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In this paper diffuse interface models of surfactant-assisted liquid-liquid phase separation are addressed. We
start from the generalized version of the Ginzburg-Landau free-energy-functional-based model of van der Sman
and van der Graaf. First, we analyze the model in the constant surfactant approximation and show the presence
of a critical point at which the interfacial tension vanishes. Then we determine the adsorption isotherms and
investigate the validity range of previous results. As a key point of the work, we propose a new model of the van
der Sman/van der Graaf type designed for avoiding both unwanted unphysical effects and numerical difficulties
present in previous models. In order to make the model suitable for describing real systems, we determine the
interfacial tension analytically more precisely and analyze it over the entire accessible surfactant load range.
Emerging formulas are then validated by calculating the interfacial tension from the numerical solution of the
Euler-Lagrange equations. Time-dependent simulations are also performed to illustrate the slowdown of the phase
separation near the critical point and to prove that the dynamics of the phase separation is driven by the interfacial
tension.
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I. INTRODUCTION

Adding surfactants, i.e., interface active agents, to binary
systems consisting of two immiscible fluids may effectively
reduce the interfacial tension, thus leading to the formation of
emulsions [1]. Emulsions play an important role in everyday
life [2], ranging from medical issues [3,4] and pharmaceutical
materials [5], through cosmetics and food processing [6],
to crude oil recovery [7,8]. The latter has continuously
increasing industrial importance: It has been discovered
that alternating water and CO2 injection is a significantly
more efficient enhanced oil recovery technique than injecting
exclusively water or CO2 [9,10], predicting the water/CO2

emulsion to be an effective material for oil recovery. Some
of the possible emulsifiers are promising candidates to form
water/hydrocarbon emulsions as well, thus further increasing
the recovery rate significantly. This concept would also be
economically more advantageous than conventional aquifer
CO2 sequestration.

The dynamics of emulsion formation is governed by the
microscopic properties of the surfactant-loaded liquid-liquid
interface, which can be addressed by atomistic simulations.
Molecular dynamics simulations provide data on the interfacial
properties of the two-phase system on the microscopic level.
These data can be then used as input for continuum de-
scriptions addressing mesoscale phenomena. Diffuse interface
theories are one branch of continuum theories working with
space and time continuous order parameter fields. Some of
them are based on the Ginzburg-Landau theory of first-order
phase transitions. Such descriptions originate from Gompper
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and Zschocke [11] and Theissen and Gompper [12]. The latter
address fluid-flow-assisted spontaneous emulsification of the
oil/water system, while the model of Teramoto and Yonezawa
[13] has been successfully used to describe droplet growth
dynamics in the same system. Despite their success, these
relatively simple phenomenological approaches lack realistic
Langmuir and Frumkin adsorption isotherms, therefore, a
new, more realistic formulation was necessary. The most
widespread version of Ginzburg-Landau-based surfactant
models was published by van der Sman and van der Graaf
[14], based on the regularization of the surface Dirac δ function
of the sharp interface model of Diamant and Andelman [15].
The theory captures the essential effects of surfactants, in par-
ticular, the lowering of the interfacial tension with increasing
surfactant load, and provides promising preliminary results for
surfactant-laden droplet dynamics in sheared flow. A similar
approach was published by Teng, Chern, and Lai [16]. Liu and
Zhang [17] introduced a generalized model by extending the
van der Sman/van der Graaf model with additional free energy
terms accounting for lateral interaction between adjacent
surfactant layers, as well as asymmetry in bulk fluids. The
new model has been successfully applied to describe the
influence of a nontrivial phenomenon, the Marangoni effect
generated by the inhomogeneous interfacial tension on droplet
dynamics. A comparative study of the aforementioned models
was published by Li and Kim [18]. Despite their efforts, the
models still suffered from some unphysical properties, such
as decreasing interface width with increasing surfactant load.
To avoid the problem, Yun, Li, and Kim [19] introduced a
nonvariatinal formalism of the dynamic equations, however,
the surfactant-free solution is no longer present in the new
model. Nevertheless, they have also successfully addressed
the Marangoni effect on droplet dynamics. A different method
of fixing interface-related problems has been proposed by
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Engblom and coworkers [20]. Besides the unphysical behavior
of the interface width, the authors gave strong evidence that
the partial differential equation (PDE) problem has no solution
in physically relevant circumstances. In order to handle
this problem, different surfactant couplings were proposed
and analyzed, revealing that the decreasing tendency of the
interface width can be reversed together with termination of the
instability of the PDE system. This important finding opened
the possibility of developing physically consistent diffuse
interface models: When, in a two-phase liquid/surfactant
system, the interfacial tension tends to 0 at a finite surfactant
load, the phase separation critically slows down, thus a
mechanically stable emulsion can form. This phenomenon has
not yet been addressed as a function of the surfactant load
and necessitates a detailed analysis of the interfacial tension.
Finally, we mention that other, nonvariational, non-Ginzburg-
Landau-based descriptions have also been developed, such
as the one by Teigen and coworkers [21] addressing droplet
breakup and coalescence.

