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Crystal-liquid interfacial free energy of hard spheres via a thermodynamic integration scheme
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The hard-sphere crystal-liquid interfacial free energy γcl is determined from molecular dynamics simulations
using a thermodynamic integration (TI) scheme. The advantage of this TI scheme compared to previous methods
is to successfully circumvent hysteresis effects due to the movement of the crystal-liquid interface. This is
accomplished by the use of extremely-short-range and impenetrable Gaussian flat walls that prevent the drift
of the interface while imposing a negligible free-energy penalty. We find that it is crucial to analyze finite-size
effects in order to obtain reliable estimates of γcl in the thermodynamic limit.
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I. INTRODUCTION

Since the discovery of a fluid-to-solid transition in hard
spheres by computer simulations [1], the hard-sphere model
has become one of the paradigms [2] for the study of
nucleation and crystal growth [3–7]. The simplicity of the
hard-sphere interaction potential is well suited for the develop-
ment of theoretical and computational approaches that allow
for quantitative predictions in the context of crystallization
phenomena [8–15]. The crucial thermodynamic parameter
that governs the mechanism of homogeneous nucleation and
subsequent growth of the crystal from the melt is the crystal-
liquid interfacial free energy γcl, defined as the reversible work
required to form a unit area of a crystal-liquid interface [16].
The homogeneous nucleation rate and the final morphology of
the resulting crystal are strongly dependent on the magnitude
and anisotropy of this quantity [17–21].

Several simulation and theoretical approaches (based on
density-functional theory) have been attempted to determine
the interfacial free energy of hard-sphere systems, though
there have been some discrepancies in the results obtained
from these various methods [22–29]. A direct determination
of γcl for hard-sphere systems was made in Ref. [22] using
a thermodynamic integration [30,31] approach known as the
cleaving-wall method. Later, the estimates for γcl were re-
vised [27] after fixing an error in the previous thermodynamic
integration (TI) scheme. The same authors carried out TI
simulations with the soft-sphere potential and extrapolated
the results to the hard-sphere limit [24,25]. Data in Ref. [24]
were a little higher than those reported for the pure hard-sphere
system [27]. Recent estimates from an indirect approach based
on capillary fluctuations [28] as well as from the tethered
Monte Carlo approach [29] were about 10% higher than those
reported in Ref. [27].

In the cleaving-wall scheme [22,27], thermodynamic in-
tegration is carried out by using an external wall, consisting
of particles arranged in an ideal lattice structure, to split the
bulk phases and then join them together. Finally, the walls
are removed, resulting in crystal and liquid phases separated
by two interfaces. In this approach, there are uncontrolled
hysteresis errors in the last step when the external walls are
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removed. When both phases are joined together, the interface
is formed at the walls. However, when such cleaving walls are
gradually removed, the interface drifts on account of thermal
fluctuations. In long simulations, the interfaces can travel far
from the walls by freezing at one end and simultaneously
melting at the other end [27,32,33]. As a result, the reverse
process (when the cleaving walls are reinserted) does not
retrace the same path as the forward process, showing the
existence of hysteresis. This affects the accuracy in the final
estimates of γcl. While the interfacial drift is not a problem
for liquid-liquid interfaces [34], it is far more severe for the
crystal-liquid interface and needs to be overcome in order to
obtain accurate values for γcl.

In a recent work, we have developed a TI scheme to compute
γcl for the Lennard-Jones potential [35]. Our method is able to
circumvent problems associated with the drift of the crystal-
liquid interface and provides a better control of hysteresis
errors associated with the latter drift. The strategy is to use
extremely-short-range and flat Gaussian walls to constrain the
position of the interface while imposing a negligible free-
energy penalty. Another difference of our scheme is the use
of structured walls consisting of frozen-in crystalline layers to
smoothly transform the system from separate bulk phases to
two interfaces in contact with the bulk fluid and crystal phases.

Apart from the TI scheme, the reliability of γcl estimates
also depends on properly accounting for finite-size effects.
However, few previous works on the determination of γcl

via molecular simulations include a discussion on finite-size
effects. In a recent work, Schmitz et al. [34] proposed a
scaling relation based on capillary-wave theory, to take into
account finite-size corrections and get accurate values for the
interfacial free energies in the thermodynamic limit. In our
earlier work [35] on the crystal-liquid interfacial free energy
for Lennard-Jones systems, results consistent with their theory
were obtained.

In this work, we compute γcl for hard spheres using
molecular dynamics (MD) in combination with TI. We will
determine γcl for the (100), (110), and (111) orientations of the
face-centered-cubic crystal-liquid interface. The hard-sphere
interactions are described by a very-short-range inverse power-
law potential (see below). The reason for using such a short-
range continuous potential is the easy adaptability of our TI
scheme developed for the continuous Lennard-Jones potential
into the soft-sphere potential. Since our TI scheme involves
a direct modification of the interaction potential, it is easier
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to fit it into a conventional time-driven MD simulation for
continuous potentials rather than into a collisional event-driven
MD algorithm for a discontinuous hard-sphere potential [36].

To account for errors due to finite-size effects and estimate
γcl in the thermodynamic limit, a careful analysis was carried
out at several system sizes in the framework of capillary-wave
theory [34,37]. We obtain results consistent with the predic-
tions of capillary-wave theory showing that the introduction
of the flat wall does not suppress capillary fluctuations. The
success of our scheme indicates that our TI approach is also
well suited for very-short-range potentials.

In the next section, we introduce the potential and then
describe the TI scheme in Sec. III. The details of the simulation
are given in Sec. IV and results are presented in Sec. V. Finally,
we end with a conclusion in Sec. VI.

