretical model relating particular macroscopic and micro-
scopic properties of the concerned medium. In this connection
the two most widely accepted models are (i) the isotropic
internal field model, proposed by Vuks, Chandrasekhar, and
Madhusudana (VCM model) [45,46], and (ii) the anisotropic
internal field model of Neugebauer, Maier, and Saupe (NMS
model) [47–49]. Under the conjecture of the isotropic nature
of the local molecular field (i.e., VCM model), one may relate
molecular polarizability (α) of a mesogenic medium with the
birefringence (�n) of the same through the following relation:

�α

〈α〉S(T ) = �(n2)

〈n2〉 − 1
, (3)

where �(n2) = n2
e − n2

o is the anisotropy of the square of
the refractive index; 〈n2〉 = (n2

e + 2n2
o)/3 and ne and no are,

respectively, the extraordinary and ordinary components of
the refractive index. The molecular polarizability anisotropy
is termed as �α = αl − αt and the mean polarizability
〈α〉 = (αl + 2αt )/3 where αl and αt are the longitudinal and
transverse polarizabilities with reference to the long molecular
axis, respectively.

Moreover, in an attempt for a precise probing of the
temperature dependence of the nematic order parameter,
one may take the recourse of a four-parameter power-law
expression, which is in accord with the mean-field theory
for both critical and tricritical points of weakly first-order
transitions [38,50],

S(T ) = S∗∗ + A

∣∣∣∣
(

1 − T

T ∗∗

)∣∣∣∣
β

, (4)

where T ∗∗ is the temperature corresponding to the effective
second-order transition point, i.e., the absolute limit of
superheating of the nematic phase and slightly higher than
the observed N−I transition temperature (TNI ); at T = T ∗∗,
S(T ∗∗) = S∗∗ and β represents the critical exponent.

Equations (3) and (4) may suitably be coupled and modified
with the introduction of appropriate scaling condition and few
approximations yielding [43,51,52]

�n = ζ

[
S∗∗ + (1 − S∗∗)

∣∣∣∣
(

1 − T

T ∗∗

)∣∣∣∣
β]

, (5)

where ζ = (�α/〈α〉)[(n2
I − 1)/2nI ] and nI is the refractive

index in the isotropic phase just above TNI . This equation

contains four fit parameters, ζ , S∗∗, T ∗∗, and β, and is found
to be superior to the previous efforts to fit the temperature
variation of �n by means of Haller’s procedure [53] which
involves a relatively smaller number of fit parameters. Ad-
ditionally, Haller’s method frequently yields comparatively
lower values of β with β � 0.2 and is also quite unsuited for
its incompatibility with the weakly first-order character of the
N−I phase transition [50].

In our present study, in an attempt to characterize the
critical anomaly associated with the N−I phase transition,
the temperature dependences of �n for pure 8CB as well as
those for a few other mixtures (xH−22.5 = 0.0209, 0.0350, and
0.0521) are fitted with Eq. (5). Fits to the data are displayed
as solid lines in Figs. 3 and 4 and corresponding outcomes for
the fit parameters are listed in Table I. The qualities of the fits
have been assessed with the aid of a reduced error function χ2

v

which is defined as the ratio of the variance of the fit (s2) to
the variance of the experimental data (σ 2) [54],

χ2
v = s2

σ 2
= 1

N − p

∑
i

1

σ 2
i

(
�nobs

i − �nfit
i

)2
, (6)

where N is the total number of data points, p is the number of
adjustable parameters, �nfit

