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Nonlinear fluctuation effects in dynamics of freely suspended films
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Long-scale dynamic fluctuation phenomena in freely suspended films is analyzed. We consider isotropic films
that, say, can be pulled from bulk smectic-A liquid crystals. The key feature of such objects is possibility of
bending deformations of the film. The bending (also known as flexular) mode turns out to be anomalously weakly
attenuated. In the harmonic approximation there is no viscous-like damping of the bending mode, proportional
to q2 (q is the wave vector of the mode), since it is forbidden by the rotational symmetry. Therefore, the bending
mode is strongly affected by nonlinear dynamic fluctuation effects. We calculate the dominant fluctuation
contributions to the damping of the bending mode due to its coupling to the inplane viscous mode, which restores
the viscous-like q2 damping of the bending mode. Our calculations are performed in the framework of the
perturbation theory where the coupling of the modes is assumed to be small, then the bending mode damping
is relatively weak. We discuss our results in the context of existing experiments and numeric simulations of the
freely suspended films and propose possible experimental observations of our predictions.
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I. INTRODUCTION

Thin flexible films and membranes (e.g., lipid bilayers)
are curious but ubiquitous objects in the realm of condensed
matter science. In the long-scale limit they can be considered
as two-dimensional objects embedded into three-dimensional
space. The main peculiarity of such objects is the possibility
of their bending distortions that have to be analyzed in
addition to traditional long-scale deformations, such as density
variations and in-plane motions. Here we turn our attention to
freely suspended films that are not surrounded by a dense
matter (unlike the biological membranes), which makes their
bending oscillations weakly attenuating and, as a result,
sensitive to nonlinear fluctuation effects. While basic thermal
(and even quantum) fluctuation effects in various three- and
two-dimensional condensed matter systems are well studied
and known, the situation with freely suspended films is not
completely recognized. In the paper we analyze liquid-like
films that are isotropic thin sheets of matter.

The very existence of freely suspended films, technology of
their production, and basic experimental and theoretical stud-
ies are known from 70-ties of the previous century and summa-
rized in a number of review publications and monographs (see,
to quote some of them, Refs. [1–6]). Majority of experimental
and theoretical investigations of physical properties of the
freestanding liquid-crystalline films and fluid membranes are
devoted to thermodynamic and structural characteristics. In
terms of correlation functions of long-scale degrees of free-
dom, it corresponds to measurements, numeric simulations, or
calculations of the static structure factor. Some works were
performed also to study dynamic structure factor or time-
dependent correlation functions (see cited above literature and
references therein), and only a very few results concerning
nonlinear dynamics and fluctuation effects are known [7–9].
However, in all those works the film was assumed either to have
a finite (and not too small) surface tension, or (for tensionless
membrane) to be surrounded by viscous isotropic liquid.

In a parallel world of crystalline or glassy freely supported
membranes, investigations of the vibrational dynamics also

started long ago from the very influential works [10,11]. In
these and some other papers (see also Ref. [3]) in contrast
to fluid-like films another situation has been considered.
Namely, solid tensionless membranes freely suspended in the
vacuum (or in a dilute gas) were examined. These types of the
investigations were resurrected recently (see, e.g., Refs. [12–
16]) with a motivation (besides own fundamentally interesting
physics) of various electro-optomechanical applications of the
graphene films. However, fluctuation effects in solid and in
liquid films are dramatically different. One can easily see the
difference even in static properties. Indeed, as it is well known
(compare results for solid films [10] and fluid membranes [17],
[18], or in [4]), thermal fluctuations make the freely suspended
solid membrane more rigid, whereas for liquid membranes
thermal fluctuations make the membrane more floppy. This
qualitatively different behavior is accounted for in both solid
and fluid membranes, sources of the anharmonic terms,
responsible for the bending fluctuations. In solid membranes,
the principal anharmonic terms come from the coupling of in-
plane and out-of-plane (flexular) degrees of freedom, whereas
in fluid membranes the bending and softening occurs as a result
of the intrinsic pure bending anharmonicity. Summarizing
this brief overview of the state of art with film vibrational
fluctuations, we conclude that there are some studies of fluid
membranes surrounded by a viscous isotropic liquid and/or
under tension, but the case of tensionless freely suspended in
vacuum (or gas) membranes has been investigated only for
solid membranes. The purpose of our work is to close this
problem overlooked in the previous works.