II. INTERACTION POTENTIAL

Hard-sphere interactions between a particle i at position �ri

and a particle j at position �rj , separated by a distance rij =
|�ri − �rj |, are approximated by the inverse power-law potential

φ(rij ) = ε

(
σ

rij

)n

, (1)

with n = 256, where ε and σ set the energy and length scale,
respectively. For computational efficiency, the potential was
cut off at a distance rc = 1.2σ , where the potential has a value
of 10−21ε/kBT . With the exponent n = 256, the parameters for
solid-fluid coexistence at the temperature kBT = 1.0ε (with
kB the Boltzmann constant) are very close to those for the
hard-sphere system [6], in agreement with recent findings [38]
(see below).

III. METHOD

A. The TI scheme

The interfacial free energy γcl is the excess free-energy per
area that results from the formation of an interface between
the crystal and the liquid phase. It can be expressed via the
difference between the free energy of the inhomogeneous
system with crystal-liquid interface Fcl and the sum of the bulk
free energies of the crystal and liquid Fc and Fl, respectively,

γcl = Fcl − (Fc + Fl)

A
, (2)

with A the area of the interface.
Computing γcl via thermodynamic integration involves

joining together bulk crystal and liquid phases at coexistence
to form an inhomogeneous system involving the individual
phases separated by two interfaces. To ensure a path with
minimal hysteresis, the crystal phase should be perturbed as
little as possible such that no stress is generated in the crystal
when it comes into contact with the liquid phase.

Here we provide a TI scheme to compute γcl for the inverse
power potential (1). Our TI scheme is based on an earlier
approach used to obtain the crystal-liquid interfacial free
energy for a Lennard-Jones potential [35]. Initially, bulk liquid
and crystal phases are simulated in a box with dimensions
Lx × Ly × Lz such that the two phases have the same volume
but different particle numbers. The final state comprises two

crystal-liquid interfaces connecting the bulk phases, with a
total length 2Lz along the z direction. Our scheme consists of
the six following steps to create a crystal-liquid interface.

Step 1. The initial thermodynamic state of our system
consists of separate bulk liquid and crystal phases with
periodic boundary conditions in all directions, while the final
state involves the liquid and crystal phases separated by two
interfaces. To reach the final state, at some point during the
transformation, interactions between the two sides of each
phase through the periodic boundaries must be switched off,
while the interactions between the two phases must be turned
on. While rearranging the periodic boundaries, it must be
ensured that the particles belonging to each phase remain
inside their respective simulation cells and do not cross the
boundaries such that density of each phase in its box remains
at the respective coexistence density. For this purpose, in the
first step, a Gaussian flat wall is gradually introduced at both
ends of the liquid simulation cell, along the z direction (sketch
1 in Fig. 1). To tackle the short-range forces due to the flat
walls, a multiple-time-step algorithm (a shorter time step for
the short-range forces due to the walls and a longer time
step for forces between the particles) [31] is implemented
for computational efficiency.

The other important purpose of introducing such a flat
wall is to prevent the drift of the crystal-liquid interface at

FIG. 1. (Color online) Schematic of the TI scheme adopted in
this work. Particles in the light and dark simulation boxes represent
the crystal and the liquid phases, respectively. This schematic is a
two-dimensional representation of the system. For more details see
the text. Here L and R denote the structured walls constructed from
the right and left boundaries of the crystal phase in step 2 and attached
to the left and right boundaries of the simulation cells in steps 3 and
4, respectively. The schematic for the various steps corresponds to
the final state of the system reached at the end of each step.
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a later step of the scheme and achieve control over errors
due to hysteresis in the TI path. The efficiency of earlier
TI schemes [22,24,25,27,33,39] was limited by uncontrolled
hysteresis errors arising out of such movement of the crystal-
liquid interface on account of thermal fluctuations.

Step 2. Transform a bulk crystal phase at coexistence into
one in contact with identical flat walls as in step 1. Similar
to the liquid, insertion of the walls requires negligible free
energy. However, these walls stop the particles from crossing
the boundaries.

Step 3. In addition to the flat walls, a set of solid structured
walls is inserted at both ends of the liquid phase. The
structured walls are constructed from the positions of particles
comprising one to two layers of the crystal phase near the
boundaries of the simulation cell and in contact with the flat
walls, i.e., particles frozen into a configuration identical to that
adopted in an equilibrium simulation of a crystal in contact
with a flat wall at the end of step 2, are attached to the two
ends of the liquid phase. This is done such that the structured
wall constructed from positions of the crystalline layers in
contact with the right (left) flat wall at the end of step 2 is
attached to the outer left (right) side of the liquid phase (see
the sketch in Fig. 1 with the left and right structured walls
labeled L and R, respectively). While the x and y coordinates
of the left and right structured walls are the same as the
crystalline layers in contact with the right and left sides of the
crystalline phase, the z coordinates are shifted by −Lz and Lz,
respectively.

During this step, the flat walls are still present to prevent
particles from crossing the boundaries. During the trans-
formation, the structured walls are gradually switched on,
while interactions through the periodic boundaries along the
z direction are gradually switched off. Periodic boundary
conditions along the x and y directions are kept intact.

Interactions between the particles in the bulk phases and the
structured wall are of the same kind as that between the bulk
particles. The purpose of this step is to create ordering in the
liquid to be compatible with the actual crystal structure such
that when the liquid and crystal phases are joined together,
there is minimal perturbation and stress in the crystal.

Step 4. Identical structured walls are inserted at either end
of the crystal phase obtained from the transformation at step 2.
In the presence of the flat walls, interactions between the
structured wall and the crystalline phase are turned on while
the periodic boundary conditions along the z direction are
switched off but kept intact along the x and y directions.

