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Critical Casimir forces in the presence of random surface fields
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We study critical Casimir forces (CCFs) fC for films of thickness L which in the three-dimensional bulk
belong to the Ising universality class and which are exposed to random surface fields (RSFs) on both surfaces.
We consider the case in which, in the absence of RSFs, the surfaces of the film belong to the surface universality
class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak
disorder, CCFs still exhibit scaling, acquiring a random field scaling variable w that is zero for pure systems.
We confirm these analytic predictions by Monte Carlo (MC) simulations. Moreover, our MC data show that fC

varies as fC(w → 0) − fC(w = 0) ∼ w2. Asymptotically, for large L, w scales as w ∼ L−0.26 → 0, indicating
that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin
films such that w � 1, we find that the presence of RSFs with vanishing mean value increases significantly the
strength of CCFs, as compared to systems without them, and it shifts the extremum of the scaling function of fC

toward lower temperatures. But fC remains attractive.
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I. INTRODUCTION

Critical Casimir forces (CCFs) arise between surfaces
confining a fluid that is brought thermodynamically close to its
bulk critical point [1]. They are described therein by universal
scaling functions that are determined by the universality class
of the bulk liquid and the surface universality classes of
the confining surfaces [2]. Interfaces confining 4He near its
superfluid transition belong to the surface universality class
of the so-called ordinary transition corresponding to Dirichlet
boundary conditions (BCs) for the superfluid order param-
eter [3]. Surfaces confining classical binary liquid mixtures
near their demixing transition belong to the universality class
of the so-called normal transition [4–8], which is characterized
by a strong effective surface field acting on the deviation of
the concentration from its critical value serving as the order
parameter. The surface field describes the preference of the
container wall for one of the two species forming the binary
liquid mixture. For 3He/4He mixtures near their tricritical
point, both types of BC can occur [9]. These experimental
findings agree with corresponding theoretical analysis [10–13]
and Monte Carlo simulations [14–16] of suitable model
systems representing the aforementioned universality classes
and the crossover between them [17–20]. Across the various
universality classes, the magnitude, shape, and sign of the
universal scaling functions of the CCF vary strongly. For
example, for films with ordinary-ordinary (o,o) or normal-
normal (+,+) BCs at the two surfaces, CCFs are attractive,
whereas for opposing (+,−) BCs they are repulsive.

The sign of the surface fields depends on the chemical
composition of the wall surfaces. They can be designed by
suitable surface treatments that, e.g., render hydrophilic or
hydrophobic surfaces [6,7]. In the context of CCFs, spatially
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varying surface compositions have been studied experimen-
tally for a smooth lateral gradient [21] and for well-defined
alternating stripes [22]. Without dedicated preparation efforts,
the surfaces typically carry random chemical heterogeneities
due to adsorbed impurities that act as local surface fields.
If kinetically frozen, they form quenched disorder. Quenched
random-charge disorder on surfaces of dielectric parallel walls
at a distance L leads to long-ranged forces ∼L−2 even if
they are net-neutral [23,24], which dominates the pure van der
Waals term ∼L−3.

Here we study CCFs emerging under the influence of
randomly quenched surface fields. Specifically, we consider
the Ising bulk universality class and a situation in which
the mean value of the surface fields vanishes. As a rough
guideline, this addresses systems in which droplets of the
demixed binary liquid mixture form a contact angle of 90◦
with the chemically disordered substrate (see the intermediate
substrate compositions in Ref. [21]). We analyze slabs of
thicknesses L. In the corresponding limit L → ∞, leading
to two semi-infinite systems, the influence of random surface
fields has been studied in the context of wetting (for reviews,
see Ref. [25]) and surface critical phenomena [26–29] (for
a review, see Ref. [30]). In particular, the Harris criterion
concerning the relevance of disorder for bulk critical phenom-
ena has been generalized to surface critical behavior [27].
Within the framework and limitations of a weak-disorder
expansion, quenched random surface fields with vanishing
mean value are expected to be irrelevant if the pure system
belongs to the ordinary surface universality class [27]. For the
three-dimensional (d = 3) Ising model in Ref. [26], this was
pointed out and confirmed by Monte Carlo simulations.

Parallel to the present study, in Ref. [31] the case of random
surface fields acting on only one of the two confining surfaces,
with the other surface belonging to the universality class of
the normal transition, has been analyzed for the “improved”
Blume-Capel model [16,32,33]. The scaling functions of CCFs
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in that system have been obtained by using Monte Carlo
simulations and finite-size scaling. We note that for complex
fluids, disorder effects on Casimir-like interactions can be
dominant. This has been shown recently for nematic liquid-
crystalline films bounded by two planar surfaces, one of which
exhibits a random distribution of the preferred anchoring axis
in the so-called easy direction [34]. In this case of quenched
disorder, the effects of disorder on the fluctuation-induced
interaction between the surfaces are dominant at intermediate
film thicknesses.