An interest to fluctuation dynamic phenomena reflects both
their practical importance and related fundamental science
challenges. In this paper we extend the previous works, see
Refs. [1–6], and also [9], to study dynamic fluctuation effects
in the freely suspended in vacuum (or gas) tensionless liquid
films. As experiments grow in resolution and in sophisti-
cation, it is likely that further details of dynamics will be
revealed whose interpretation will require a reliable theoretical
approach, we describe in our work. It is worth to note to
the point that structurally similar to fluid films, polymerized
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or amorphous glassy membranes dynamically belong to the
class of crystalline membranes (see, e.g., Ref. [15]). Indeed,
in such membranes the in-plane overdamped viscous mode
(whose coupling with the bending mode is the main source of
fluctuation contributions into the mode damping) is replaced
by the propagating transverse sound mode.

Our paper is structured as follows. In the next Sec. II,
we introduce main ingredients of our model, define physical
quantities of interest, and derive basic relations for the
quantities. In Sec. III we introduce the key tool for theoretical
study of dynamic fluctuations—the effective action. Then in
Sec. IV we give details for the perturbative treatment of the
effective action functional, and formulate our main results in
this work, namely the pure fluctuation bending mode damping
and fluctuation contribution into the in-plane shear viscosity.
In the Conclusion we present a summary of our results. The
Appendix contains some details of the calculations.

II. BASIC RELATIONS

We examine physical properties of freely suspended thin
films. Very thin films (consisting of a few molecular layers)
can be pulled from bulk smectic liquid crystal phases [5,19,20].
It should be borne in mind that stability of such thin films in
the freely suspended state is accounted for by the layered
structure inherent in all smectics, i.e., by the presence of
some internal interaction forcing molecules to stay in one
layer. At increasing temperature, when this layered structure
is destroyed, a freely suspended film becomes unstable with
respect to arising holes induced by thermal fluctuations.
Therefore, the films exist in a restricted temperature interval.
Another possibility to create very thin films is by using special
dopes to conventional soap films, the stability of which is
supplied by surfactant monolayers on the water surface. Such
films may be prepared with the thickness of several hundred
Angstroms and investigated by optical and x-ray methods (see,
e.g., references [9,19], and more recent papers [21,22]).

There are different types of orientational ordering in the
films. The films can be liquid (isotropic), such films are
pulled from a bulk smectic-A phase. Films pulled from low-
symmetry smectic phases possess an in-plane orientational
order. The films pulled from bulk smectics-C have a “nematic”
orientational order and ones pulled from bulk hexatic smectics
possess a hexagonal orientational order. Here we examine the
simplest case of the isotropic films.

We treat the films as two-dimensional systems, i.e., we
assume that the thickness of the film is much smaller than
the film lateral size. This confines our study to the scales,
exceeding the film thickness. Let us stress that in studying
freely suspended films there is no interaction with a substrate
that is quite important for conventional two-dimensional
systems formed on the surface of liquids or solids. Another
characteristic peculiarity of such films is a possibility of their
bending distortions. If the thickness of the film is sufficiently
small, fluctuation effects are noticeable on scales exceeding
its thickness. The main goal of our work is to investigate the
effects.

We start our consideration with a derivation and analysis
of the film energy. If the surface tension σ of the film is small
one should take into account the contribution to the energy

related to the film curvature in addition to the contribution
from the film surface tension σ . In the main approximation,
the curvature contribution to the film energy can be written as

Hs =
∫

dS

[
κ

2

(
R−1

1 + R−1
2

)2 + κ̄R−1
1 R−1

2

]
, (1)

by analogy with the bending energy of lipid bilayers (see
the original paper, Ref. [17], and also its textbook version,
Ref. [4]). Here R1 and R2 are local radii of the film and the
coefficients κ and κ̄ are called bending modules (or Helfrich
modules). The quantity R−1

1 R−1
2 is the Gaussian curvature of

the film, and the combination R−1
1 + R−1

2 is called its mean
curvature. In accordance with the Gauss-Bonnet theorem, the
last term in Eq. (1) (with the coefficient κ̄) is the topological
invariant. Hence it does not play a role for fluctuations of
the film shape that does not change its topology. That is why
further (at examining fluctuations effects in the framework of
the perturbation series) we ignore the topological contribution
to the film energy.

Comparing the curvature energy Eq. (1) with the energy
related to the surface tension, one finds the characteristic
length lσ = √

κ/σ . At scales larger than lσ the surface tension
dominates in the film energy. Dynamic properties of the film
in the region of scales including fluctuation effects were
examined in Ref. [7]. Note that in an experimental setup,
where the film area or the film thickness may relax to the
equilibrium, the surface tension tends to zero since σ = 0 is
just the equilibrium condition. Such an experimental setup is
realized if the film is suspended without stretching or if the film
is connected to a reservoir of molecules constituting the film.
Then one expects that there exists the region of scales between
the film thickness lth and lσ where the bending energy Eq. (1)
dominates over the surface tension term. We examine further
just the intermediate region of scales. The main goal of our
investigation is to examine a role of dynamic fluctuation effects
that play a relevant role in the long-scale dynamic properties
of the films.