Step 5. In this step, the individual liquid and crystal phases
as obtained at the end of steps 3 and 4, respectively, are
brought together. This is accomplished by gradually switching
on interactions between the two phases while simultaneously
switching off the interaction of each phase with the respective
structured wall. At the beginning of this step, the simulation
cells of the liquid and crystal phases in simultaneous contact
with the flat and structured walls at the end of steps 3 and 4,
respectively, are placed in contact with each other at one end,
along the z direction. Note that both phases interact only with
their respective solid walls and not with the wall in contact
with the other phase.

At the end of step 5, the resulting thermodynamic state
consists of bulk crystal and liquid phases separated by two

interfaces whose position is tied to the position of the
flat walls with no uncontrolled hysteresis errors during the
transformation.

Step 6. The last step involves removing the flat walls and
it is difficult to achieve total control over the reversibility of
the scheme. Due to thermal fluctuations, the two interfaces
can move by melting on one side and refreezing on the other
side if the potential barrier due to the walls is weak enough.
However, this makes the transformation irreversible since if
the walls are reinserted, the position of the interfaces will not
coincide with the position of the walls. As a result, in the
two simulation boxes a mixture of liquid and crystal phases
will be obtained and one cannot retrace the previous steps
in the reverse direction to reach the initial state consisting
of independent liquid and crystal phases at their respective
coexistence densities.

However, due to the short-range flat walls (the shorter
the range, the fewer particles interacting with the wall and
the smaller the contribution is to the free-energy difference),
the contribution of this step to the total free-energy difference
is negligible and so is any residual hysteresis. One can choose a
flat wall as short ranged as possible to reduce the contribution
of this step to be even smaller than the combined statistical
errors of the previous steps.

In this work, essentially the above scheme is followed, with
slight modifications, since the inverse power potential (1) itself
is a short-range potential. Unlike the previous TI scheme [35],
where an extremely-short-range flat wall is introduced at the
beginning of the scheme, here, in the first step we introduce a
flat wall with a range similar to that for the interaction potential
between the particles. Only in the final step, the range of this
wall is gradually reduced to a value much smaller than the
effective size of the particles σ (about 104 times less). This trick
saves computational time since a very small time step needs
to be used only in the final step to integrate the short-range
forces. The use of a multiple-time-step algorithm [31] in the
final step further improves the computational efficiency of the
scheme.

The TI scheme proceeds via the six steps specified above
and in each step the transformations are carried out by
directly modifying the interaction potential by a parameter
λ. This idea is similar to the TI scheme presented in earlier
works to compute γcl and the interfacial free energies of
liquid and crystal phases in contact with flat and structured
walls [35,40,41]. The specific choices of the λ parametriza-
tions adopted below yield smooth thermodynamic integrands,
allowing for an accurate numerical calculation of the integrals.
Due to the short-range nature of the inverse power potential,
the specific parametrizations are model specific and differed
from our previous work adopted for the relatively-long-range
Lennard-Jones potential.

B. Implementation of the method

In the following, we specify, in detail, the parametrizations
adopted for the various steps.

Steps 1 and 2. In the first and second steps, a flat wall is
introduced at the ends of both the liquid and crystal simulation
cells. The transformation is carried out by gradually increasing
the height of the potential barrier. The interaction of a particle
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i with the flat wall is modeled by a Gaussian potential

ufw(ziw) = a exp

[
−

(
ziw

b

)2
]

, (3)

with ziw the distance of the particle from the wall in the
z direction. The height and range of the Gaussian potential
is determined by the variables a and b, respectively. We
choose the temperature T = 1.0 and a = 25kBT/ε. With these
parameters, the wall is impermeable for the particles. The
variable b is set to 0.027σ . For this value of b, the bulk density
does not change in the presence of the wall.

The parameter λ is coupled to the flat wall as

ufw(λ,ziw) =λ2ufw(ziw). (4)

At λ = 0, there is no wall and as λ increases the wall becomes
more and more impenetrable.

The λ-dependent Hamiltonian for steps 1 and 2 takes the
form

H1 (2)(λ) =
N∑

i=1

p2
i

2m
+ U l (c)

pp + λ2U
l (c)
fw , (5)

where H1 (2) represents the Hamiltonian for the interaction of
the flat wall with the liquid (crystal) and pi and m denote,
respectively, the momentum and mass of particle i, with
all particles having the same mass. The potential energy
due to particle-particle interactions is represented by U l (c)

pp =∑N l (c)

i=1

∑N l (c)

j=i+1 u(rij ). The interaction potential of particles

with the flat wall is denoted by U
l (c)
fw = ∑N l (c)

i=1 ufw(ziw), where
the superscript l (c) refers to particles in the liquid (crystal)
phase and N l (c) is the total number of liquid (crystal) particles.

Steps 3 and 4. As specified above, two structured walls are
constructed by freezing particles into positions adopted by the
crystalline particles in contact with the flat walls, at the end
of step 2. These walls contain one to two crystalline layers
and, as shown in Fig. 1, are juxtaposed at the appropriate
ends of the liquid and crystal simulation cells corresponding
to steps 3 and 4, respectively. The flat walls are still present
to prevent particles from crossing the boundaries. During the
transformation, the structured walls are gradually switched on,
while interactions through the periodic boundaries along the z

direction are gradually switched off.
The λ-dependent Hamiltonian for step 3 is given by

H3(λ) =
N∑
i=1

p2
i

2m
+ U l

pp + (1 − λ)256U ∗l
pp

+ λ256U l
pw + U l

fw. (6)

In Eq. (6) and later on, U ∗c (l)
pp specifies the periodic boundary

interactions, while U c (l)
pp corresponds to the bulk interactions.