Our presentation is organized as follows. In Sec. II we
present a scaling analysis from which we derive a random
field finite-size scaling variable. Section III is devoted to Monte
Carlo (MC) simulations. In Sec. III A we define our system and
provide the details of our numerical method of determining the
CCF and its scaling functions from the MC simulation data.
Section III B contains our results. We provide a summary and
conclusions in Sec. IV.

II. RANDOM FIELD SCALING

First, we consider pure systems. Within mean-field theory,
near the ordinary transition of semi-infinite systems the order
parameter profile exhibits an extrapolation length 1/c; c = ∞
is the fixed point of the ordinary transition (o) corresponding
to the Dirichlet BC [2]. Close to this ordinary transition,
there is a single linear scaling field g1 = H1/c̃

yc associated
with the dimensionless surface field of strength H1 and
the surface enhancement parameter c̃ = ca, where a is a
characteristic microscopic length scale of the system [2]
such as the amplitude ξ±

0 of the bulk correlation length
ξb(t = T −Tc

Tc
→ 0±) � ξ±

0 |t |−ν (which stands for asymptotic
equality). In the following, all lengths, such as L and 1/c,
are expressed in units of a. The above scaling exponent is
yc = (�sp

1 − �ord
1 )/�, where �ord

1 and �
sp
1 are the surface

counterparts at the ordinary and special transition, respectively,
of the bulk gap exponent �, and � is a crossover exponent [2].
Within mean-field theory one has yc = 1, whereas yc(d =
3) ≈ 0.87 [2,19,35]. Close to the critical point, the singular
part fsing of the free energy per kBT and divided by AL of a
film of thickness L and the surface area A depends on three
(dimensionless) scaling fields: t , the bulk ordering field hb, and
g1; it depends on L but not on A. For L � a, it is a general-
ized homogeneous function so that fsing(t,hb,g1; L−1; a) �
b−dfsing(byt t,bybhb,b

y1g1; bL−1; a) for any dimensionless
rescaling factor b > 0 and bulk spatial dimension d � 2.
The scaling exponents yt , yb, and y1 are related to the
aforementioned critical exponents: yt = 1/ν, yb = �/ν,
and y1 = �ord

1 /ν. (Note that L−1 can be treated as a
scaling field with a scaling exponent equal to 1.) Set-
ting b = L/a, one obtains (omitting the nonuniversal
amplitudes of the scaling fields) fsing(t,hb,g1; L−1; a) �
(L/a)−dfsing((L/a)1/ν t,(L/a)�/νhb,(L/a)�

ord
1 /νg1; a; a).

We now consider a Gaussian distribution of surface fields
with the ensemble averages H1(r) = 0 and H1(r)H1(r′) =
h2δ(r − r′); r and r′ denote dimensionless lateral positions.
In this case, the above finite-size scaling relation for the
free-energy density is modified. A heuristic renormalization-
group argument [26,36] predicts that the scaling exponent

of a random surface field is y1 − (d − 1)/2. This argument
is based on the assumption that in a surface block of side
length b and area bd−1, the effect, on the pure system, of
small quenched local fluctuations of the surface field H1(r) of
average magnitude h and zero mean is the same as that of the
average strength ([H cg

1 (r)]2)1/2 of the coarse-grained random
field H

cg
1 = ∑Nb

i=1 H1(ri) uniformly distributed over the Nb

sites ri of that block. Since H
cg
1 is the sum of Nb uncorrelated

random (surface) fields, one has ([H cg
1 (r)]2)1/2 ∼ h

√
Nb.

With Nb ∼ bd−1 one obtains ([H cg
1 (r)]2)1/2/Nb ∼ h/

√
Nb ∼

hb−(d−1)/2.
A real-space renormalization-group transformation re-

places such a block by a single site of the renormalized
system with the associated quenched fluctuation of strength
by1b−(d−1)/2h. Thus in a system with random surface fields,
the appropriate scaling variable, which replaces (L/a)�

ord
1 /νg1

for the pure system, is

w ≡ (L/a)�
ord
1 /ν−(d−1)/2h/cyc = (L/a)y1−(d−1)/2g̃1, (1)

where g̃1 = h/cyc ; in the following, we choose a = ξ+
0 . As

in our previous study [19], for the three-dimensional (d = 3)
Ising model we take �ord

1 ≈ 0.46(2) [35], �
sp
1 ≈ 1.05 [2],

� ≈ 0.68 [2], and ν ≈ 0.63 [16,37], and we obtain y1 − (d −
1)/2 ≈ −0.26(6). [More accurate estimates for the surface
critical exponents at the special and ordinary transitions were
obtained recently from MC simulations [38]. They yield
yc ≈ 1.282(5) and y1 ≈ 0.7249(6) so that y1 − (d − 1)/2 ≈
−0.2750(4). We have checked that using these latter estimates
does not change the conclusion of our study and yields very
similar results.] Within mean-field theory, i.e., for d = 4, one
has �ord

1 = ν = 1/2 [2] so that y1 − (d − 1)/2 = −1/2. In the
marginal case d = 2 one has y1 − (d − 1)/2 = 0, due to ν = 1
and �ord