For scales larger than lσ bending distortions of the film prop-
agate, the mode can be termed as bending sound. Its velocity is
cb = (σ/ρ)1/2, where ρ is the two-dimensional mass density
of the film. The bending sound has the dispersion law ω = cbq,
where ω is frequency and q is wave vector. For scales smaller
than lσ the bending distortions still propagate. However, the
acoustic dispersion law in this region is substituted by the
quadratic dispersion law ω = (κ/ρ)1/2q2. The q-dependence
of the frequency in this case is similar to the one for spin waves
in ferromagnets.

As in the case of the bending sound, the bending mode with
the dispersion law ω = (κ/ρ)1/2q2 has an anomalously weak
linear damping, because due to rotational symmetry viscous-
like damping is forbidden. The reason is that if the bending
viscosity is nonzero it would lead to an energy dissipation
in a homogeneously rotating film [7,9], which is impossible.
That is why the bare bending viscous coefficient is zero and
the damping of the bending mode is determined mainly by
nonlinear fluctuation effects. In our case the main contribution
into the damping comes from the interaction of the bending
mode with the in-plane viscous mode (unlike crystalline
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membranes [15], or liquid crystalline films embedded in a
viscous liquid [9,23]).

In the region of negligible surface tension, for scales
between lth and lσ , thermal bending fluctuations of the film
shape lead to a logarithmic renormalization of the modules
κ and κ̄ . First an attempt to calculate the renormalization
of the module κ was taken by Helfrich [24], and later by
Förster [25]. The correct renormalization group (RG) equation
for the bending module κ in the one-loop approximation
was derived in papers by Peliti and Leibler [26], Kleinert
[27], and Polyakov [28]. The RG-equation for κ̄ in the same
approximation was found by Kleinert [29]. The RG-equation
for the bending module κ is

dκ/dξ = −3T/(4π ), (2)

where ξ is logarithm of the scale, where the modulus is
determined, and T is temperature (measured in energy units).
The approach implies that T/κ � 1.

We see that the dimensionless parameter T/κ characterizes
intensity of the thermal bending fluctuations. For lipid bilayers,
the quantity is usually on the order of 10−2. The smallness is
related to the fact that the bilayer thickness exceeds the atomic
length. Therefore, one expects that for the freely suspended
films the ratio T/κ is even smaller since the bending module κ

is roughly proportional to the third power of the film thickness
(as it follows from the classical theory of elastic shells).
Further, we treat the ratio T/κ as a small parameter. There
is another dimensionless parameter characterizing the film,
κρ/η2, where η is the in-plane shear viscosity coefficient of
the film. Like it is in the case for conventional bulk nematics,
we expect that the parameter κρ/η2 is small as well.

Let us recall main results of the work [7] (see also the
monograph [9]) concerning the fluctuation damping of the
hydrodynamic modes in freely suspended films for the region
of scales larger than lσ . The bending sound damping comes
mainly from thermal fluctuations, the damping can be esti-
mated as T q3/(ρcb). There is also a fluctuation contribution
to the damping of the in-plane sound that can be estimated as

(
T cbq

5

ρ

)1/3

. (3)

However, because of a small numerical factor (on the order of
10−2) in front of the quantity Eq. (3) in the sound damping one
should take into account the conventional damping ∼ηq2/ρ

in addition to the fluctuation contribution. Analogously, one
should take into account the conventional damping ηq2/ρ of
the transverse (to the wave vector q) velocity perturbations in
addition to the fluctuation contribution Eq. (3) (with a small
numerical factor on the order of 10−2).

Note that the specific entropy s/ρ (where s is the two-
dimensional entropy density, s dx dy is the entropy of the
film element) is hardly excited by the fluctuations we are
investigating. That is why below the quantity is assumed to
be equal to its equilibrium value. Therefore, further on all
thermodynamic derivatives are assumed to be taken at constant
specific entropy s/ρ.

We assume that in equilibrium the film is parallel to
the X-Y plane and its bending distortions are characterized
by the displacement h of the film along the Z direction.