Interactions between the individual phases and the struc-
tured wall particles are described by Upw, where U c (l)

pw =∑N c (l)

i=1

∑Nw

j=1 upw(rij ), with Nw being the total number of
particles in the structured walls. The same inverse power
potential is used for upw, as given by Eq. (1), with the parameter
ε replaced by εpw. Throughout the transformation in steps 3 and
4 as well as in subsequent steps, εpw/ε = 1 is kept constant,

where ε refers to the interaction strength between the particles
of the system.

Since the inverse-power potential (1) is very short ranged
and the liquid particles present are close to the boundaries
of the simulation box at the beginning of this step, a λ

parametrization for the periodic boundaries corresponding to
a rapidly decaying function with λ ensures a smoothly varying
thermodynamic integrand. Effectively, this transformation is
carried out by gradually modifying the size of the particles, i.e.,
ε[(1 − λ)σ/r]256 and ε(λσ/r)256 for switching off the periodic
boundaries and switching on the structured walls, respectively.

In the cleaving-wall TI scheme, the interaction between the
individual phases and the walls is brought about by moving the
walls towards the bulk liquid and crystal phases. This requires
the use of a corrugated cleaving plane [27,33], which is
compatible with the structure of the wall. In our TI scheme, the
interaction between the two phases or between each individual
phase and the structured walls takes place across a flat plane.
As shown above, this is achieved by directly modifying the
interaction potentials to carry out the transformations.

The corresponding Hamiltonian for step 4 is given by

H4(λ) =
N∑
i=1

p2
i

2m
+ U c

pp + (1 − λ)8U ∗c
pp

+ λ256U c
pw + U c

fw. (7)

Since it is necessary to maintain the crystalline structure
throughout the transformation, in Eq. (7), the periodic bound-
aries are switched off gradually (see the power of 8 in front of
U ∗c

pp ) such that these interactions become weaker only when
the structured walls are already strongly interacting with the
crystal phase.

Step 5. In this step, the individual liquid and crystal phases
are gradually brought together in the presence of the Gaussian
flat walls, while the structured walls are gradually removed.
Since the periodic boundary conditions in the two phases are
already switched off, only interactions between the two phases
need to be turned on (see 5 in Fig. 1). At the end of this
step, an inhomogeneous system with crystal and liquid phases
separated by two interfaces is created. The positions of the
crystal-liquid interfaces are tied to the position of the flat walls
and do not drift.

The Hamiltonian corresponding to step 5 is

H5(λ) =
Np∑
i=1

p2
i

2mi

+ U c (l)
pp + λ2

(
1 + λ

2

)256

U c+l
pp

+ (1 − λ)2(1 − λ/2)256U c (l)
pw + U

c (l)
fw , (8)

where the interaction potential between the liquid and crystal
phases is denoted by Uc+l

pp = ∑N l

i=1

∑N c

j=1 u(rij ). In Eq. (8),
there is a one-to-one correspondence in the λ parametrizations
such that interactions between the crystal and liquid phases
are turned on while interactions with the structured wall are
switched off to ensure a smoothly varying thermodynamic
integrand.

Step 6. In the last step, the flat walls are removed such that
the final state consists of liquid and crystal phases separated by
two interfaces. However, since the range of the flat walls is not
insignificant, the contribution of this step cannot be ignored.
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Simply switching off the wall in a single step would lead to
hysteresis errors. However, by a clever scheme one can reduce
the error due to the resulting hysteresis in the TI path to a
negligible value such that it does not affect the accuracy in the
final estimates of γcl. This is achieved by breaking step 6 into
two substeps 6a and 6b. In the first substep, the range of the
Gaussian flat wall is gradually reduced while maintaining the
same height for the potential barrier. In principle, this substep
is reversible since the particles still cannot cross the flat-wall
barrier at the end of this step. In the next step 6b, the height
of the barrier is slowly switched off such that in the end one
has the desired state consisting of liquid and crystalline phases
separated by two interfaces. This transformation is no longer
reversible due to the movement of the interface. However, if the
range of the Gaussian flat wall has been reduced significantly
in step 6a such that very few particles interact with the wall,
the contribution of step 6b would be negligible in comparison
to the magnitude of γcl and can be ignored.

The Hamiltonian corresponding to substep 6a is given by

H6a(λ) =
N∑

i=1

p2
i

2m
+ U l (c)

pp + U
l (c)
fw (λ), (9)

with

ufw(ziw,λ) = a exp{−[ziw/b(λ)]2}, (10)

where U
l (c)
fw (λ) = ∑Nl (c)

i=1 ufw(ziw,λ). In Eq. (10), b(λ) =
(1 − λ)2b′ with b′ = 0.027σ and λ varies from 0 to 0.893 such
that the parameter b(λ) is reduced from 0.027σ to 0.0003σ .

In the next substep 6b, the extremely-short-range Gaussian
walls are gradually switched off. The Hamiltonian for this
substep is

H6b(λ) =
N∑

i=1

p2
i

2m
+ U l (c)

pp + (1 − λ)2U
l (c)
fw . (11)

In this last step, b was kept at the same value as at the end of
step 6a, viz., b = 0.0003σ . In principle, the flat wall could be
made even more short ranged by varying λ in step 6a up to,
say, 0.99. However, our simulations showed that reducing the
range of the flat wall to such a low value is unnecessary for our
purpose since the combined numerical and statistical errors
from 1–5 would be much larger than the total contribution
from step 6b.

