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Transition from isometric to stretching ridges in thin elastic films
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Isometric deformations in thin elastic films easily form ridges to connect large flat regions or facets. Depending
on the forces applied or the boundary conditions imposed, these ridges can be isometric, with no stretching or
“stretching ridges” when bending and stretching are required to relax the elastic energy. Here we study a simple
configuration to observe the transition between an isometric ridge to the well-known stretching ridge observed
in crumpled films, and obtain the parameters that determine the ridge type. Specifically, we show that the
transversal size of a stretching ridge acts as a cutoff length scale: a ridge is isometric if its width is greater than
this characteristic length.
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I. INTRODUCTION

When twisting an elastic ribbon, pulling a flap from a
film to tear it, or crumpling a film, we observe regions of
high curvature where most of the energy is localized (see
Fig. 1). Since the seminal work of Witten and Li [1], several
works have extensively studied the nature of these ridges in
crumpled structures and concluded that they account for most
of the energetic cost at low confinement [2–7]. Ridges in a
fully developed crumpled structure have a characteristic width
given by h ∼ t1/3W 2/3, where t is thickness and W is the
distance between the two ends of the ridge, or the length of
the ridge. These ridges are saddle-shaped [see Fig. 1(a)] and
are computed by a combination of bending and stretching. In
contrast to these fully “developed” stretching ridges, isometric
shapes can also show isometric ridges. The pulling and twisting
of a ribbon, as studied in Refs. [8,9], can continuously increase
the density of generators leading to ridges connecting two
flat regions with no stretching [see Fig. 1(b)]. The size of
these ridges, in an early stage of deformation, does not
follow the scaling laws of a stretching ridge and is related
to the levels of torque and force applied to the ends of the
ribbon.

To connect these two types of ridges, Witten elegantly
showed in Ref. [5] that truncating and rounding the ends of
a ridge in a crumpled structure relaxes its curvature and the
ridge becomes more isometric. Thus, the imposed curvature
at the ends of the ridge controls its shape. A similar transition
is observed when pulling a flap from a film constrained at
its boundaries when it is being torn [10–15] [see Fig. 1(c)].
For relatively small forces, the strip looks cylindrical, with
parallel generators perpendicular to the direction of pulling,
and the whole shape is isometric. The ridge width can
be easily computed by using the classical Euler’s Elastica,
which minimizes pure bending deformation. It gives hC =
2
√

WB/F , [12,13] where F is the force applied at the end of
the strip, and B is the bending stiffness of the film. As force is
increased (and tearing is prevented), the ridge starts to develop
a saddle shape, a clear sign of stretching, and therefore it is not
isometric. Here we study this configuration experimentally
and show that the ridge can be in two asymptotic states: a
cylindrical isometric shape described by the Elastica (small
force) or a nonisometric structure that responds to the scaling
laws of a stretching ridge (large force).

II. EXPERIMENTAL SETUP AND MEASUREMENTS

We attached polypropylene films (BOPP Innovia) with
thicknesses of t = 30, 50, and 90 μm to a rectangular frame,
and cut them into strips of L ≈ 0.94 m in length in order to
pull the films far from the position of the ridge. Since our films
came coiled in a tube, we laid them flat on a horizontal table
for at least one day before conducting the experiment. In every
experiment we cut strips perpendicular to the direction of the
coil in the tube to reduce the effects of natural curvature on our
samples. As well, we used the outer side of the coiled film to
face the optical system described below. The films were fairly
isotropic, with a difference in Young’s modulus of no more
than 8% between the direction of coiling and its perpendicular
direction, the second being the stiffer. The bending stiffnesses
measured, along the orientation of bending in the experiments,
were B = 0.6 × 10−5, 3 × 10−5, and 15 × 10−5 Nm, for the
t = 30-, 50-, and 90-μm films, respectively. It was possible
to adjust the frame width continuously to a range of 2 cm <

W < 20 cm to obtain good variation in ridge lengths. The
films were fixed to the frame with double-sided bonding tape
and the flaps were notched at the position of the cracks with
a 2-mm-diameter hole-puncher to avoid tearing during the
experiment. The strips were pulled at 180 degrees from the
plane of the film, which was aligned vertically in order to
control gravity effects. Displacement at the pulling end was
controlled by a stepper motor that moved at a fixed speed
of 0.01 mm/s and a Futek force sensor was attached to the
pulling point to track the force. An optical system was mounted
to measure the curvature R along the ridge. To measure the
maximum width of the ridge h we used a mirror placed below
the ridge, oriented at 45 degrees from the direction of pulling
(see Fig. 2). The area near the ridge was painted white to
increase the contrast of the images [16].