1 = 1/2 [2]. Accordingly, for the d = 3 Ising model
one has w = (h/c0.87)(L/ξ+

0 )−0.26, whereas within mean-field
theory w = (h/c)(L/ξ+

0 )−1/2.
At vanishing bulk ordering field hb = 0, the singular part of

the excess free energy f ex
sing(L−1) = fsing(L−1) − fsing(0) (per

kBT and divided by AL) satisfies [see Eq. (3.18) in Ref. [51]
and Eqs. (1.7) and (1.8) in Ref. [49]]

f ex
sing(t,hb = 0,g̃1; L−1; ξ+

0 )

� (L/ξ+
0 )−df ex

sing((L/ξ+
0 )1/ν t,(L/ξ+

0 )y1−(d−1)/2g̃1; ξ+
0 ,ξ+

0 )

= L−d�((L/ξ+
0 )1/ν t,(L/ξ+

0 )y1−(d−1)/2g̃1). (2)

Accordingly, the critical Casimir force per area A and in units
of kBT , defined as

fC ≡ −∂
(
Lf ex

sing

)
∂L

, (3)

satisfies

fC(T ,L,h) � L−dϑ((x = L/ξ+
0 )1/ν t,

w = (L/ξ+
0 )y1−(d−1)/2g̃1). (4)

As follows from Eq. (3), the scaling function ϑ is related
to f ex

sing and its derivatives. Because the scaling exponent of
the random surface field is negative, the scaling field g̃1 is
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irrelevant in the sense of renormalization-group theory. Under
the assumption that the scaling function ϑ can be expanded
in powers of the irrelevant field g̃1, one obtains the critical
Casimir force

fC(T ,L,h)

� L−dϑ + g̃1(ξ+
0 )y1−(d−1)/2L−d−[y1−(d−1)/2]ϑ1

+ g̃2
1(ξ+

0 )2[y1−(d−1)/2]L−d−2[y1−(d−1)/2]ϑ2 + · · · , (5)

where ϑ1 is the first derivative of ϑ with respect to w, and
ϑ2 is the second derivative. In Eq. (5), the function ϑ and its
derivatives are evaluated at w = 0. For sufficiently thick films,
the effect of disorder is expected to be negligible, i.e., the
second variable in Eq. (4) can be neglected in the limit L → ∞.
However, in d = 3 the exponent y1 − (d − 1)/2 is small, and
for thin films the corrections to scaling due to g̃1 [i.e., the
second and perhaps also the third term in the expansion in
Eq. (5)] can be large and hence important for experimental
realizations. For large g̃1 and thin films, it may happen that in
Eq. (5) even more terms have to be included in order to capture
the behavior of fC(T ,L,h).

In the pure case, there is a length 
ord = gg
−1/y1
1 associated

with the scaling field g1 [39], where g is a nonuniversal
amplitude, which can be small or large depending on the
relative strength of H1 and c̃. Upon approaching the ordinary
transition, i.e., in the limit c → +∞ at fixed H1 one has

ord → ∞. On the other hand, in the limit H1 → ∞ at fixed
c > 0, one has 
ord → 0 at the normal transition (+). In d = 3,
one has 
ord = g

−1.3793(9)
1 . Various studies of Ising systems

in the film geometry [17–19,40–44] showed that close to
the ordinary transition the critical properties of the film of
thickness L are particularly sensitive to the strength of the
surface fields, i.e., whether the length scale 
ord becomes
comparable to or even larger than L, where criticality means
L,
ord � ξb. In particular, in films with identical surface
fields, the absolute value of the critical Casimir force at
the bulk critical temperature (characterized by the critical
Casimir amplitude) as a function of the surface field H1

exhibits a minimum at L � 
ord [19,42]. For equal surfaces,
also the effect of the variation of the amplitude of H1 on
the temperature dependence of the critical Casimir force, i.e.,
the crossover behavior between the ordinary and the normal
surface universality classes, has been studied [17,19,44]. For
L/
ord ≈ 1, these results show strong deviations of the force
scaling function from its universal fixed-point behavior such
as the occurrence of two minima, one above and one below Tc,
but no change in sign as the temperature is varied.

In the case of disorder, due to the scaling exponent y1 −
(d − 1)/2 of a random surface field, one can identify a length
scale 
 associated with the latter as 
 = κ(h/cyc )−1/[y1−(d−1)/2],
where κ is a microscopic length. In d = 3, one has 
 =
κ(h/c0.87)3.85. Conversely to 
ord in the pure case, at the
ordinary transition, i.e., in the limit of c → +∞ at fixed h,

 vanishes. One can also consider the limit of large h at fixed
c > 0, which, however, does not correspond to the normal
transition. In the case of a random surface field, h is a standard
deviation of the Gaussian probability distribution of the surface
fields. Upon increasing h, the probability distribution broadens
so that also strong surface fields occur. Since the presence of a

surface field of strength |H1| � 1 eliminates the fluctuations of
the boundary Ising spins, we expect that for h � 1, the actual
value of h no longer matters and that accordingly the variation
of the free energy with h levels off. The typical microscopic
configuration of a surface layer exposed to the realization of
random surface fields with large standard deviation h will
be that of nonfluctuating spins distributed spatially almost at
random. (Surface fields with |H1| � 1 will give rise to some
correlation effects.) For the finite size of a surface as used
in numerical simulations, fluctuations about the zero mean
value of the random surface field are expected to result in
a nonvanishing, albeit small, surface magnetization. For thin
films and for suitably chosen h and c such that κh/c0.87 > 1,

 can be comparable to L or even larger.