The displacement h is treated as a function of x,y. Therefore,
the film shape is determined in the Monge representation as
z = h(x,y). Then the area element of the film is expressed as
dS = g1/2 dx dy, where

g = 1 + (∂xh)2 + (∂yh)2. (4)

The quantity g plays a role of the determinant of the metric
tensor of the film. The unit vector perpendicular to the film has
the following components

li = g−1/2(−∂xh,−∂yh,1). (5)

The starting point of our analysis is the energy of the
film. Further, we treat all variables characterizing the film as
functions of x,y. Then the first term in the energy Eq. (1) is
rewritten as

Hs =
∫

dx dy g1/2 κ

2
[∂α(∂αh/g1/2)]2. (6)

Here and below Greek subscripts designate components of the
vectors along the X,Y axes. In addition to the bending energy
Eq. (6), we consider also the film energy related to the film
compressibility,

Hn =
∫

dx dy g1/2 B

2

(
ρ

ρ0g1/2
− 1

)2

, (7)

where B is the compressibility module. Here ρ0 is the
“intrinsic” equilibrium mass density of the film and ρ0g

1/2

is the equilibrium mass density in projection to the X-Y plane.
Note that Eqs. (6) and (7) are formally valid for arbitrary
variations of the film shape, the only restriction is absence of
overfolds, which is a uniqueness of the function h(x,y). The
contribution Eqs. (6) and (7) have to be supplemented by the
kinetic energy of the film that is written as

Hkin =
∫

dx dy
j 2
x + j 2

y + j 2
z

2ρ
, (8)

where j is the film momentum density. Its definition implies
that j dx dy is the momentum of the film element. Then the
film velocity is v = j/ρ, as usual.

The film surface tension σ is a variation of the film energy
over the film area. Taking into account that the area element is
g1/2 dx dy and varying Eq. (7) over g1/2, one obtains

σ =−B

[
ρ

ρ0g1/2
− 1

]
, (9)

which is an expression of the first order in the film density
deviations from its equilibrium value. If the film is stretched
then its mass density ρ deviates from the equilibrium value
ρ0g

1/2 and the surface tension is nonzero. A nonzero surface
tension is produced by fluctuations of ρ. Note that just the
module B determines the in-plane sound velocity cl : c2

l =
−∂σ/∂ρ = B/ρ.

The dynamic nonlinear equations for the film displacement
h and for the mass density ρ are

ρ∂th = jz − jα∂αh, (10)

∂tρ =−∂αjα. (11)
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Equation (10) is the kinematic condition implying that the
film moves with the velocity v = j/ρ, and Eq. (11) is the
mass conservation law. Therefore, Eqs. (10) and (11) are exact
that is there are no dissipative corrections to the equations.

Equations (10) and (11) should be supplemented by the
equation for the momentum density ji of the film that is written
as the momentum conservation law,

∂t ji = −∂α(vαji + g1/2Tiα − g1/2ηiαβm∂βvm), (12)

where Latin subscripts run over x,y,z. All quantities in the
equations are, as above, assumed to be functions of x,y. The
expression for the stress tensor Tik was found in Ref. [8] (see
also Ref. [9]) and is written as

Tik = −
[
σ + κ

2
(∇ l)2

]
δ⊥
ik + κ(∇l)∂⊥

k li − κli∂
⊥
k ∇l. (13)

Here δ⊥
ik ≡ δik − li lk stands for the projector to the film, the

unit vector l has the components of Eq. (5), ∇ l = ∂αlα , and
∂⊥
k = δ⊥

kα∂α . The viscosity tensor can be written as

ηiklm = (η − ζ )δ⊥
ikδ

⊥
lm + η

(
δ⊥
il δ

⊥
km + δ⊥

imδ⊥
kl

)
. (14)

Here, η and ζ are two-dimensional analogs of the three-
dimensional first (shear) and second (bulk) viscosity coeffi-
cients.

In the linear approximation (for the region of scales
under consideration, smaller than lσ ) one finds the following
hydrodynamic (i.e., long-scale) modes of the film:

(1) the in-plane propagating sound mode with the linear
dispersion law ω = clq;

(2) the overdamped in-plane thermodiffusion mode;
(3) the overdamped in-plane viscous mode;
(4) the bending (flexular) propagating mode with the

dispersion law ω = √
κ/ρ q2.

The specific entropy dynamics (thermodiffusion mode) can
be separated from the other modes. Then, in what follows
we assume, that the specific entropy mode is not excited,
and therefore one can safely forget about the thermodiffusion.
Note that in the linear approximation the in-plane sound mode
has the standard viscous damping ∼(η/ρ)q2, whereas for the
bending mode such kind of viscous damping is forbidden by
the rotational symmetry of the film (for details see Ref. [9]).
Only higher order over the gradients (e.g., proportional to
q4) dissipative terms are not forbidden, and such terms will
produce a nonzero damping of the bending mode. However,
as we demonstrate below, thermal fluctuations produce a
larger contribution to the bending mode damping, which is
proportional to q2. Calculation of the damping is one of the
main goals of our work.

In the hydrodynamic regime (that is for scales, larger
than the film thickness) the in-plane sound is harder, i.e.,
its frequency ω for a given wave vector q is much higher
than the characteristic frequencies (inverse time scales) for the
bending and for the in-plane viscous modes. Therefore, the
degrees of freedom related to the sound (density fluctuations
and the longitudinal to the wave vector component of jα) can
be effectively excluded from the consideration. Then for the
first step of the analysis we stay with the closed description
of the bending and of the shear viscous modes. We analyze

their nonlinear interaction leading, particularly, to fluctuation
contributions to damping of the modes.