i is the ith fit value corresponding
to the measurement �nobs

i , and σi is the standard deviation
corresponding to �nobs

i . For an ideal fit χ2
v value equals

unity but, in general, values ranging between 1 and 1.5 yield
good fits. To facilitate a consistent fitting, a few data points
are eliminated successively from either ends of the nematic
range in order to get rid of the nematic–isotropic coexistence
region at the high-temperature end as well as to preclude
the appearance of the pretransitional effect in the vicinity
of the Sm-A–N phase transition. Such a range shrinkage
excludes a considerable number of data points from the fit
process and for the highest concentration considered, i.e.,
xH−22.5 = 0.052; it leaves only 1 K of usable data range,
which again has clearly been signaled by the comparatively
larger uncertainty associated with the corresponding β value.
Such limitation also restricts the applicability of the above fit
procedure for mixtures with still higher concentrations (i.e.,
xH−22.5 = 0.06−0.08), i.e., for those with relatively smaller
extent of nematic phase. As reflected from Table I, extracted
β values have been found to lie between 0.245 and 0.251
for the different concentrations considered and thereby are
in excellent agreement with the tricritical hypothesis (TCH)
(βTCH = 0.25) of Keyes [36] and Anisimov et al. [37,38]. Fit
quality remains almost unaffected if β is kept fixed at 0.25.
The outcomes for 8CB are also in line with those reported by
Chirtoc et al. from precise refractive index measurement [43].
Moreover, an identical behavior has also been revealed for
a number of nematogenic and smectogenic compounds as

032503-5



CHAKRABORTY, CHAKRABORTY, AND DAS PHYSICAL REVIEW E 91, 032503 (2015)

well as their mixtures from diverse experimental approaches
including specific heat capacity, birefringence, dielectric, and
volumetric measurements [52,55–61]. Thus the present study
once again confirms the validity of the tricritical nature of the
N−I phase transition and discards the possibility of higher β

values as ascertained by the critical hypothesis and also that
required for describing an Ising system with nearest neighbor
interactions.

D. Critical behavior at the Sm-A–N phase transition

The Sm-A–N phase transition in mesogenic media can
always be endowed with a consequent enhancement in the
orientational ordering, provoked by the mutual coupling
between the nematic and smectic-A order parameters. It may
be shown [44,51,52,55,62] that the characteristic behavior of
the order parameter S(T ) near the Sm-A–N phase transition
can be exploited to extract a quite accurate description of the
critical fluctuation associated with that transition and hence
to evaluate a critical exponent α′ matching with the relevant
specific heat capacity exponent α, which again is found to
appear in an expression depicting the temperature dependence
of the smectic-A order parameter (�), as follows [63–65]:

〈|�|2〉 = U ± V ±
∣∣∣∣
(

T

TSN

− 1

)∣∣∣∣
κ

, (7)

where κ = 1 − α, TSN corresponds to the Sm-A–N phase
transition temperature, and the + and −signs refer to quantities
above and below TSN , respectively. Now, following the con-
jectures of the mean-field model one may stipulate the quantity
(S − S0) to be proportional to 〈|�|2〉, where S0 is the nematic
order parameter in absence of any smectic ordering [63,66].
Moreover, to a first approximation, S ∝ �n. Hence, it is
plausible to assume that the behavior of �n at the Sm-A–N

phase transition is also governed by an identical power-law
divergence at a second-order phase transition as that of the
specific heat capacity data with an identical critical exponent
α. A similar character has also been found to be valid for the
critical temperature dependence of the isobaric thermal expan-
sion coefficient and the isothermal compressibility coefficient,
obtained from precise molar volume measurements [67,68].

In the present investigation, despite the presence of a
substantial pretransitional change, �n curves do not exhibit
any visible discontinuity near the Sm-A–N phase transition.
However, the extremum of the temperature derivative of
�n may be utilized to exactly locate the said transition.
Furthermore, the quantity n′ = −d(�n)/dT has been found to
be related to the specific heat capacity anomaly [69] and may be
analyzed to take a proper look into the critical variance coupled
with that transition. Yet, because of the small temperature
interval between the two consecutive measured data, the
numerically obtained first-order temperature derivative of �n

is too scattered and is not properly suited for the present
analysis. Hence, it is reasonable to assume a new differential
quotient having the following form [52]:

Q(T ) = −�n(T ) − �n(TSN )

T − TSN

, (8)

where �n(TSN ) is the birefringence value at the transition
temperature TSN , identified by differentiating the measured �n
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FIG. 5. Temperature-dependent variation of Q(T ) for pure 8CB.
Inset shows temperature dependence of −d(�n)/dT for the same
compound.

values. Such an incompatibility of −d(�n)/dT is also clearly
reflected from the representative temperature dependence of
Q(T ) and −d(�n)/dT for pure 8CB, as illustrated in Fig. 5.
The quantity Q(T ) is rather similar to the term C(T ) =
−[H (T ) − H (TC)]/[T − TC] appearing in the adiabatic scan-
ning calorimetry measurement [13] with H (T ) being the
temperature-dependent enthalpy, and like the correspondence
between C(T ) and Cp [= (dH/dT )p], Q(T ) and n′ also
share the same power-law behavior with an identical critical
exponent α′ related to the transitional singularity. Previously,
a similar quotient [68] was also chosen by others for studying
the critical anomaly at the Sm-A–N transition from molar
volume measurements as well. In our present study, in an
attempt to describe the limiting behavior of the quotient Q(T )
at the Sm-A–N phase transition, the following renormalization
group expression including the corrections to scaling has been
used [16,44]:

Q(T ) = A±|τ |−α′
(1 + D±|τ |�) + E(T − TSN ) + B. (9)

Here, τ = (T − TSN )/TSN , the superscripts ± denote those
above and below TSN, A± refers to the critical amplitudes,
α′ is the critical exponent similar to the specific heat critical
exponent α, D± are the coefficients of the first corrections-
to-scaling terms, and � is the first corrections-to-scaling
exponent. Theoretically, the expected value of � is 0.524 for
a 3D-XY case and in our present analysis it is set fixed at
0.5 without any further variation [16,17]. B is a constant pre-
senting the combined critical and regular backgrounds while
the term E(T − TSN ) corresponds to a temperature-dependent
part of the regular background contribution. According to the-
oretical considerations, the 3D-XY universality class demands
the occurrence of a critical amplitude ratio (A−/A+) of 0.971,
a critical exponent (α) of −0.007, and (D−/D+) ∼ 1, while for
a tricritical point the critical amplitude ratio (A−/A+) is nearly
1.6, the critical exponent (α) is equal to 0.5, and (D−/D+) is
close to unity.

An overview of the temperature-dependent variation of
Q(T ) for pure 8CB as well as those for the six other mixtures
comprising the hockey-stick-shaped dopant molecules are
shown in Fig. 6. The fits to Eq. (9) are displayed as
solid lines while the corresponding fit values are listed in
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FIG. 6. (Color online) Temperature-dependent variation of the
quotient Q(T ) in the vicinity of smectic-A–nematic phase transition
at different mole fractions x of H-22.5 in the mixtures of H-22.5
and 8CB. Data are arranged in sequence of increasing mole fraction
x of H-22.5 from left to right with 1: 8CB; 2: xH−22.5 = 0.021; 3:
xH−22.5 = 0.035; 4: xH−22.5 = 0.052; 5: xH−22.5 = 0.06; 6: xH−22.5 =
0.07; 7: xH−22.5 = 0.08. The solid lines are fit to Eq. (9).

Table II. In all the fits, data very close to the transition
are excluded for the presence of experimental uncertainty
and sample inhomogeneity. To locate the best possible fit
range, dependence of the fit parameters on the data range
shrinkage has also been investigated. Fits have been carried
out for different temperature limits (i.e., |τ |max and |τ |min)
and values corresponding to which the extracted parameters
remain practically stable for a small change in temperature
range along with a minimum regular pattern in the residuals
have been selected [70].