It is an interesting issue whether, in analogy to the pure
case, near bulk criticality the presence of the length scale 
,
which competes with L, has important consequences for the
critical Casimir force. In other words, using the following
representation of Eq. (4):

fC(T ,L,h) � L−d ϑ̂(L/ξb,L/
), (6)

where ϑ̂ = ϑ((L/ξb)1/ν,(L/
)1/[y1−(d−1)/2]), we pose the ques-
tion whether for L � 
 one can observe significant devi-
ations of the force scaling function ϑ̂ from its universal
ordinary-ordinary (o,o) fixed-point (c = ∞,h = 0) behavior
ϑ̂(L/ξb,L/
 = ∞). We address this question in the following
section by using MC simulations.

III. MONTE CARLO SIMULATIONS

A. The model and the method

We have performed MC simulations of an Ising model on
a cubic lattice of size Lx × Ly × Lz with Lx = Ly = 6Lz.
Here and in the following, all lengths are measured in units of
the lattice constant a0. The spins six ,iy ,iz = ±1 are located at
every lattice site with the coordinates i = (ix,iy,iz), 1 � ix �
Lx , 1 � iy � Ly , 1 � iz � Lz. The Hamiltonian of this lattice
model is given by

H = −J

⎛
⎝∑

〈nn〉
sisi ′ +

∑
ix ,iy

H1(ix,iy)six ,iy ,1

+
∑
ix ,iy

H2(ix,iy)six ,iy ,Lz

⎞
⎠ , (7)

where J > 0 is the spin coupling constant, the sum 〈nn〉 is
taken over nearest neighbors, and H1(ix,iy) and H2(ix,iy) are
dimensionless random fields acting on the top and the bottom
surface, respectively, of the system. The surface fields are
independent random variables with a Gaussian distribution,
with vanishing mean values 〈H1(ix,iy)〉 = 〈H2(ix,iy)〉 = 0,
and with half-widths h2 = 〈[H1(ix,iy)]2〉 = 〈[H2(ix,iy)]2〉.
The computations have been performed for systems with
thicknesses Lz = 10,15, and 20. We have used the so-
called coupling parameter method in order to determine the
CCF fC(β,L,h), where β = J/(kBT ) is the reduced inverse
temperature and L = Lz − 1

2 = 9.5,14.5, and 19.5 is the slab
thickness (in units of the lattice spacing) corresponding to the
force fC(β,L,h). This method has been employed in previous
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MC simulations determining the CCF for pure films [14,19].
We have used the following numerical properties of this
Ising model: βc = 0.221 654 4(3) [45], ν = 0.6301(2) [37],
and ξ+

0 = 0.501(2) [46] in units of the lattice spacing a0.
Since according to Eq. (7) the coupling constant within

the surface layers and between the surface layers and their
neighboring layers is the same as in the bulk, the corresponding
surface enhancement is, within mean-field theory and in units
of the lattice spacing, c = 1 [2]. Beyond mean-field theory, the
relation between c and the coupling constants is not known. To
proceed, in the following we set c0.87 = 1 and use the scaling
variable ŵ = h/L0.26. Accordingly, 
 = h3.85 so that for the
thicknesses L = 9.5,14.5, and 19.5 used here, the condition

 � L is satisfied for h = 1.80,2.00, and 2.16, respectively.
The value ŵ = 0 corresponds to films with free (o,o) BCs.

For every value of the scaling variable ŵ, we have
performed an ensemble average over Nr = 64 independent
realizations j = 1,2,3, . . . ,Nr of random surface fields. For
every realization of systems with Lz = 10,15,20 lattice layers,
the thermal average is performed over 105, 5 × 104, and
2.5 × 104 hybrid MC steps, respectively, split into 10 series in
order to determine the statistical error. We denote f

j

C (β,L,h)
as the critical Casimir force per kBTc and per surface
area S2 = Lx × Ly , obtained from the j th realization at the
inverse temperature β = 1/(kBT ), for the system thickness
L and for the random surface field scaling variable ŵ =
h/L0.26. The actual force is computed as an average over
all realizations: fC(β,L,h) = 1

Nr

∑Nr

j=1 f
j

C (β,L,h). We shall
investigate fC(β,L,h) as a function of the two scaling variables
x = (L/ξ+

0 )1/ν t and ŵ = h/L0.26 [see Eq. (4)]:

fC(β,L,h) � L−3ϑ(x = (L/ξ+
0 )1/ν t,ŵ). (8)

For the pure system, i.e., h = 0, we have also obtained Nr

statistically independent values of the force f
j

C (β,L,h = 0).
After averaging over the random surface fields for fixed values
of L and of the inverse temperature β, we obtain the difference
�f between the force corresponding to the random surface
field h and the corresponding force for a pure system [with
(o,o) BCs]:

�f (β,L,h) = 1

Nr

Nr∑
j=1

[
f

j

C (β,L,h) − f
j

C (β,L,h = 0)
]

� L−3[ϑ(x,ŵ) − ϑ(x,ŵ = 0)]. (9)

The statistical error is inferred from 10 series of MC steps
for every realization. The variance of different realizations of
the disorder field is slightly smaller than the statistical error
of a given realization. The error bars shown take into account
only the statistical error.