Typical experimental curves for the transversal width h

are given in Fig. 3. The ridge shape was symmetrical with
respect to the plane y-z and its width decayed with the force
until a plateau was reached where the ridge geometry changes
slightly with the force (h ∼ F−α , with α � 0.1). With a further
increase in the force the ridge became asymmetrical and the
strip as a whole was stretched. We managed to pull the samples
up to a maximum force of F � 2 kgf, at which point fracture
was unavoidable given the small size of the notches used.
The size of the ridge in this slightly varying region was
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FIG. 1. Different configurations where a ridge emerges.
(a) Pinching a sheet at two ends produces the classical saddle shape
characteristic of a stretching ridge. (b) When stretching and twisting
are applied to an elastic ribbon the shape can be described as flat facets
connected by ridges. (c) Tearing a sheet by pulling a flap produces a
narrow region of high curvature.
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FIG. 2. Setup description. A film with a flap is attached to a
framework and pulled along the vertical direction. The optical system
in front of the system captures the geometry of the ridge. The camera
view shown in the inset gives the shape of the ridge when pulling is
applied. The length of the ridge W , its width h, and the longitudinal
curvature R are defined in the figure.
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FIG. 3. A typical experimental curve for t = 50 μm and W =
10 cm, where the ridge size h (gray squares, right ordinate axis)
and longitudinal curvature 1/R (black squares, left ordinate axis) are
tracked as force (in kilogram force) is increased. These variables are
very sensitive to the force when gently pulling and reach the values
h∞ and 1/R∞ for F ≈ 0.5 kgf. The insets show photographs of the
ridge (front and bottom view) shape for specific values of the force.

defined as h = h∞ for F ≈ 0.5 kgf, a force where the ridge
shape remained symmetrical throughout our experiments.
Similarly, the longitudinal curvature 1/R increased from zero
to a constant value 1/R∞, showing that the ridge bends in
the longitudinal direction for large forces. We show in the
following sections that the rapid change in ridge geometry
with force is explained by assuming a cylindrical ridge and
modeling its deformation with the Elastica. Contrastingly, the
asymptotic state is a static structure that follows the scaling
laws of a stretching ridge. We finally show that the transition
reveals the competition between these two solutions to relax
the elastic energy in the ridge.

III. CYLINDRICAL RIDGE

Since for small forces the ridge is cylindrical (see Fig. 2),
we expect that its shape can be explained by using the Elastica
(see Appendix) with one boundary clamped at s = 0, the other
end at s = L, and a constant vertical force applied F ŷ. The
analysis is very simple if gravity is neglected: the size of
the ridge must be given by h = hC . Thus, size decays with
force according to the power law h ∼ F−1/2 with the force.
However, because the applied force is small at the beginning
of the experiment, gravity and the total length L of the system
play an important role in describing the size of the ridge.
We define the dimensionless applied force f = FL2/BW

and the dimensionless mass m = MgL2/BW , where M is
the total mass of the film, so that the ridge size must be
given by a dimensionless relation h/L = �(f,m). Note that
the dimensionless mass does not depend on the width W of
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FIG. 4. Log-log showing h as a function of the force applied for
three different values of thickness. The solid line corresponds to the
cylindrical approximation hC/L = 2/

√
f obtained for m = 0. The

large amount of data for each thickness corresponds to experiments
with different values of ridge length W increasing from 2 to 20 cm
in intervals of 1 cm. The gray scale shows the ridge length: darker
values corresponding to larger values of W .

our strips, so that for experiments with a fixed length L, the
parameter varies only because of thickness. Unexpectedly, the
effect of mass becomes more important for thinner films since
m ∼ t−2 for an isotropic material where B = Y t2/12(1 − ν2)
[17]. Here Y is the two-dimensional Young modulus and ν

the Poisson ratio of the film. Figure 4 shows that thinner
films depart more from the value h = hC . Thus, for a given
dimensionless force f , the ridge width is greater for thinner
films since weight is relevant and counterbalances the pulling
force in our setup.