In each preliminary fit, the transition temperatures were
first isolated by resolving the maxima of the temperature
variation of −d(�n)/dT and then were kept fixed at these
values. This helps in reducing the instability appearing in
the least-squares minimization to a considerable extent. The
goodness of the fit has been assessed with the aid of
the same reduced error function χ2

v as defined in Eq. (6)
with �n being replaced by the corresponding Q(T ). The
concentration dependence of the critical exponent α′ for the
present investigated system including that for the pure 8CB
is displayed in Fig. 7 while the variation of the same against
the McMillan ratio (i.e., TSN/TNI ) is illustrated in Fig. 8.
For pure 8CB, α′ comes out to be 0.319 ± 0.009 while both

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.25

0.30

0.35

0.40

0.45

0.50

0.55

TCP1
st

 order

C
ri

ti
ca

l 
ex

po
ne

nt
 (

α′
)

x
H-22.5

FIG. 7. (Color online) Concentration dependence of the critical
exponent (α′) obtained by fitting Q(T ) to Eq. (9). The vertical dashed
line corresponds to the tricritical point (TCP). The solid line is a
second-order polynomial fit to the data.

the quotients A−/A+ and D−/D+ assume values close to
unity. These values are in excellent agreement with those
obtained from high-resolution calorimetry measurements by
Thoen and co-workers [13] and also those reported by Kasting
et al. [71]. Recently, from precise �n measurements by
rotating-analyzer technique, Çetinkaya et al. have also pro-
posed an α value, quite identical to our present outcome [44].
Hence, the outcomes from the present measuring procedure
once again confirm the conformity between the effective
critical exponents α′ and α obtained from the birefringence
and calorimetric measurements, respectively. For the lowest
concentration considered, i.e., xH−22.5 = 0.021, the exponent
α′ takes on a value of 0.359 ± 0.019 and then enhances
monotonically with the increase in the concentration x of the
angular mesogens, reaching a value of α′ = 0.460 ± 0.016
for the highest concentration considered, i.e., xH−22.5 = 0.08.
Both the quotients incorporating the critical amplitudes and
the corrections-to-scaling terms remain nearly unity for most
of the mixtures, indicating a symmetry of the Q(T ) wings in
the Sm-A and N phases. An examination of Figs. 7 and 8
reveals that an extrapolation of a quadratic fit to our extracted
α′ values yields a tricritical nature (i.e., where the Sm-A–N

transition undergoes a crossover from second-order to first-
order character) for a composition with xH−22.5 ∼ 0.105 with
α = 0.5, while the corresponding McMillan ratio is 0.9936.
Although the concentration variation of α′ exhibits a fairly
regular trend with the McMillan ratio, no such regular pattern

TABLE II. Results corresponding to the best fit for Q(T ) near Sm-A–N phase transition obtained in accordance with Eq. (9) and related
χ 2

v values associated with the fits. |τ |max presents the upper limit of reduced temperature considered for these fits.

xH−22.5 α′ A−/A+ D−/D+ |τ |max χ 2
v

0 0.319 ± 0.009 1.05 ± 0.07 1.02 ± 0.05 4.4 × 10−3 1.10
0.021 0.359 ± 0.019 0.97 ± 0.14 1.13 ± 0.16 4.4 × 10−3 1.07
0.035 0.390 ± 0.011 1.06 ± 0.08 1.00 ± 0.19 4.3 × 10−3 1.04
0.052 0.407 ± 0.010 0.88 ± 0.05 1.31 ± 0.24 4.2 × 10−3 1.16
0.060 0.426 ± 0.008 1.19 ± 0.12 1.10 ± 0.12 4.4 × 10−3 1.30
0.070 0.453 ± 0.017 1.28 ± 0.09 0.81 ± 0.07 4.4 × 10−3 1.12
0.080 0.460 ± 0.016 1.48 ± 0.22 1.01 ± 0.08 4.3 × 10−3 1.22
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FIG. 8. (Color online) Variation of the critical exponent (α′) with
McMillan ratio (TSN/TNI ). The vertical dashed line corresponds to
the tricritical point (TCP). The solid line is a second-order polynomial
fit to the data.

has been observed for both A−/A+ and D−/D+ in going from
one end of our present system to the other.