B. Numerical results

First we check whether, similar to the pure case with
nonzero surface fields H1, there is a nontrivial dependence of
the critical Casimir amplitude on the strength h of the disorder.
As mentioned above, for symmetric films the (negative) critical
Casimir amplitude as a function of the nonrandom surface field
H1 varies from its value at H1 = 0 (ordinary transition fixed
point) to its value at H1 = ∞ (normal transition fixed point)

in a nonmonotonous way, i.e., through a maximum located at
L � 
ord [19,42]. [In d = 3, the absolute value of the critical
Casimir amplitude for (o,o) BCs is smaller than the one for
(+,+) BCs, whereas in d = 2 they are equal.]

In the case of disorder, at h = 0 the critical Casimir
amplitude is the one for (o,o) BCs. In analyzing our data for
nonzero values of h, we have observed that at the bulk critical
point, the difference �f is vanishingly small. On the other
hand, below Tc [around x = (L/ξ+

0 )1/ν t � −7] it exhibits a
pronounced minimum. Therefore, instead of considering the
dependence on h of the critical Casimir amplitude, we have
studied the critical Casimir force difference �f as a function
of h for several fixed values of the temperature scaling variable
around the minimum, i.e., x ≈ −2.99,−5.99,−8.98,−11.98.
We have considered h ∈ [0,5] and have found that, upon
increasing h, |�f | increases monotonically with h from 0 to a
certain x-dependent saturation value at large h. Such a leveling
off is expected to occur, as discussed in Sec. II. In contrast, in
the pure case, the small absolute value of the Casimir amplitude
|�(o,o)| at first decreases even further upon increasing H1 from
zero, reaches a minimum, and only then increases toward the
large value |�(+,+)| for (+,+) BCs [19,42]. For small values
of h, �f can be described well by a quadratic function of h. A
crossover from the quadratic dependence to saturation of �f

as a function of h occurs above ln h2 ≈ −0.5 (i.e., h ≈ 0.78),
corresponding to 
 ≈ 0.38 so that L/
 ≈ 38. The leveling off
occurs for h ≈ 5, corresponding to 
 � L (see Fig. 1).

As the next step, we determine the scaling function ϑ(x,ŵ).
Due to the finite and rather limited sizes of the lattices, which
can be studied via MC simulations with presently available
resources, one cannot expect to reach the asymptotic regime
where the true finite-size scaling holds. To obtain data collapse
and thus being able to infer the leading universal scaling
functions, one has to apply corrections both to the scaling

-10

-8

-6

-4

-2

0

-10 -8 -6 -4 -2 0 2 4

ln (h2)

ln
(L

3
|Δ

f
(β

,L
,h

)|)

x ≈ −2.99
≈ −5.99
≈ −8.98
≈ −11.98

Δf ∼ h2

FIG. 1. (Color) Log-log plot of the absolute value of the rescaled
force difference L3|�f (β,L,h)| as a function of h2 [Eq. (9)] for
several values of the temperature scaling variable x = (L/ξ+

0 )1/ν t ≈
−2.99,−5.99,−8.98,−11.98 and for the system size Lz = L + 1

2 =
15. The straight dashed line indicates the slope corresponding to the
proportionality �f ∼ h2. The amplitude �f/h2 varies as a function
of x.

032408-4



CRITICAL CASIMIR FORCES IN THE PRESENCE OF . . . PHYSICAL REVIEW E 91, 032408 (2015)

function and to the scaling variables. These corrections to
scaling are nonuniversal; they depend on the details of the
model as well as on the geometry and on the boundary
conditions [47,48]. Besides the bulk corrections to scaling,
also surface and finite-size ones can occur [49]. Three-
dimensional slabs of thickness L exhibit a phase transition
of two-dimensional character at a shifted critical point Tc(L)
with Tc(L → ∞) − Tc(∞) ∼ L−1/ν . For temperatures near
Tc(L), one faces considerable finite-size corrections due to
the finite lateral system size Lx = Ly = L||. This leads to
a dependence of the critical Casimir forces on the aspect
ratio ρ = Lz/L||. In the case of periodic BC in the normal
direction, this dependence is strong for ρ > 1/2 [50]. Here,
we focus on the film geometry (i.e., ρ → 0), which can be
realized in fluid systems by, e.g., wetting films. As follows
from our previous studies [14], for small ρ the scaling function
of the critical Casimir force with (o,o) BCs does depend on
the aspect ratio but only within a certain interval near its
minimum. Here we take ρ = 1/6 and neglect the aspect ratio
corrections.