The paper is structured as follows. In Sec. II we intro-
duce a generalized van der Sman/van der Graaf–type free
energy functional with the corresponding equilibrium (Euler-
Lagrange) and dynamic equations. In Sec. III we analyze
the equilibrium solutions: first, using the constant surfactant
field approximation, we present simple analytical calculations
for the interfacial tension, interface width, and speed of
phase separation in the different variants of the model and
show how the critical point (i.e., a critical surfactant load
at which the interfacial tension vanishes) enters the model.
Considering the result we propose a new version of the model
in which the surfactant load dependence of the interface width
cancels, establishing numerical efficiency. Next, we investi-
gate the existence of the pure (surfactant-free) solution and
calculate the adsorption isotherms, then carry out more precise
analytical calculations to estimate the interfacial tension as a
function of the surfactant load and analyze the behavior of the
model at small surfactant loads and also near the critical point.
In the first part of Sec. IV we briefly discuss the numerical
methods used in solving the Euler-Lagrange equations and the
dynamic equations. This is followed by numerical validation
of the analytical formula for the interfacial tension. We also
perform time-dependent simulations and verify the location
of the critical point, together with analyzing the surfactant
load dependence of the phase separation speed. In Sec. V we
summarize the results.

II. THE MODEL

A. Free energy functional

Following van der Sman and van der Graaf the free energy
of an inhomogeneous binary fluid + surfactant system is
written as [14]

F =
∫

dV {F[φ(r,t),ψ(r,t)]}, (1)

where φ(r,t) is the liquid-liquid order parameter and
ψ(r,t) the volume fraction of the surfactant. The integrand

reads

F = FCH + Fψ + F1 + Fex,

where

FCH = w g(φ) + κ

2
(∇φ)2,

Fψ = w

β
[ψ log ψ + (1 − ψ) log(1 − ψ)] − w

c

2
ψ2,

F1 = −ψ

[
λ1 w g(φ) + λ2

κ

2
(∇φ)2

]
,

Fex = w

(
a

2
φ2 − eφ

)
ψ.

Here FCH is the Ginzburg-Landau free energy density of an
immiscible Cahn-Hilliard fluid, where g(φ) is a double-well
function g(φ) = (1/4)(1 − φ2)2. The logarithmic term in Fψ

is the ideal part of the entropy of mixing, while the term
−w(c/2)ψ2 represents the energy associated with the lateral
interaction between adjacent surfactant layers [17]. F1 is a
general linear coupling between the liquid-liquid interface and
the surfactant field, emerging from the regularization of the
surface Dirac δ function [20]. Finally, Fex accounts for the
extra energy due to the presence of the surfactant in the bulk
phases [17]. Contrary to the work of Engblom et al. [20], we do
not consider a coupling term ∝ψ[φ(1 − φ)] in F1, since it is
equivalent to ∝ψφ2 inFex. Note that the only asymmetric term
of the free energy functional is −weφψ , being responsible for
different equilibrium mole fractions of the surfactant in the
bulk phases.

The parameters w and κ are related to measurable mi-
croscopic quantities, such as the interfacial tension (σ0) and
interface width (δ0), of the surfactant-free equilibrium liquid-
liquid interface via

w = (3/2) (σ0/δ0) and κ = (3/4) (σ0 δ0). (2)

The interface width is defined by the planar interface solution
of the CH model φ∗(x) = tanh(x/δ0), while the interfacial
tension is associated with the parameters via the integral σ0 =∫ +∞
−∞ dx{FCH[φ∗(x)]}. The parameters related to the presence

of the surfactant are interpreted as follows: w/β = (RT )/v0,
where v0 is the average molar volume of the system, R the gas
constant, and T the temperature. The model parameter β−1

then reads

β−1 = 2

3

RT

v0

δ0

σ0
. (3)