Particularly, we establish, that the nonlinear fluctuation
effects produce the viscous-like damping of the bending mode
that leads to the following dispersion law:

ω =
√

κ/ρ q2 − iνq2/2, (15)

where ν is the fluctuation bending viscosity. The second term in
the right-hand side of Eq. (15) gives the bending mode damping
related to scattering of the bending mode on fluctuations of the
viscous in-plane mode. That is why ν is proportional to the
temperature T :

ν = T η

πκρ
. (16)

A derivation of Eq. (16) is given in the next sections. We
performed our calculations in the one-loop approximation.
Higher (many-loop) contributions to the bending mode damp-
ing are proportional to the second power of the wave vector
q2 as well as the one-loop contribution. However, the higher
contributions are small in comparison with the one-loop
damping due to smallness of the parameter T/κ . Let us stress
that the higher contributions cannot contain logarithmic factors
that would compensate the smallness of T/κ . The reason
was already discussed and is related to symmetry reasoning
(rotational invariance) that forbids ultraviolet contributions
(including the logarithmic ones) to the q2 terms.

III. EFFECTIVE ACTION

We proceed to calculating the bending mode damping [Eqs.
(15) and (16)] and the corrections to the shear viscosity η

caused by thermal fluctuations. The calculations can be done in
the framework of the diagrammatic technique first developed
by Wyld [30] in the framework of hydrodynamic turbulence.
Then the technique was generalized for a wide class of systems
by Martin, Siggia, and Rose [31]. Note that the technique is
the classical limit of the Keldysh diagrammatic technique [32]
(see also Ref. [33]). We use the version proposed by Janssen
[34], where correlation functions of the fluctuating fields are
written as path (functional) integrals over the fields with the
weight exp(iI ), where I is an effective action constructed in
accordance with the dynamical equations of the system (see
also Ref. [9]).

The effective action I for the problem we are investigating
is the sum I = Ireac + Idiss of the reactive and of the dissipative
contributions,

Ireac =
∫

dt dx dy [μ(ρ∂th − jz + jα∂αh)

+pi∂t ji + pi∂α(vαji) + pi∂α(
√

g Tiα)], (17)

Idiss =
∫

dt dx dy
√

g ∂αpiηiαβm[∂βvm + iT ∂βpm], (18)

where μ and p are auxiliary fields. Here we omitted the specific
entropy fluctuations. The action I is constructed in accordance
with the dynamical Eqs. (10) and (12), and the relation
Eq. (11) is implied. The last term in Eq. (18) comes from
viscous Langevin (random) forces. That is why the term is
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proportional to the temperature T . Note that the action [Eqs.
(17) and (18)] is formally exact in h.

Note that the pair correlation functions, like 〈hμ〉 [here and
henceforth angular brackets mean averaging that is equivalent
to a functional integral with the weight exp(iI )] determine
response of the system to an external excitation (force).
The structure of the action Eq. (18) guarantees validity of
the fluctuation-dissipation theorem. The theorem leads to the
relation between the correlation functions like 〈hh〉 and 〈hμ〉.
Note also, that the pair correlation functions like 〈μμ〉 are zero.

Both the bending and the in-plane viscous modes have
the bare dispersion laws ω ∝ q2. Therefore, in the long-scale
limit (small wave vectors) in the main approximation one
can neglect the time derivative in the mass conservation law
[Eq. (11)] to obtain the condition ∂αjα = 0. It is analogous to
the incompressibility condition for the Navier-Stokes equation.
Next, an integration over the density field ρ (that is the
variable related to the in-plane sound) at calculating the
correlation functions can be performed in the saddle-point
approximation. By other words, the action I can be substituted
by its saddle-point value that can be found by equating to
zero the variation of the action Eq. (17) over ρ. The main
ρ-dependence of the action is related to the contribution to
the stress tensor Tiα , proportional to the surface tension σ ; see
Eqs. (9) and (13). Calculating the variation of the action Eq.
(17) over ρ and equating the variation to zero, one obtains the
following condition:

δ⊥
αi∂αpi = 0. (19)

Particularly, the condition Eq. (19) leads to the conclusion
that the term with the surface tension and the term with the
difference η − ζ in the viscosity tensor Eq. (14) do not enter
the effective action for the interacting bending and viscous
modes.