On the other hand, we incorporate those corrections to
scaling, which are due to the finite size L in normal direction.
In the present study, the following quantities are expected to
acquire corrections to scaling:

(i) The amplitude of the scaling function ϑ = L3fC .
(ii) The random surface field scaling variable ŵ.
(iii) The temperature scaling variable x = (L/ξ+

0 )1/ν t .
One may expect that the scaling function of the critical

Casimir force fC additionally depends on L−ω′
: fC(β,L,h) =

L−3θ (x,ŵ,L−ω′
) � L−3ϑ(x,ŵ)[1 + L−ω′

ζ (x,ŵ) + · · · ] for
L � 1. [Recall that actually fC depends also on the lattice
spacing a0 so that the correction to scaling scales as (L/a0)−ω′

;
we set a0 = 1.] The exponent ω′ controls the leading correction
to the scaling behavior of the lattice estimate fC . In the
presence of boundaries, two main corrections to scaling are
expected to occur. One is due to the irrelevant bulk scaling
fields [51], which introduce exponents ωi that cannot be
expressed in terms of the usual critical exponents such as yt

and yb. The latest estimate for the value of the smallest, and
thus most relevant, of those exponents is ω ≈ 0.832(6) for the
d = 3 Ising model [52]. The other correction terms stem from
the irrelevant surface contribution to the Hamiltonian H [2].
The value of ω′ is determined by that irrelevant surface or
bulk scaling field that has the smallest scaling dimension and
that also affects fC . The influence of the bulk corrections to
scaling can be reduced by using improved Hamiltonians and
observables, which can also serve as representatives of the
same universality class. This is described in detail in Ref. [37].
The value of the exponent, corresponding to the least irrelevant
surface contributions in our system, is not known. Even if the
bulk correction-to-scaling exponent is dominant, by fitting the
data it is difficult to disentangle corrections ∝L−ω and ∝L−1.
The latter can occur due to the presence of the boundaries.
Moreover, for small lattice sizes, next-to-leading corrections
to scaling might also be numerically important, resulting in
effective exponents. The current accuracy of our MC data
and the range of sizes L investigated here do not allow for
a reliable determination of ω′, the function ζ (x,ŵ), and the
effective exponents. The analysis of various observables [15]
revealed that also x acquires a leading Wegner correction [51]

of the form x ≡ τ (L/ξ+
0 )1/ν(1 + gωL−ω). A detailed analysis

of all types of corrections is beyond the scope of the present
study and is left to future research.

In our previous MC simulations aimed at obtaining critical
Casimir forces for Ising films with a variety of universal
boundary conditions [2], such as (+,+),(+,−), or (o,o)
BCs [14,19], corrections to scaling were taken into account
in an effective way by using various Ansätze. The choice
for a particular form of corrections to scaling was guided by
achieving the best data collapse or the best fits. With the lack
of corresponding theoretical guidance, in the present study
we have adopted the same, pragmatic approach. First, as a
phenomenological Ansatz for the effective corrections, we take
ω′ � ω � 1. Second, we follow a well-established procedure
of incorporating corrections to scaling by introducing an
effective thickness L + δ̂ [16,19,38,53]. Accordingly, our
Ansatz for the corrections to scaling is

fC(β,L,h) = [L + δ̂(h)]−3ϑ([[L + δ̂(h)]/ξ+
0 ]1/ν t,

[L + δ̂(h)]−1/(y1−(d−1)/2)h). (10)

(We note that in this way the leading bulk correction to scaling
is treated “effectively,” because the correction of the the scaling
function [L + δ̂(h)]−3 has the expansion L−3[1 − 3δ̂(h)/L +
· · · ].) The nonuniversal length δ̂(h) is fixed in such a way that
the data scatter due to different L is minimal. To employ such a
correction-to-scaling scheme, knowledge of the whole surface
ϑ(x,ŵ) is needed, which is computationally too demanding
(see the Appendix in Ref. [14(b)], where we have discussed
in detail our strategy of obtaining the best fit for the values
of the parameters that control the corrections to scaling). In
our simulations, we have generated data that correspond to
only several cuts of the surface ϑ(x,ŵ) along ŵ = const.
Therefore, we apply corrections to scaling along these cuts
by introducing δ(ŵ) and the effective thickness Leff(ŵ) =
L + δ(ŵ) = Lz − 0.5 + δ(ŵ). Accordingly, we introduce a
corrected scaling variable

y = y(x,ŵ,L) =
(

Leff(ŵ)

ξ+
0

)1/ν

t =
(

Leff(ŵ)

L

)1/ν

x

=
(

1 + δ(ŵ)

L

)1/ν

x. (11)

Plotting L3
efffC(β,L,h) versus y for fixed ŵ and choosing

δ(ŵ) such that data collapse is promoted for large L, one
obtains a scaling function g(y,ŵ) = L3

efffC(β,L,h), which for
large L does not exhibit an explicit dependence on L. [This is
achieved for smaller values of L than for the scaling leading to
the scaling function ϑ(x,ŵ) introduced before by considering
L3fC(β,L,h).] From the knowledge of the scaling function
g(y,ŵ), one can construct the desired scaling function ϑ(x,ŵ)
according to ϑ(x,ŵ) = g(y = x,ŵ) + O[δ(ŵ)/L].