Moreover, as stated above, (S − S0) ∝ 〈|�|2〉, where S0 is
the nematic order parameter in absence of any smectic ordering
and � presents the Sm-A order parameter [63,66]. Hence, an
attempt has also been made to analyze the critical behavior
below the Sm-A–N transition using the following expression:

�n = Uτ ′z + V τ ′ + W, (10)

where τ ′ = (1 − T/TSN ) and z gives the critical coefficient.
W again is the combined critical and regular background
term while V τ ′ presents the temperature-dependent part of the
regular background. The variation of �n below the Sm-A–N

transition as a function of the reduced temperature τ ′ for
three representative mixtures with concentrations xH−22.5 =
0.02, 0.052, 0.07 is shown in Fig. 9. The fits to Eq. (10) are
displayed as solid lines while the corresponding fit values are
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FIG. 9. (Color online) Plot of birefringence (�n = ne − no) as
a function of reduced temperature |τ ′| = |(1 − T /TSN )| for different
mixtures. The solid lines are fit to Eq. (10).

listed in Table III. Such a scaling to the birefringence data
leads to a z value of 0.556 ± 0.004 for xH−22.5 = 0.021, which
is then found to decrease with increasing hockey-stick-shaped
molecule concentration and reaches a value of 0.516 ± 0.01
for the highest concentration studied, i.e., xH−22.5 = 0.08.
Moreover, from the Landau–de Gennes theory it has been
envisaged that this exponent z is equal to (1 − α) which again
has been found to be valid for a few mesogenic systems [65].
For a number of mesogens it has been observed that z <

(1 − α) [65]. Furthermore, for a system with true long-range
order, scaling theory requires z = 2β with β giving the critical
exponent related to the limiting behavior of order parameter
at the Sm-A–N phase transition. Hence, it is plausible to
expect the z values to lie in a region 2β � z � (1 − α).
In the present study, the extracted z values are found to
be relatively smaller than the computed (1 − α) values with
α = α′ being taken from fits to Eq. (9) and thus we discard
the possibility of the equality, z = (1 − α). Interestingly, an
extrapolation to a quadratic fit to the yielded z/2 values defines
a tricritical point at a McMillan ratio of 0.9933 (Fig. 10) which
is again in excellent conformity with that yielded by the fit
to α′ values. Therefore, in the present case we can safely
consider β 	 z/2 = β ′. As a further confirmation, the related
susceptibility critical exponent γ ′ has also been estimated
following the Rushbrooke equality,

α + 2β + γ = 2, (11)

with α = α′, β = β ′, and γ = γ ′. The variation of the γ ′ thus
obtained is plotted in the inset of Fig. 10. It has been observed
that γ ′ lies within the range 1.02 � γ ′ � 1.10 for the different
mixtures, which is again in line with those expected for systems
exhibiting crossover character, i.e., between γ = 1 and 1.316
expected for a tricritical and 3D-XY system, respectively.
Hence, the estimated γ ′ value also definitely indicates the
validity of z 	 2β in the present case.