Generally, the contribution of step 6b depends on the
average density of particles in the interface region. Prior work
on the crystal-liquid interface corresponding to hard-sphere
systems has shown that the density near the interface is the
mean of the bulk liquid and solid coexistence densities [32].
Even accounting for capillary fluctuations, the average density
will not be very far from this mean value. Therefore, the
contribution of step 6b will be close to that obtained for
the flat wall–liquid interface. For example, at b = 0.0003σ ,
the excess free energy of the fluid in contact with the flat
wall was about 10 times less than the statistical errors from
steps 1–6a. For the crystal, the excess free energy was about
1000 time less than the typical statistical errors. Since our
simulations yield such a small free-energy difference for liquid
in contact with the flat wall at b = 0.0003σ , it is clear that step
6b will yield a similar negligible value and hence this step

can effectively be ignored. In general, our simulations indicate
a negligible value (less than 10−4kBT/σ 2) for the liquid-flat
wall free-energy difference per unit area and hence that of step
6b as well if b ∼ 10−4σ .

We carried out several independent runs for one system
size, in both the forward and reverse directions to check
the reversibility of step 6b and obtained the free-energy
difference from runs that yielded the least hysteresis [27,33].
Our simulation results showed a negligible contribution for
this step of the order of 5 × 10−5kBT/σ 2 for the (100)
and (111) orientations and of the order 5 × 10−4kBT/σ 2

for the (110) orientation. Since the combined statistical and
numerical errors in the previous steps (1–6a) are in the range
0.003kBT/σ 2–0.005kBT/σ 2, this last step was not performed
for other system sizes at which simulations were carried
out. The free-energy difference in the various steps can be
computed as

�Fi =
∫ 1

0

〈
∂Hi

∂λ

〉
dλ, (12)

where i varies from 1 to 6 corresponding to the six steps. The
interfacial free energy γcl is obtained by adding the free-energy
differences corresponding to the six steps, divided by the total
interfacial area A,

γcl =
∑6

i=1 �F i

A
, (13)

with A = 2LxLy (the factor 2 takes into account the presence
two independent planar crystal-liquid interfaces; cf. Fig. 1).

IV. SIMULATION DETAILS

Molecular dynamics simulations were carried out in the
canonical ensemble with the total number of particles N =
Nl + Nc, volume V and temperature T maintained constant.
Constant temperature was achieved by assigning every 200
time steps random velocities to the particles distributed
according to the Maxwell-Boltzmann distribution. Newton’s
equations of motion were integrated according to the velocity
Verlet algorithm [42]. During steps 1–5 of our TI scheme, a
time step �tlarge = 0.0005τ (with τ =

√
mσ 2/ε) was used. In

the sixth step, to take into account the extremely-short-range
forces due to the Gaussian flat wall, a multiple-time-step
scheme [31] was applied where, in combination with �tlarge,
a smaller time step of �tsmall = 0.000 025τ was used. It
was observed that this slowed down the simulations by
approximately a factor of 2.

The coexistence densities for the inverse-power po-
tential (1), as computed using the free-solidification
method [6,43], at the temperature T = 1.0, are ρ inv

l =
0.933σ−3 for the liquid phase and ρ inv

c = 1.030σ−3 for
the crystal phase [44]; the coexistence pressure is P inv

co =
11.48kBT/σ 3. In comparison, the coexistence parameters of
the actual hard-sphere system are ρHS

l = 0.940σ−3, ρHS
c =

1.041σ−3, and P HS
co = 11.576kBT/σ 3 [6].

From these coexistence values one can define an effective
dimensionless diameter σ eff = σ (ρHS

c /ρ inv
c )−1/3, which can be

used as a scaling parameter to compare the two systems. Such
an effective diameter can also be obtained using the coexis-
tence pressure value as well as the coexistence density of the
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TABLE I. Free-energy differences per unit area �F/A (in units
of kBT/σ 2), corresponding to steps 1–6 for the (100), (110), and
(111) orientations of the crystal-liquid interface with the dimensions
20.43 × 20.43 × 78.58, 20.43 × 20.0 × 80.02, and 21.17 × 20.0 ×
81.66, respectively (in units of σ 3). The final value of γcl for each
orientation is specified in the last line of the table. The quantities
within parentheses correspond to the statistical error in the last digit
shown. For extremely small numerical values [see data for the (100)
and (111) orientations] both the free-energy difference and the error
are multiplied by the same power of 10.

Step (100) (110) (111)

1 0.0532(2) 0.0532(2) 0.0532(2)
2 0.0044(5) × 10−2 0.001 93(7) 0.006(5) × 10−4

3 0.993(3) 0.970(4) 0.894(2)
4 0.429(4) 0.409(1) 0.370(1)
5 − 0.880(3) − 0.841(1) − 0.763(2)
6 − 0.0035(2) − 0.020(1) − 0.0020(1)
γcl 0.592(6) 0.573(4) 0.552(3)

liquid. It is observed that using the crystal coexistence density
and the coexistence pressure as the scaling variable leads to the
same effective diameter, viz., σ eff = 1.0035σ , while use of the
liquid coexistence density leads to a slightly lower effective
diameter σ eff = 1.0024σ . We will use the effective diameter
value σ eff = 1.0035σ to compare the crystal-liquid interfacial
free energy obtained for the inverse power-law model with the
hard-sphere values. The equivalent values for the hard-sphere
model are obtained as γ HS

cl = γ inv
cl σ eff2

/kBT , where γ inv
cl is the

interfacial free energy corresponding to the inverse power-law
potential.

We obtain γcl for the (100), (110), and (111) orientations
of the face-centered-cubic crystal with respect to the liquid
at the interface. To study finite-size effects, simulations were
carried out at various system sizes for the (100) orientation of
the interface, ranging from around 7000 to 34 000 particles,
with various lateral dimensions and with a total longitudinal
dimension of about 80σ . For the other two orientations,
simulations were carried out only at the largest system sizes.
The dimensions of our system along with the total number of
particles are specified in Table I.