The nonuniversal parameters δ(ŵ) are fixed in such a
way that the data collapse of the Monte Carlo data for
L = 10,15, and 20 is optimal in the region −10 < y < −2.
Our corresponding results for δ(ŵ) are presented in Table I.

The results of the above procedure depend on the range of
y considered for the data collapse.

By applying the rescaling procedure as described above,
we have obtained an estimate for the scaling function ϑ(x,ŵ)
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TABLE I. Correction-to-scaling parameter δ(ŵ) [see Eq. (11)].

ŵ 0 0.25 0.5 0.75 1 2

δ(ŵ) 1.6(1) 1.7(1) 1.67(10) 1.4(1) 1.05(10) 0.1(1)

of the Casimir force fC(β,L,h) for the 3d Ising model in
the slab geometry with random surface fields. It is shown in
Fig. 2 as a function of the scaling variable x for the values ŵ =
0,0.25,0.5,0.75,1, and 2. One sees that the rescaling procedure
leads to data collapse for various system sizes L, for a given
value of ŵ. However, the rescaled data for different values of
ŵ = 0,0.25,0.5 do not collapse. The curves for ŵ = 0.75,1,
and 2 lie almost on the top of each other. Note that ŵ = 0.75
and 1 lie in the crossover regime to the “strong disorder limit,”
where L < 
, whereas for ŵ = 2 this limit is almost attained
(compare Fig. 1). For strong disorder, as discussed earlier, the
majority of the surface spins do not fluctuate but are frozen to
the values −1 or +1 so that as a function of h2, the contribution
�f to the Casimir scaling function due to the random surface
fields levels off, i.e., in this limit the value of h does not
matter.

To gain more insight into the effect of random surface
fields on our system, we use the estimate for ϑ(x,ŵ) shown
in Fig. 2 and calculate for each value of ŵ the difference
�f according to Eq. (9). This is done by subtracting from
the curve corresponding to the particular value of ŵ the
one corresponding to the pure case of ŵ = 0 (red curve). In
Fig. 3(a), we show the result of this operation rescaled by L3

eff
for an Ising slab with Lz = 15 and for a random surface field
h = 1.01(8) corresponding to the scaling variable ŵ = 0.5 for

-2

-1.5

-1

-0.5

0

-20 -15 -10 -5 0

x

ϑ
(x

,ŵ
)

Lz =
10 : dots
15 : squares
20 : triangles

ŵ = 0
= 0.25
= 0.5
= 0.75
= 1
= 2

FIG. 2. (Color) Scaling function ϑ(x,ŵ) [Eq. (8)] of the critical
Casimir force for 3d Ising slabs with random surface fields for
several values of the random surface field scaling variable ŵ =
0,0.25,0.5,0.75,1, and 2 (from top to bottom). This scaling function
has been obtained according to the procedure described in the main
text. The MC data reported in this figure refer to slabs with thicknesses
Lz = 10 (dots), 15 (squares), and 20, (triangles) and they indicate that
for fixed ŵ, data collapse has been accomplished. For ŵ � 0.75, the
error bars are smaller than the symbol size. The pure case ŵ = 0 is
also shown (see Ref. [14]).

three cases: (i) random surface fields applied only on the top
side of the film (t), (ii) only on the bottom side (b), and (iii) on
both sides (t & b). Obviously the results for the (t) and (b) cases
coincide. For comparison, we have plotted also the results for
the bottom side multiplied by two [2 × b ≡ (t) + (b)]. If the
effects from the top and the bottom sides were additive, (t & b)
should coincide with (2 × b), which is not the case; the actual
force is stronger. Thus we conclude that the contribution to
the CCF stemming from the random fields at both confining
surfaces is not the sum of the contributions due to the
random surface fields being present only at one of the two
surfaces.

Finally, in order to focus on the leading behavior of the
difference �f between the Casimir scaling functions for
a system with and without disorder, in Fig. 3(b) we plot
L3

eff�f (β,L,h)/ŵ2 for various values of Lz and ŵ as function
of the scaling variable x. For ŵ = 0.25 and 0.5, we observe
good data collapse within the error bars of our data, confirming
that as function of ŵ the leading behavior of the difference �f

for small ŵ is quadratic in ŵ, consistent with the results shown
in Fig. 1. Based on these observations and strengthened by
the symmetry property p(H1) = p(−H1) of the surface field
distribution, we put forward the hypothesis that for small ŵ

one has

fC(β,L,h) � L−3{ϑ((L/ξ+
0 )1/ν t,ŵ = 0)