In this approximation, the surface tension σ is not a
dynamic variable, like pressure in the Navier-Stokes equation.
The quantity σ is passively followed to the bending and the
viscous fluctuations. Thus, variations of the surface tension
are relatively weak. Therefore, to determine the mass density,
the surface tension σ can be put to zero. Then, we obtain from
Eq. (9) that

ρ = ρ0

√
1 + (∇h)2, (20)

where ρ0 is the “internal” mass density of the film. Equation
(20) relates the 2d film-mass density in the laboratory reference
frame ρ to the “internal” film-mass density ρ0 (to be observed
if the film is flat and parallel to the X-Y plane). Separating
(in the spirit of the renormalization group procedure) fast
(short-wavelength) and slow (long-scale) undulations, and
integrating out the fast undulations, we should introduce
the “internal” film-mass density, averaged over the fast
fluctuations. Obviously, the resulting quantity has to be larger
than the bare one due to the film wrinkling caused by the
fast undulations. To establish the enhancement quantitatively,
one should expand Eq. (20) in the fast contribution to h

and then average over the fast fluctuations. As a result, one
finds in the main (harmonic) approximation the following

renormalization law

d ln ρ0

dξ
= T

4πκ
, (21)

where ξ is logarithm of the current scale.
One should choose variables describing the bending and

the viscous modes. We take the physical variables h,jz,jα .
The last one satisfies the condition ∂αjα = 0, therefore we deal
with three scalar fields. As to the auxiliary fields, we choose
μ, pz, and the transverse (to the wave vector) component ptr

α

of pα , satisfying the condition ∂αptr
α = 0.

In the framework of the perturbation theory one starts from
the “bare” correlation functions that can be easily obtained by
Gaussian integration if we keep solely the second-order term in
the effective action I . Explicit expressions for the correlation
functions of the viscous mode are given by the expressions

〈jα(t,r)jβ(0,0)〉 =
∫

dω d2q

(2π )2
e−iωt+iqrFαβ,

(22)

Fαβ = 2T η(q2δαβ − qαqβ)

ω2 + η2q4/ρ2
,

〈jα(t,r)ptr
β (0,0)〉 =

∫
dω d2q

(2π )2
e−iωt+iqrGαβ,

(23)

Gαβ =−δαβ − qαqβ/q2

ω + iηq2/ρ
.

However, to analyze fluctuation effects one should use
“dressed” correlation functions of h, jz, i.e., with included
fluctuation contributions. Then the pair correlation function of
the displacement h is written as

〈h(t,r)h(0,0)〉 =
∫

dω d2q

(2π )2
exp(−iωt + iqr)Fhh,

(24)

Fhh = 2�(ω,q)

[ω2 − κq4/ρ + �(ω)][ω2 − κq4/ρ + �(−ω)]
,

where � and � are “polarization” and “self-energy” functions,
in the terminology borrowed from the quantum field theory.
The quantities � and � have to be calculated in the framework
of the perturbation theory. Due to the fluctuation-dissipation
theorem

Im �(ω,q) =−Im �(−ω,q) = ρω

T
�(ω,q). (25)

One finds that the main contributions to � and � are
proportional to q2. The real part of � reproduces the
renormalization of κ and ρ0 that is irrelevant for us due to the
inequality T/κ � 1. That is why further we take into account
only the imaginary part of �: Im � = νq2, � = (T/ρ)νq2. In
the approximation we obtain from Eq. (24)

〈hh〉 =
∫

dω d2q

(2π )2
exp(−iωt + iqr)Fhh,

(26)

Fhh = 2Tρ−1νq2

(ω2 − κq4/ρ)2 + ν2q4ω2
.

The expressions correspond to the dispersion law Eq. (15).
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IV. PERTURBATION THEORY

In this section we calculate the nonlinear fluctuation
effects in the framework of the perturbation theory. For
the purpose we expand the effective action I . We use the
one-loop approximation, which expands the effective action
up to the fourth order. Results of the calculations in the
framework of the perturbation theory can be presented
by Feynman diagrams, where lines correspond to the pair
correlation functions, Eqs. (22), (23), and (26), and vertices
are determined by the third- and fourth-order terms in the
effective action. Note that the expansion of the contributions
to the action, Eqs. (17) and (18), has to be performed in h since
the terms are quadratic in the other fields. One should expand
in h the relation Eq. (19) as well. The expansion determines
the longitudinal (to the wave vector) component of pα . We find

∂αpα =−∂αh∂αpz + ∂αh∂βh∂αptr
β , (27)

with the second-order accuracy in h.
Now we proceed to calculate the fluctuation contribution

to the polarization function � entering Eq. (24). Because
we assume η2 � κρ the leading interaction vertices are
determined by solely the dissipative effective action Eq. (18).
To find � one should select the terms with the field pz. All
relevant third-order terms containing pz are

Ithird =
∫

dt dx dy

{
η

ρ
∂βh∂αpz(∂βjα + ∂αjβ)