The data for a small force in Fig. 4 falls into three different
groups that are related to the three thicknesses used in our
experiments. However, the range in the results for a small
force in each group is greater for thinner films, showing that
small variations in the dimensionless mass (like the paint we
used near the ridge to visualize its geometry) can have an
important effect on the data. To correct these variations we
weighed the samples after each experiment and computed
their dimensionless mass m. For example, for the films of
ridge length W = 20 cm and thicknesses of t = 30, 50, and
90 μm, we measured m ≈ 4.3 × 104, 1.3 × 104, 4.7 × 103,
respectively. We expected that the first correction to the effect
of the weight would be captured by the translation f → f̄ =
(f − m) for small values of m. Here, f̄ is the effective pulling
force, so that the force decreases by m. Accordingly, the size
of the ridge is given by the corrected formula hC/L = 2/

√
f̄ .

Figure 5 shows that the data can be collapsed for small forces
by using the effective force f̄ . The remaining variation in the
data for a small force is explained by a second regime observed
when f ≈ m. In that case, the pulling force is so small that
it just balances gravity, and the ridge size is dictated by the
elastogravity length �g = (BWL/Mg)1/3 [18]. A more precise
analysis of the Elastica containing this gravity dominated
regime is given in the Appendix.

For large forces, the prediction obtained with the Elastica
approximation is no longer valid. As we show in Fig. 3, the
ridge width reaches an asymptotic state that cannot be captured
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FIG. 5. Data corrected by using the dimensionless mass measured
for each sample. The solid line corresponds to the approximation
hC/L = 2/

√
f̄ , where f̄ = f − m.

by the cylindrical approximation, which is a monotonically
decreasing function of force.

IV. STRETCHING RIDGE

We now analyze the asymptotic state obtained for a large
force and recognize it as a stretching ridge. Stretching ridges
have been intensively studied and described in Refs. [1–4];
however, we are not aware of any experimental work studying
their characteristic scaling laws even though stretching ridges
were first reported in the mid-1990s. The main geometrical
results for the ridge are given for the two radii of curvature
R‖ and R⊥, longitudinal and transversal to the ridge. For a
stretching ridge R‖ ∼ t−1/3W 4/3 and R⊥ ∼ t1/3W 2/3; hence,
the inverse of the Gaussian curvature at the center of the
ridge, strikingly, does not depend on thickness and scales like
(R‖R⊥) ∼ W 2 (negative).

We have direct access to the longitudinal curvature of the
ridge in our experiment because R∞ ≈ R‖ and we expect
the width of the ridge to be proportional to the transversal
curvature, or h∞ ≈ 2R⊥. Therefore, we can check if the
ridge becomes a stretching ridge by studying these two length
scales for a large force as a function of the length W and
thickness t . Figure 6 shows the transversal and longitudinal
curvatures for different values of ridge length and thickness.
More importantly, the range of values of ridge width observed
in Fig. 5 for large forces can be understood by using the scaling
laws of a stretching ridge. The transversal and longitudinal
radii of curvature can be made to collapse to the relations h∞ ≈
0.78 t1/3W 2/3 and R∞ ≈ 0.83 t−1/3W 4/3. And the inverse of
the Gaussian curvature follows even more closely the scaling
predicted for a stretching ridge h∞R∞ ≈ 0.65 W 2 (see Fig. 6
inset).

Note that the von Kármán number W/t in our experiments
covers the range [222 < W/t < 6666], which includes smaller
values than the range 3000 < W/t , where previous numerical
works [3,19] predicted the scaling laws for a stretching ridge to
emerge [20]. However, the same authors have made clear that
this range is sensitive to the specific configuration in which a
ridge is studied.

Although the prefactors for the scalings describing the
geometry of a stretching ridge are not universal, we can
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FIG. 6. Log-log showing the experimental values of h∞ (left
ordinate axis) and R∞ (right ordinate axis) as a function of W for
three thicknesses t = 30 μm (©), 50 μm (�), and 90 μm (�). These
values are made to collapse by using the scaling laws of a stretching
ridge: the solid lines correspond to the fits t−1/3h∞ ≈ 0.78 W 2/3 and
t1/3R∞ ≈ 0.83 W 4/3. Inset: The inverse of the Gaussian curvature for
the asymptotic state, h∞R∞, as a function of the ridge width. The
solid line follows the scaling h∞R∞ ≈ 0.65 W 2.

compare the experimental results with the numerical scaling
for the transversal curvature provided in Ref. [3]. For a
rectangular strip bent by normal forces it is obtained W/R⊥ ≈
0.4 α4/3λ−1/3, where λ = (B/Y )1/2/W [21]. Here π − 2α

gives the “dihedral angle” or the angle between the two flat
planes defining the ridge. Since for our system α = π/2 and
ν ≈ 1/3, the numerical scaling predicts the relation h∞ ≈
1.8 t1/3W 2/3, which falls above the scaling obtained from our
experiments.