To generate initial configurations, liquid and crystal phases
were equilibrated for about 2 × 106 time steps (in steps of
�t large) at their respective coexistence densities. Both phases
were simulated in cells of identical dimensions with Nl < Nc

since ρl < ρc. To calculate γcl via TI, independent runs were
carried out at 50–100 values of equally spaced intervals of λ

between the initial and final states in order to obtain smooth
thermodynamic integrands.

Instead of doing a sequential TI simulation, where the
system is first equilibrated at one value of λ and the
thermodynamic derivative ∂U/∂λ is computed and then λ is
increased to the next higher value and the process is repeated
until the final value of λ is reached, here we simultaneously
carry out simulations at the various values of λ. At each value
of λ, the system was first equilibrated at λ = 0 for 104 time
steps and then λ was continuously increased until the desired
value of λ was reached. The number of time steps to carry

out this switch varied from 2.5 × 105 to 106 time steps for the
various TI steps. After the desired value λi was reached, the
system was further equilibrated for times varying from 106 to
4 × 106 time steps. Then the production runs were carried out
over a period varying from 106 to 5 × 106 time steps for the
different TI steps to obtain the desired statistical accuracy.

For steps 3–5, a cubic spline interpolation of the bare data
was performed to obtain the thermodynamic integrand at 100
intervals between λ = 0 and 1. Then Simpson’s rule was used
to numerically calculate the integral. For steps 1, 2, and 6, the
thermodynamic integrals were calculated numerically using
the trapezoidal rule from the bare data. Statistical errors were
calculated by partitioning the production runs into five blocks
and then determining the standard deviation from these five
samples.

To check the reversibility of each step in the TI scheme,
simulations were also carried out in the reverse direction, to
detect any hysteresis in the transformation. The initial state
for the reverse TI simulations corresponded to the final state
of the forward TI path. The final values for γcl reported in
Table I correspond to an average of the free-energy differences
obtained from the forward and reverse TI simulations.

V. RESULTS

The thermodynamic integrands for the various steps are
plotted in Figs. 2–5 for the (100) orientation of the crystal-
liquid interface. The data correspond to the largest system size
of 32 205 particles with dimensions 20.43 × 20.43 × 78.58
(in units of σ 3). Figure 2 shows the thermodynamic integrand
corresponding to steps 1 and 2 of our scheme. It is clear that the
area under the thermodynamic integrand curve corresponding
to the crystal is negligible as compared to the liquid. Since
the crystal is positioned symmetrically with respect to the two
ends of the simulation cell, the location of the flat walls (at
z = 0 and Lz) coincides with a density minimum between two
crystalline layers. Moreover, the crystal has a small diffusivity
as compared to the liquid. Therefore, the free-energy cost of

0 0.2 0.4 0.6 0.8 1
λ

0

0.05

0.1

(1
/A

)〈
∂H

1,
2/∂

λ
〉 Liquid

Crystal

FIG. 2. (Color online) Thermodynamic integrand for steps 1 and
2 for the liquid and crystal phases, respectively, at T = 1.0 and the
(100) orientation of the crystal. Error bars in this and subsequent
figures represent one standard deviation.
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FIG. 3. (Color online) Thermodynamic integrand corresponding
to steps 3 and 4, for the liquid and (100) orientation of the crystal,
respectively, at the temperature T = 1.0.

inserting a flat wall in the crystal is negligible compared to that
in the liquid.

For the (100), (110), and (111) orientations of the crys-
tal, �F2/A = 4 × 10−5 ± 1 × 10−5, 1.8 × 10−3 ± 4 × 10−5,
and 7.66 × 10−7 ± 1.94 × 10−7, while �F1/A = 0.053 ±
2 × 10−4 (in units of kBT/σ 2). The above data corresponded
to b = 0.027σ . The smoothness of the integrand and the
smallness of the error bars in Fig. 2 indicate the lack of
hysteresis in our TI scheme. Due to the perfect overlap
between the forward and reverse thermodynamic integrands,
Fig. 2 shows only the curves corresponding to the forward
transformation. For step 1, the difference between the forward
and reverse TI results was 2 × 10−4kBT/σ 2 and for the
different orientations in step 2, the hysteresis was always less
than 4 × 10−5kBT/σ 2.

It is to be noted that unlike in our previous work [35],
where an extremely-short-range wall was inserted from the
very first step onward, yielding a negligible contribution, here
step 1 yields a free-energy difference that cannot be ignored
(almost 10% of the final value for γcl). This is because the
Gaussian flat wall has a slightly longer range (of the same order

0 0.2 0.4 0.6 0.8 1
λ

-20

-10

0

10

(1
/A

)〈
∂H

5/∂
λ

〉

FIG. 4. Thermodynamic integrand for step 5 at T = 1.0, bringing
the (100) orientation of the crystal in contact with the liquid.

0 0.2 0.4 0.6 0.8 1
λ

-1.5

-1.0

-0.5

0

 1
0-2

 (
1/

A
)〈

∂H
6a

/∂
λ

〉

Forward
Reverse

FIG. 5. (Color online) Thermodynamic integrands for the for-
ward and reverse processes corresponding to step 6a, towards
reducing the range of the flat wall.

as the interaction potential itself). The reason for inserting
this slightly-longer-range wall, apart from computational effi-
ciency as mentioned previously, has to do with the hysteresis
observed in step 3, when the liquid is arranged into an ordered
structure near the interface. A relatively-longer-range flat wall
induces, at the end of step 1, layering in the liquid near the
flat wall, which is compatible with the ordered structure that
would be formed near the interface by the structured wall. This
results in a smoother thermodynamic integrand. However, in
the presence of an extremely-short-range wall (for example,
with b = 3 × 10−4σ ), the structure near the interface, at the
end of step 1, is the same as in the bulk. This leads to
hysteresis errors in step 3 and the transformation is not smooth
anymore, unless the system is equilibrated for a sufficiently
long time.