+ 2iT η∂βh∂αpz

(
∂βptr

α + ∂αptr
β

)}
. (28)

The fourth-order term needed for us is

Ifourth =
∫

dt dx dy

{
2iT η∂μh∂νh∂μpz∂νpz

− 4iT η∂μpz∂μh
∂α∂β

∇2
(∂βh∂αpz)

+ iT η[∂βh∂αh + δαβ(∇h)2]∂αpz∂βpz

}
, (29)

it is quadratic in pz. Note that the action Eq. (29) is nonlocal (it
contains the term proportional to 1/∇2), as one could expect
because this action is derived by the integration-out of the full
effective action over the acoustic degrees of freedom.

Π1 =

(30)

Π2 = (31)

Π3 = (32)

There are some one-loop contributions to the quantity �,
which can be represented by the Feynman diagrams; see

Eqs. (30)–(32). The cross in Eq. (30) represents the fourth-
order vertex determined by the action Eq. (29) and the wavy
line stands for the pair correlation function Eq. (26). The
third-order vertices in Eqs. (31) and (32) are determined by
the action Eq. (28). The solid line there represents the pair
correlation function Eq. (22) and the combined solid-dashed
line represents the pair correlation function Eq. (23). The
diagrams enable one to write an explicit expression for �.
The one-loop approximation is justified by smallness of the
parameter T/κ . However, one should remember that we
already selected the terms Eqs. (28) and (29) in the effective
action assuming that η2 � κρ. Therefore, our procedure is
correct if both conditions, T � κ and η2 � κρ, are satisfied.

The structure of the vertices leads to the conclusion
that �(k) ∝ k2, where k is wave vector. Substituting � =
(T/ρ)νk2 one finds after lengthy but straightforward mathe-
matics

νκρ

T η
= 5

kαkβ

k2

∫
d2q

(2π )2

(qα + kα)(qβ + kβ)

|q + k|4

− 4
kαkμ

k2

∫
d2q

(2π )2

(qμ + kμ)(qβ + kβ)

|q + k|4
qαqβ

q2

− kβkν

k2

∫
d2q

(2π )2

(qα + kα)(qμ + kμ)

|q + k|4
1

q4

×{qαqν(q2δβμ − qβqμ) + qβqν(q2δαμ − qαqμ)

+ qαqμ(q2δβν − qβqν) + qβqμ(q2δαν − qαqν)}. (33)

Simple inspection of this expression shows that all the integrals
converge in the both limits, at large q and at small q + k.
Therefore, the main contribution into the integral comes from
the region q∼k and there are no ultraviolet contributions
(particularly, logarithms) to the quantity ν, in accordance with
the symmetry arguments. The dimension analysis leads to the
conclusion that the quantity Eq. (33) is independent of k.
Calculations (collected in the Appendix) give the final answer
Eq. (16).

Out of these calculations will come a bit of an unexpected
result, that forbidden by rotational symmetry viscous-like
damping of the bending mode becomes perfectly legiti-
mate driven by thermal fluctuations. Note that the situation
where the fluctuation damping (determined by fluctuations of
the same scale as the wavelength) has some scaling forbidden
for the bare damping by symmetry is characteristic also of the
spin waves in two-dimensional ferromagnets [35].

Let us estimate a fluctuation correction to the shear viscosity
coefficient η. As previously, we consider only the interaction
terms produced by the dissipative part of the effective action
Eq. (18), which is justified by the inequality κρ � η2. One
obtains the principal interaction term

Iint =
∫

dt dx dy
[
(η/ρ)∂βh∂αjz

(
∂βptr

α + ∂αptr
β

)

+ 2iT η∂βh∂αpz

(
∂βptr

α + ∂αptr
β

)]
. (34)

The one-loop contribution to η is determined by the same
diagram Eqs. (31) and (32), where interaction triple vertices
are determined now by the action Eq. (34). Calculations lead
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to the following estimation of the fluctuation correction:

�η ∼ T

κ

η2

√
κρ

. (35)

Now we can accurately formulate the applicability con-
ditions of our approach. Our procedure is correct provided
�η � η, that is if

ε ≡ T

κ

η√
κρ

� 1. (36)

Note that the condition Eq. (36) implies that the damping of
the bending mode is much less than its frequency since the
inequality Eq. (36) is equivalent to the condition ν � √

κ/ρ;
see Eq. (15).

As a note of caution we should say also that above we
neglected the self-interaction of the viscous mode that leads to
the logarithmic corrections to the shear viscosity coefficient η

that can be estimated as [36,37]

�η ∼ ρT/η,

up to a logarithmic factor. Comparing the estimation with
Eq. (35), we conclude that the effect we calculated above is
stronger due to the inequality η2 � κρ.