+ ŵ2ϑ0[(L/ξ+
0 )1/ν t]}, (12)

where ϑ((L/ξ+
0 )1/ν t,ŵ = 0) is the scaling function of the

critical Casimir force for (o,o) BCs. The universal scaling
function ϑ0(x) depends on x only; ϑ0(x) is given by the curve
in Fig. 3(b) formed by the data corresponding to ŵ = 0.25
and 0.5. We note that Eq. (12) agrees with the expansion in
Eq. (5) with a vanishing leading correction-to-scaling term.
From this we infer that the randomness induced occurrence of
the extra contribution �f to the critical Casimir force is due
to the irrelevant scaling field h (or more generally g̃ = h/cyc ).
Moreover, at large h such that 
 � L, we observe surface spin
configurations of randomly distributed frozen spins (see the
discussion at the end of Sec. II). For the corresponding CCF
one has

fC(β,L,h) � L−3ϑ((L/ξ+
0 )1/ν t,ŵ = ∞)

= L−3ϑw[(L/ξ+
0 )1/ν t], (13)

where the scaling function ϑw(x) is approximately given by
the curve in Fig. 2, which is common to the data points
corresponding to ŵ = 1 and 2. We note that for large h, the
scaling analysis, which leads to the conclusion that the disorder
is an irrelevant perturbation of the ordinary surface universality
class, does not hold.

Our findings that CCF in films are significantly influenced
by the surface disorder for L/
 ≈ 1 should actually be valid not
only for thin slabs but for all slabs in the scaling limit L � 1
and 
 = (g̃1)−1/(y1−(d−1)/2) � 1 such that L/
 is kept nonzero
and finite, which requires large values of g̃1. The present
limits of the accuracy of our data do not allow us to draw
quantitatively reliable conclusions concerning the behavior of
�f above Tc.
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FIG. 3. (Color) (a) Additivity check: rescaled difference L3
eff�f (β,L,h) as a function of the scaling variable x [see Eq. (9) and main text]

for the system size Lz = 15 and h = 1.01(8) corresponding to ŵ = 0.5. Random surface fields present only at the top (t), only at the bottom
(b) (which has to yield identical results), and on both sides of the system (t & b). The data for bottom random fields multiplied by 2 are shown
for comparison [note that 2 × b ≡ (t) + (b)]. The difference between the black and blue data highlights the lack of additivity, which leads to
stronger forces. In all plots, ŵ = h/L0.26. (b) The rescaled difference, between the case of the presence and of the absence of randomness, of
the Casimir force scaling function L3

eff�f (β,L,h)/ŵ2 of the 3d Ising model in the slab geometry as a function of the scaling variable x. The
data correspond to the same thicknesses Lz as in Fig. 2. The curves correspond to ŵ = 0.25,0.5,0.75,1,2 (from bottom to top). For ŵ > 0.75,
the error bars are smaller than the symbol size.

IV. CONCLUSIONS

The MC simulation data show that the presence of random
surfaces fields with zero mean increases substantially the
strength of the critical Casimir force as compared with the pure
case without fields. The strongest effects occur when the length
scale 
 associated with the random surface field becomes
comparable with the thickness of the film. For weak disorder,
this effect is proportional to the square of the strength of the
random surface fields. For strong disorder, the dependence of
the CCF on h levels off. For all strengths of disorder, at bulk
criticality the CCF decays asymptotically as a function of the
film thickness L as L−3, which is the same behavior as for the
pure system.

As mentioned in the Introduction, in the study of Ref. [31]
the quenched random disorder is applied only to one of the two
surfaces. Moreover, contrary to the present work, it is governed
by the binomial distribution, i.e., spins on the surface subjected
to disorder take the value 1 with the probability p and −1 with
the probability 1 − p. On the other surface, the spins are fixed
at the value +1 or −1. For p = 0.5, for which the mean value of
the surface fields vanishes, the Monte Carlo simulation data for
CCFs presented in Ref. [31] scale with the inverse third power
of the (effective) film thickness. This is interesting because
the binomial distribution used in Ref. [31] represents a sort of
“strong disorder” limit; nevertheless, the critical behavior is
still governed by the ordinary fixed point. This is consistent

with our findings. The focus of Ref. [31] has been on the
dependence of the force on p at criticality. In particular, a
scaling collapse of the MC simulation data for the scaling
function of the CCF at criticality has been obtained after
an additional scaling variable associated with the deviation
from the symmetric-point p = 1/2 has been taken into
account.

Our theoretical predictions lend themselves to being in-
vestigated experimentally and pose a challenge to further
analytic studies. The model studied here can be realized
experimentally by confining a near-critical binary mixture such
as lutidine-water by two planar walls, each of them patterned
by chemical stripes with alternating, strong preferences for
the two species of the binary liquid mixture. In the limit
of narrow stripes, these surfaces mimic the ordinary surface
universality class [22]. The random surface fields can be
realized by randomly adsorbing on these surface structures a
binary mixture of adsorbates with opposite preferences for the
two liquid species. The critical Casimir force can be obtained
by AFM where the two surfaces are those of two crossed
cylinders with large radii of curvature [54].
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2887 (1999).
[43] A. Maciołek, R. Evans, and N. B. Wilding, J. Chem. Phys. 119,

8663 (2003).
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