In Fig. 3, thermodynamic integrands corresponding to steps
3 and 4 are shown. We obtained excellent overlap between
the forward and reverse thermodynamic integrand curves and
therefore only data corresponding to the forward transforma-
tion is reported. For step 3, hysteresis between the forward and
reverse TI calculations was less than 5 × 10−3kBT/σ 2, while
for step 4 the same was less than 1 × 10−3kBT/σ 2 for all three
orientations.

At the end of step 3, the liquid is ordered into crystalline
layers near the interface. Therefore, the structured wall induces
precrystallization of the liquid even at the bulk liquid coexis-
tence density [45]. Since the liquid is already ordered into a
structure compatible with the crystal, the next transformation,
step 5, corresponding to joining the liquid and crystal phases,
occurs smoothly as shown in Fig. 4. The hysteresis between the
forward and reverse TI paths was less than 7 × 10−3kBT/σ 2

for the various orientations and system sizes considered in this
work.

The final step consists of two substeps. In step 6a, we reduce
the range of the Gaussian flat wall to an extremely small value.
As specified in Sec. III, the parameter b is changed from
0.027σ [corresponding to a range of 0.1σ , with the range
considered to be the distance at which ufw(ziw) decays to
about 1 × 10−4kBT ] to 3 × 10−4σ (corresponding to a range of
about 10−3σ ). For this range of the potential, the free-energy
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difference per unit area of a liquid in contact with this flat
wall is 5 × 10−4kBT/σ 2 and for the various orientations of
the crystal it is less than 2 × 10−5kBT/σ 2. Clearly, reducing
the range of the flat wall by about 100 times also reduces the
free-energy difference by about the same factor.

In step 6a, the range of the potential was modified by
varying λ from 0 to 0.894. At λ = 1.0, the range of the flat
wall would be zero. Clearly, to choose an appropriate final
value of λ in step 6a, the strategy would be to first compute the
accumulated free-energy difference up to step 5. Depending
upon the desired accuracy, a value is chosen that is much
less than the statistical and numerical errors in the combined
steps 1–5. From the ratio of this value and �F1/A, a factor
is obtained and multiplying it with the range of the flat-wall
potential in step 1, a new range can be calculated, from which
the appropriate final value of λ in step 6a can be deduced using
Eq. (3). By this strategy, step 6b would become redundant, as
argued in Sec. III.

To check whether the resultant flat wall at the end of
step 6a produced any artifacts such as a change of the
coexistence pressure, we computed the normal component
of the pressure along the z direction as a function of the
time and compared it to the coexistence pressures of the
bulk phases (P inv

co = 11.48kBT/σ 3). However, as Fig. 6 clearly
shows, the coexistence pressure of the crystal-liquid interface
in the presence of an extremely-short-range flat wall is in good
agreement with the bulk coexistence pressure.

In Fig. 5, we plot the thermodynamic integrands cor-
responding to the forward and reverse paths of step 6a.
Though the curves are a bit noisy compared to the previous
steps, the magnitude of the integrands is also very small and
hysteresis between the forward and reverse calculations is 5 ×
10−4kBT/σ 2, with �F6a/A = −0.0035 ± 0.0002kBT/σ 2.
For the (110) and (111) orientations, the contributions from
step 6a are −0.020 ± 0.001 and −0.002 ± 0.001 (in units of
kBT/σ 2).

We have carried out several independent runs corresponding
to step 6b and from the runs with the least hysteresis, we
extracted the free-energy difference, for one system size. How-
ever, for all three orientations the magnitude of the contribution

0 200 400 600
time

11

11.2

11.4

P
z

P co

inv

FIG. 6. (Color online) Evolution of the normal component of
pressure Pz at the end of step 6a, after equilibration is reached. The
red line denotes the bulk coexistence pressure.

0 1 2 3 4 5 6
Step

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

ΔF
/A

γCL=0.592(6)

FIG. 7. (Color online) Histogram showing free-energy differ-
ences per unit area �F/A corresponding to steps 1–6 (slanted
stripes) for the (100) orientation of the crystal-liquid interface with
the dimensions 20.43 × 20.43 × 78.58 (in units of σ 3) and the total
interfacial free energy γcl (dashed horizontal line). All free-energy
differences per unit area are in units of kBT/σ 2.

was less than 5 × 10−4kBT/σ 2 and hence the thermodynamic
integrands are not shown and were not added to the final value
of γcl. The contribution to the total free-energy difference
corresponding to the various steps, for the largest system
size considered in this work (20.43σ × 20.43σ × 78.58σ ),
is shown as a histogram in Fig. 7 for the (100) orientation
of the crystal-liquid interface. In addition, Table I shows the
free-energy differences accumulated in steps 1–6 for all three
orientations of the crystal-liquid interface corresponding to the
largest system size.

The final value of γcl after adding the contributions from
each step is reported in Table II for the three orientations
and for various system sizes [only for the (100) orientation].
Using the scaling parameter σ eff = 1.0035σ , the equivalent
interfacial free energy for the hard-sphere potential is also
specified. Data from the cleaving-wall method corresponding
to the pure hard-sphere potential [27] and also for the
inverse-power potential extrapolated to the hard-sphere limit
(n → ∞) [24] are reported. While our results are slightly
higher than those obtained for the former case, they are in
good agreement with the latter, within the reported errors.
Another TI approach reported recently yielded a similar value
for the (100) orientation of the hard-sphere crystal-liquid
interface [46].