Hence, crossover behavior has been revealed by our present
investigated system. The effective critical exponents (α′, β ′,
γ ′), as obtained from the optical transmission measurements,
assume values in between those predicted by the 3D-XY and
tricritical hypotheses while the critical amplitude quotient
corresponding to α′ measurement (i.e., A−/A+) also offers
magnitudes disagreeing with both of the above two models.
It is obvious that introduction of the hockey-stick-shaped
molecules in the rodlike environment leads to a modification
in effective intermolecular interactions in the host medium.
Now, enhancement of concentration of the dopant compound
causes an augmentation of such resultant effect which is
again facilitated through a consequent enhancement in the
associated Sm-A–N phase transition temperature. Besides,
such a revision in the intermolecular interactions is also
followed by a corresponding strengthening of the coupling
between the nematic and smectic-A order parameters, thus
driving the transition towards a first-order nature. McMillan
ratios of 0.9936 and 0.9933 as attained by extrapolating
polynomial fits to the exponents α′ and β ′, respectively,
over the investigated concentration range, up to the tricritical
composition, are in agreement with the previous reports for
the Sm-A–N tricritical points. Moreover, the corrections-
to-scaling quotient (i.e.,D−/D+) related to α′ also yields
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TABLE III. Values of the fit parameters obtained from the fit of the temperature dependence of �n to Eq. (10).

xH−22.5 U β ′(= z/2) V W χ 2
v

0 0.240 ± 0.042 0.289 ± 0.006 −0.329 ± 0.012 0.15552 ± 0.00008 1.15
0.021 0.238 ± 0.006 0.278 ± 0.002 −0.244 ± 0.008 0.15335 ± 0.00003 1.09
0.035 0.246 ± 0.008 0.271 ± 0.003 −0.116 ± 0.02 0.14851 ± 0.00005 1.10
0.052 0.276 ± 0.010 0.271 ± 0.004 −0.354 ± 0.031 0.14704 ± 0.00004 1.08
0.060 0.296 ± 0.013 0.260 ± 0.004 −0.511 ± 0.036 0.13968 ± 0.00010 1.19
0.070 0.270 ± 0.024 0.252 ± 0.007 −0.649 ± 0.075 0.14532 ± 0.00017 1.27
0.080 0.234 ± 0.015 0.258 ± 0.005 −0.510 ± 0.040 0.15136 ± 0.00012 1.25

nonuniversal values, thus validating the inference of crossover
behavior as put forward by both the exponents α′ and β ′.

Thus, the addition of the bent-shaped dopant has conveyed
a significant impact on the phase behavior of the investigated
calamitic host. The principal features relating modification
in transitional behavior of the calamitic compound due to
the addition of such bent-mesogenic molecules may be
summarized as (i) enhancement of both the Sm-A–N and
N−I phase transition temperatures with increasing dopant
concentration, (ii) a narrowing of the nematic range, and (iii)
consequent augmentation in the effective critical exponent α′
along with a decrease in the exponents β ′ and γ ′ associated
with the Sm-A–N phase transition. In an attempt to achieve
a qualitative idea regarding such enhancement of transition
temperatures, one may consider a comparison between the
amplitude of the effective intermolecular interaction energy
among the host LC molecules (Flc−lc) and that between the host
LC and dopant LC molecules (Flc−dp). In the present case, the
attractive intermolecular interaction is probably stronger for
the host LC–dopant LC pair than the host LC–host LC pair, i.e.,
Flc−dp > Flc−lc, thus increasing local molecular ordering and
elevating the transition temperatures. Moreover, the shrinkage
of the nematic phase also points towards the fact that addition
of the hockey-stick-shaped molecules stabilizes the Sm-A
phase. Recently an expansion of the nematic range has been
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FIG. 10. (Color online) Variation of order parameter critical ex-
ponent (β ′) with McMillan ratio (TSN/TNI ). The solid line is a
second-order polynomial fit to the data. Inset shows variation of
susceptibility critical exponent (γ ′) with McMillan ratio (TSN/TNI ).