V. THE TRANSITION

The ridge can be in one of two asymptotic states. However,
the condition that transforms a cylindrical ridge into a
stretching ridge is still not understood. A simple tabletop
experiment proposed by Witten in Ref. [5] made by truncating
and rounding the ends of a ridge to the radius of curvature
R0 shows that for R0 ∼ R⊥ a stretching ridge relaxes to have
parallel generators, hence stretching decreases. In our case we
expected a similar transition to be obtained when the radius
of curvature dictated by the Elastica approximation is of the
same order as the size of the stretching ridge or hC ∼ h∞.
Thus, if the size of the ridge given by the Elastica, hC , is
greater than that of a stretching ridge, the ridge will prefer
to maximize its size (and minimize its curvature) to the value
given by the isometric state. In contrast, if hC is smaller than the
stretching ridge, the ridge will relax its energy (and minimize
its curvature) by increasing its size in the middle to h∞.

The balance hC ∼ h∞ gives a critical force for the transition

F∗ = 4
BW

h2∞
= k

B

t2/3W 1/3
, (1)

1.0

10.0
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FIG. 7. The same data as described in the legend of Fig. 5 rep-
resented in the dimensionless variables suggested by the asymptotic
behavior for small and large forces. The solid line corresponds to the
fit h/h∞ = (2/

√
x − 1)e−x/4 + 1, where x = (h2

∞/L2)f̄ .

where F∗ is the effective pulling force and k ≈ 6.6. Note that
this is equivalent to assuming the general fit h = [2L/

√
f̄ −

h∞]e−f̄ /f̄∗ + h∞, with f̄∗ = F∗L2/BW , which captures the
asymptotic behavior for small and large forces [22]. Using the
definition of the critical force, we obtain that the ridge width is
given by the simple relation h/h∞ = (2/

√
x − 1)e−x/4 + 1,

where x = (h2
∞/L2)f̄ . Figure 7 shows that the proposed fit

works well for describing the transition from a cylindrical to
a stretching ridge. Moreover, the figure shows the validity of
the model fit. There is a slight departure of the data from the
cylindrical approximation for a small force, which is due to the
gravity dominated regime (see Appendix), and a decreasing h

is exposed in the large force limit because of the still varying
ridge shape.

VI. CONCLUSIONS

Relation Eq. (1) provides a useful way to know when an
isometric description is no longer valid. Although it is obtained
for the specific configuration given in Figs. 1(c) and 2, it rests
on the general idea that the isometric approximation near a
ridge is valid if the radius of curvature imposed by boundary
conditions or forces is larger than the size of a stretching
ridge. Thus, h∞, a length dictated by elasticity, acts as a
cutoff length scale. Since this length increases with system
size (h∞ ∼ W 2/3), or equivalently, the critical force decreases
for larger values of W (F∗ ∼ W−1/3), it is reasonable to assume
an isometric solution for smaller systems or smaller applied
forces in a displacement- or force-controlled experiment,
respectively.

Our results can be applied to understanding how energy
is stored before tearing in a configuration as in Fig. 2. This
observation is relevant for tearing experiments where the force
is of the order F ≈ γ t , where γ is the work of fracture
of the material. We expect to observe an isometric ridge
for small samples (F < F∗) during tearing. Moreover, since
�c = γ t/Y is similar to an elastocapillary length and has
the order �c ≈ 1 μm for typical polymer films [12,13], we
predict the isometric approximation to be valid during tearing
for a ridge length smaller than W∗ = t[p t/�c]3, where p =
k/12(1 − ν2) ≈ 0.6. It yields W∗ ≈ 1.3 m! for a packaging
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film of t = 50 μm. Therefore, the understanding of tearing
of these films in practical applications must be made in the
framework of isometrically deformed films. In this regard we
are puzzled by recent works that explain tearing in thin films
by using a stretching ridge to account for the elastic energy
distribution during fracture [14,15,23].