To study systematic errors arising from finite-size effects
we have carried out simulations for the (100) orientation
of the crystal-liquid interface at various lateral dimensions
(Lx × Ly), keeping the longitudinal dimension fixed at 78.58σ .
Recently, Schmitz et al. [34] identified the finite-size cor-
rections and proposed a scaling relation to obtain reliable
estimates for the interfacial free energies in the thermodynamic
limit. According to them, the leading finite-size corrections
to the interfacial free energy in the thermodynamic limit are
described by the following relation [34,37]:

γL,Lz = γ∞ − A
ln Lz

L2
+ B

ln L

L2
+ C

L2
, (14)
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TABLE II. Interfacial free energy γ inv
cl (in units of kBT/σ 2) for different system sizes corresponding to various orientations of the

crystal-liquid interface. The interfacial free energies for the pure hard-sphere system obtained by using a scaling parameter are also shown
(see the text). For comparison, data from the cleaving-wall methods for the pure hard-sphere (HS) system [27] and for the inverse power-law
(IP) potential in the hard-sphere limit [24] are also reported. Dimensions Lx × Ly × Lz are in units of σ 3. For the (100) orientation of the
crystal-liquid interface, the interfacial free energy in the thermodynamic limit is extrapolated from the values of γcl at the various system sizes
using the L−2 and ln(L)L−2 scalings (see the text).

Orientation N System size γ inv
cl γ HS

cl Cleaving (HS) Cleaving (IP)

100 6860 9.43 × 9.43 × 78.58 0.581 ± 0.005 0.585 ± 0.005
100 9338 11.0 × 11.0 × 78.58 0.584 ± 0.007 0.588 ± 0.007
100 121 96 12.57 × 12.57 × 78.58 0.586 ± 0.005 0.590 ± 0.005
100 154 36 14.15 × 14.15 × 78.58 0.584 ± 0.004 0.588 ± 0.004
100 190 56 15.72 × 15.72 × 78.58 0.591 ± 0.005 0.595 ± 0.005
100 230 58 17.29 × 17.29 × 78.58 0.592 ± 0.004 0.596 ± 0.004
100 322 05 20.43 × 20.43 × 78.58 0.592 ± 0.006 0.596 ± 0.006 0.5820 ± 0.0019 0.592 ± 0.007
100 ∞ ∞ 0.595a,0.597b 0.599a,0.601b

110 321 06 20.43 × 20.0 × 80.02 0.573 ± 0.004 0.577 ± 0.004 0.5590 ± 0.0020 0.571 ± 0.006
111 339 59 21.17 × 20.0 × 81.66 0.552 ± 0.003 0.556 ± 0.003 0.5416 ± 0.0031 0.557 ± 0.007

aThe L−2 scaling.
bThe ln(L)L−2 scaling.

where A, B, and C are constants and L = Lx = Ly corre-
sponds to the lateral dimension of our system.

The second term in Eq. (14) is identified with the trans-
lational entropy of the system arising from the movement
of the crystal-liquid interface. Since the flat walls restrict
the movement of the crystal-liquid interface, this term can
be neglected in our TI scheme. In Fig. 8, we plot γcl as a
function of 1/L2 and ln(L)/L2 separately. Extrapolating the
data linearly yields γcl, the equivalent hard-sphere crystal-
liquid interfacial free energy in the thermodynamic limit and
for the 1/L2 and ln(L)/L2 scalings, we obtain the values
0.599kBT/σ 2 and 0.601kBT/σ 2, respectively.

In comparison to the values of γcl corresponding to
the smallest system sizes considered, the thermodynamic
limit value is around 3% higher, indicating that finite-size
corrections cannot be ignored in order to obtain a reliable
estimate. The linear scaling observed in Fig. 8 also indicates

0 0.01 0.02
ln(L) . L

-2

0.57

0.58

0.59

0.60

0.61

γ cl

0 0.005 0.01
L

-2

0.57

0.58

0.59

0.6

0.61

0.62

γ cl

FIG. 8. (Color online) Interfacial free energy γcl (in units of
kBT/σ 2) as a function 1/L2, where L = Lx = Ly, for the (100) orien-
tation of the crystal-liquid interface with the longitudinal dimension
2Lz = 78.58σ . The inset shows γcl as a function of ln(L)/L2. Closed
symbols correspond to the γcl values in the thermodynamic limit. The
straight lines are a linear fit to the data.

that capillary fluctuations are not suppressed on account of
the flat walls. It is also to be noted that values of γcl obtained
in the thermodynamic limit for the (100) orientation of the
crystal-liquid interface are about 6%–7% less than those
corresponding to the capillary fluctuation [28] and tethered
Monte Carlo approach [29]. More research is needed to
understand the origin of this discrepancy.

VI. CONCLUSION

We have obtained the crystal-liquid interfacial free energy
for the hard-sphere system via a thermodynamic integration
scheme. Good agreement of our results with other compu-
tational approaches indicates the success of our TI scheme
even for short-range interaction potentials. The flat Gaussian
walls introduced in this scheme circumvent the problem of
achieving a reversible transformation due to the movement
of the crystal-liquid interface. These flat walls suppress the
movement of this interface and at the same time do not
affect the capillary fluctuations. Use of frozen-in crystalline
layers to act as structured walls induces ordering in the liquid
compatible with the crystal structure and leads to a smooth
thermodynamic transformation to the desired final state. The
scheme described here could also be used with a Monte Carlo
sampling, which in the case of hard spheres would avoid the
need for an event-driven code.

Our results also indicate that finite-size errors have to be
accounted for in order to obtain accurate estimates for γcl.
The accurate values for the interfacial free energy obtained in
this work can be used to validate future density-functional
theory approaches, which in the past have yielded higher
values as compared to a TI calculation [28]. Furthermore, a TI
calculation of γcl using our scheme is necessary for the pure
hard-sphere system to be able to compare with existing values.
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