reported by Denolf et al. for mixtures involving pure 8CB and
nonmesogenic additive biphenyl [72]. For the Sm-A–N phase
transition, they have observed a decrease in the effective value
of the exponent α with the increase in dopant concentration
and explained this by considering a coupling term of the
solute mole fraction with the nematic and smectic-A order
parameters, appearing in the mean-field free energy density
expression. Moreover, the Sm-A–N transition temperatures
appearing in Ref. [72] always display a descending trend
against the enhancement of doping concentration. Such out-
comes appear to be quite inevitable as for a nonmesogenic
impurity one may expect Flc−dp < Flc−lc, which again leads
to a decrease in the associated local molecular ordering
along with a fall in the related transition temperature. A
decrease in transition temperature has also been revealed
for other nonmesogenic additives [73] and confinement in
aligned aerosil gels as well [74]. However, to the contrary,
Sasaki et al. have recently found that for systems comprising
the n-alkyloxy-cyanobiphenyl and a bent-core dopant, the
nematic–smectic-Ad transition temperature decreases sharply
with the enhancement of the dopant concentration [11]. The
effective critical exponent has been found to lie between the
3D-XY and tricritical value for most of the mixtures. They
have observed that in their investigated case, the addition
of bent-shaped dopant leads to a stabilization of the nematic
phase and a corresponding destabilization of the Sm-Ad phase.
Such a contradicting feature may be due to the manner of
interaction undertaken by the bent-core molecules as well
as their particular arrangement appearing in the calamitic
background.

IV. CONCLUSIONS

A temperature scanning measurement of optical
birefringence has been undertaken to study phase behavior of
a binary system consisting of the rodlike octylcyanobiphenyl
(8CB) and a laterally methyl substituted hockey-stick-shaped
mesogen, 4-(3-n-decyloxy-2-methyl-phenyliminomethyl)-
phenyl 4-n-dodecyloxycinnamate (H-22.5). The precise �n

data are quite successful in characterizing the transitional
anomaly associated with both the N−I and Sm-A–N phase
transitions. For the investigated mixtures, the values of the
critical exponent β related to the limiting behavior of the
nematic order parameter close to the N−I phase transition
have been found to be close to 0.25 and thus are in agreement
with the tricritical hypothesis; this also excludes the possibility
of any higher β values.
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Emphasis has also been given to temperature dependence of
the birefringence close to the Sm-A–N phase transition along
the path of concentration variation. No visible discontinuity
was observed at the Sm-A–N phase transition implying a
second-order nature of that transition. Power-law analysis
of the data successfully describes the divergence of the
differential quotient Q(T ) extracted from �n on both sides
of the transition over a broad range of reduced temperatures.
It has been observed that the introduction of the angular
mesogenic dopant leads to a contraction of the nematic range
with a corresponding enhancement in the Q(T ) anomaly near
the Sm-A–N phase transition. The yielded effective critical
exponent (α′) values are found to be nonuniversal in nature,
i.e., being intermediate between those predicted for 3D-XY

and tricritical systems. For the pure 8CB, the evaluated α′
value has been found to be in excellent agreement with
those obtained from the high-resolution adiabatic scanning
calorimetry and birefringence measurements by others. More-
over, the exponents β ′ and γ ′ as extracted from fits to the
�n data are also found to support the crossover character as
put forward by the α′ variation. One conspicuous aspect of
our present investigated system is the considerable influence
of the curved mesogenic entities on the resultant de Gennes
S − |�| coupling between the nematic and smectic-A order
parameter in the host medium. Undoubtedly the intermolecular
interactions get revised on a significant scale by the presence
of the bent molecules in the “sea” of the rodlike hosts, thus

affecting the order of the transition, where perhaps the kinked
molecular shape of the dopant also plays an important role.
However, manifestation of the exact dependence of the order
character of the Sm-A–N phase transition on the molecular
profile, and also exact treatment of the interactions on a
molecular level relating the transitional anomaly decided by
the various coupling forces, is beyond the scope of the present
work and necessitates future seminal works incorporating both
theoretical and experimental approaches for distinct dopant-
host pairs with diverse core structures and molecular profiles.
Hence, systems involving nonlinear mesogenic impurity are
likely to emerge as a viable route providing rich insight into the
unexplored aspects of transitional fluctuations and henceforth
lead to a better understanding of the physics of phase transition
and critical phenomena in soft matter systems.
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