An analytical approach connecting these two asymptotic
states and describing the transition in an equivalent or similar
configuration is much needed. Previous theoretical works
studying stretching ridges have been made in the context of
approximations of large deflection but with small slopes using
the Föppl-von Kármán equations. However, here we have an
example where the theoretical framework that accounts for
large displacements in isometric deformations needs to be
amended by a theory explaining the emergence of stretching
ridges.
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APPENDIX: THE ELASTICA APPROXIMATION

In the Elastica approximation the problem is reduced to
solve the equilibrium equations [24]

Ṫ + K = 0, (A1)

Ṁ + t × T = 0, (A2)

where K is the external force per unit of line of the strip, T and
M are the force and moment in the cross section, respectively,
and t is the tangent to the centerline. We use the notation (·̇) =
d/ds(·). For our problem K = −σWgŷ, where σ = M/WL

is the density of mass per unit of area so that an integration of
the first equation gives T = [F − σWg(L − s)]ŷ − Rx̂. Here
F and R are the forces applied at the far end to keep the strip
attached to the force sensor. Since we measure the vertical
component of the force, the pulling force F is known.

We use the Bernoulli-Euler relation between moments
and curvature, M = BWφ̇ẑ [25], and the kinematic relation
t = sin φx̂ − cos φŷ (see Fig. 8) to obtain an equation for the
angle φ,

BWφ̈ + [F − σWg(L − s)] sin φ − R cos φ = 0, (A3)

where the position of the coordinates (x,y) are given by

ẋ = sin φ ẏ = − cos φ. (A4)

Equations (A3) and (A4) have been extensively studied in
Ref. [18] in connection with the problem of hair shape,
so that here we limit our analysis to solving the equations
numerically for the relevant boundary conditions (BCs) used
in the experiment. The strip in our experiment was clamped at
both ends, so then the appropriate BCs are x = y = φ|s=0 = 0,
x|s=L = 0, and φ|s=L = π . Since we have 5 BCs, the fourth-
order ODE gives the value of the unknown force R.
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FIG. 8. Numerical simulation of Eqs. (A3) and (A4). Top inset
shows the ridge size in the coordinates f̄ − h/L used in Fig. 5. The
dashed, dot-dashed, and dotted lines correspond to the dimensionless
masses m = 103, 104, 105, respectively, that covers the relevant
values used in our experiments. The main figure shows the collapse of
the curves when using the coordinates μ − h/�g . The solid lines give
the cylindrical approximation hC/L = 2/

√
f̄ and hC/�g = 2/

√
μ in

both figures. The lower inset gives a schematic of the ridge shape
projected in the plane x-y.

The scaling of the vertical and horizontal coordinates, and
the arclength by the elastogravity length �g gives a simplified
equation,

φ̈ + (f − m)

m2/3
sin φ + s̄ sin φ − k cos φ = 0, (A5)

where s̄ = s/�g is the dimensionless arclength and k ≡
RL2/BW , the eigenvalue, represents the unknown horizontal
force. The scaling shows that an important dimensionless
parameter is μ ≡ (f − m)/m2/3. However, the pulling end
is at the position s̄ = L/�g = 1/m1/3 that adds a new dimen-
sionless parameter to the problem. Since �g is of the order
of centimeters (or less) in our films, we have L � �g or
m1/3 � 1. It also shows that the exact BCs at the pulling
position, or equivalently the parameter m in this description,
are not very important in the determination of the ridge size
and we could expect a relation of the form h/�g = �(μ).
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FIG. 9. The data in the dimensionless variables μ − h/�g . The
dotted line corresponds to the numerical simulation for m = 105 and
the solid line to the approximation hC/�g = 2/

√
μ.
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Figure 8 inset gives the ridge size in the coordinates f̄ −
h/L showing that the scaling hC/L = 2/

√
f̄ works well for

large force but it is not correct for f − m ≈ 0. The ridge sizes
converge in that limit to different values depending on the
specific value of m. The figure also shows that for the range
m ∼ 103−105 a crossover from the ridge size dominated by
hC to the ridge size dictated by the elastogravity length must be
observed when the parameter f̄ is f̄ ∼ 103−104. Therefore,
we expect the data at the extreme left side of Fig. 5 to be in the
crossover region. This explains also the separation from the
cylindrical approximation of the data for small force in Fig. 7.

The numerical curves in Fig. 8 inset can be collapsed when
using coordinates μ − h/�g (see Fig. 8). It shows that the
ridge size in the Elastica approximation is controlled by the
dimensionless parameter μ for small and large force. Figure 9
shows the experimental data when using μ as parameter. The
collapse is very good for small force and for the films of
thicknesses t = 50 and 90 μm, but this is not the case for our
30-μm films. These films are more sensitive to variation in
bending stiffness and nonuniform distribution of mass due to
the painting process [16]. In fact, an increase of the bending
stiffness to 30–40% makes the data for the 30-μm films
approach the numerical curve of Fig. 9 for small force.
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