It is interesting that just the parameter Eq. (36) is the small
parameter justifying the perturbation expansion in h. If the
parameter is not small then we are beyond the applicability
of the perturbation theory, in the region of strong interaction.
Then nothing can be done in the framework of the perturbation
theory. Based on heuristic hand-waving arguments related to
the fluctuation enhancement of the viscosity coefficient we
could only speculate that probably; the behavior in that region
corresponds to a glass state of the film since an essential
viscosity growth is expected in the case.

V. CONCLUSION

In conclusion, in this paper we describe dynamic fluctuation
phenomena in freely suspended films. We restrain ourselves to
liquid-like (isotropic) films overlooked in the previous works’
conditions (tensionless membrane freely suspended in the gas
or vacuum). The bending (flexular) mode of such films turns
out to be soft and weakly attenuated, therefore yields to strong
dynamic fluctuation effects. In the harmonic approximation,
for the bending mode there is no viscous-like, proportional to
q2 (q is the wave vector of the mode) attenuation, and only
much smaller super-viscous attenuation ∝q4 is not forbidden
by the rotational symmetry. We calculate the dominant
fluctuation contributions to the damping of the bending mode
due to its coupling to the viscous (nonpropagating) in-plane
mode. The fluctuation damping restores the viscous-like q2

attenuation law of the bending mode. The damping is weak due
to smallness of the dimensionless coupling constant obligatory
within our perturbation approach. What is fascinating about
our results is that they not only contribute to understanding
of many dynamic properties important for nanotechnological
optomechanical applications of the films, the results can be
confronted with recent experimental data [38] on fluctuation
enhancement of the membrane viscosity. Another way to check
experimentally our theory predictions is to perform inelastic

(dynamic) light scattering experiments (like in Refs. [21,22])
to measure the scattered signal (intensity) line-width.

What makes our calculations involved and nontrivial is the
fact that there are two essential dimensionless parameters in
the theory, namely, T/κ � 1 and η2/(κρ) � 1, and physics
depends crucially on how they interplay. The small parameter
of our perturbation theory is ε; see Eq. (36). One can try to
extract the value of ε from literature data on material properties
of the lipid membranes and the liquid crystals that are rather
dispersed; see, e.g., Ref. [39]. There are some materials where
(at room temperatures!) ε < 1, and also those with ε > 1,
but both inequalities are not too strong. One also should
keep in mind that there is regular temperature dependence
(a sort of Arrhenius law) of the bare material parameters
[39]. If we stretch all essential material parameters to their
utmost (but still not unrealistic) values, the ratio could be
either ε � 1 or ε � 1. If the ratio is not small then we go
beyond the applicability of the perturbation theory, into the
region of strong interaction. This problem deserves a separate
investigation. In this regime of very strong bending fluctuations
one can expect the membrane to be broken via nonperturbative
processes, like pore formation. Another theoretically tempting
possibility would be vitrification of the membrane.

We believe that our results are also a step forward in
establishing connections between different regimes of the col-
lective membrane dynamics. In turn, thinking about membrane
dynamics from a pure physics-based ground can bring new
insight on some relevant characteristics of biophysical cells.
We expect fluctuation dynamics of freely suspended mem-
branes to be a fascinating and fruitful field of investigations for
biologists, applied scientists, and experimental and theoretical
physicists.
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APPENDIX

To calculate the integral Eq. (33) we substitute there k =
(1,0) to obtain

νκρ

T η
=

∫
dϕ dq q

(2π )2

1

(1 + q2 − 2q cos ϕ)2

[
q2 cos(2ϕ)

− 2q cos ϕ + 5

2
− 2 cos(2ϕ) + 1

2
cos(4ϕ)

]
. (A1)

The integral over the angle ϕ can be found using the following
relations:

1

2π

∫ 2π

0

dϕ cos(mϕ)

(1 + q2 − 2q cos ϕ)2
= (m + 1)qm + (1 − m)q2+m

(1 − q2)3
,

if 0 < q < 1, m � 0, and

1

2π

∫ 2π

0

dϕ cos(mϕ)

(1 + q2 − 2q cos ϕ)2

= (m + 1)q2−m + (1 − m)q−m

(q2 − 1)3
,
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if q > 1, m � 0. Thus, the integral over q is divided into two intervals: from 0 to 1 and from 1 to ∞. The integration can be
easily performed and one finds

νκρ

T η
=

∫ 1

0

dq q

2π

1

(1 − q2)3

5

2
(1 − q2)3 +

∫ ∞

1

dq q

2π

1

(q2 − 1)3

3

2q4
(q2 − 1)3 = 1

π
. (A2)

Thus, we arrive at the result, Eq. (16).
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