Furthermore, the model parameter a is responsible for the
exclusion of the surfactant in the bulk phases, while λ1 and
λ2 control the coupling of the surfactant at the liquid-liquid
interface. Introducing the length scale

λ =
√

κ/(2 w) = δ0/2

and the free energy scale H = w λD , where D is the spatial
dimensionality of the problem, results in

F̃ =
∫

dṼ {F̃CH + F̃ψ + F̃1 + F̃ex}, (4)
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with

F̃CH = g(φ) + (∇̃φ)2,

F̃ψ = β−1[ψ log ψ + (1 − ψ) log(1 − ψ)] − c

2
ψ2,

F̃1 = −ψ[λ1 g(φ) + λ2(∇̃φ)2],

F̃ex = ψ

(
a

2
φ2 − eφ

)
.

Note that the dimensionless surfactant-free interfacial tension
and interface width became

σ̃0 = 4/3 and δ̃0 = 2,

respectively.

B. Euler-Lagrange equations

The equilibrium solutions represent extrema of the free
energy functional with respect to the variables and can be
obtained from the Euler-Lagrange equations,

δF̃

δφ
= μ̃φ and

δF̃

δψ
= μ̃ψ , (5)

where δF̃ /δφ and δF̃ /δψ denote the functional derivatives of
F̃ with respect to φ and ψ , respectively:

δF̃

δφ
= (1 − λ1 ψ)(φ3 − φ) + (a φ − e)ψ

− 2∇̃[(1 − λ2ψ)∇̃φ], (6)

δF̃

δψ
= 1

β
log

(
ψ

1 − ψ

)
− c ψ + f̂ [φ]. (7)

Here the operator f̂ [φ] reads

f̂ [φ] = −[λ1 g(φ) + λ2 (∇̃φ)2] +
(

a

2
φ2 − e φ

)
. (8)

Furthermore, μ̃φ = (δF̃ /δφ)|φ−,ψ− and μ̃ψ = (δF̃ /δψ)|φ−,ψ−

are constant background potentials corresponding to the
homogeneous background states φ(r) ≡ φ− and ψ(r) ≡ ψ−.
The planar equilibrium interface solution φ∗(x̃), ψ∗(x̃) can be
obtained by solving the one-dimensional (1D) Euler-Lagrange
equations with the boundary conditions

φ∗(x̃ → ±∞) → φ±, ψ∗(x̃ → ±∞) → ψ±,

[dφ∗(x̃)/dx̃]x̃→±∞ = [dψ∗(x̃)/dx̃]x̃→±∞ → 0,

where φ± and ψ± can be determined as a function of the
surfactant load (ψ0) from the equilibrium conditions (see
Sec. III B).

C. Dynamic equations

The time evolution of the system is governed by a simple
diffusion dynamics,

τφ

∂φ

∂t
= ∇2 δF

δφ
,

τψ

∂ψ

∂t
= ∇ ·

[
M̃(φ)ψ(1 − ψ)∇ δF

δψ

]
,

where the term ψ(1 − ψ) in the second equation is necessary to
achieve a regular diffusional equation for ψ in the bulk phases,
while M̃(φ) ∈ [0,1] prescribes the relative mobility of ψ in
the different phases and across the interface. The relaxation
times τφ and τψ can be related to diffusion coefficients
as follows: Taking the first equation for ψ(t,t) ≡ 0 yields
∂tφ = Dφ∇2[(φ3 − φ) − (κ/w)∇2φ], where Dφ = w/τφ is
the diffusion coefficient of the phase separating liquid. Note
that this is just half of the real diffusion coefficient D0,
since we have to take the equation for φ = ±1 + δφ, where
|δφ| 	 1, yielding the real diffusion equation ∂t δφ = D0∇2δφ

with D0 = 2Dφ . Besides, in a bulk phase (φ ≡ ±1) the
second equation of motion results in ∂tψ = Dψ∇2ψ (if
cψ 	 β−1 log[ψ/(1 − ψ)]), where Dψ = β−1(w/τψ ) is the
diffusion constant of the surfactant. Introducing the time scale

τ = λ2 τφ

w
= δ2

0

2D0

results in

∂φ

∂t̃
= ∇̃2 δF̃

δφ
, (9)

τ̃ψ

∂ψ

∂t̃
= ∇̃ ·

[
M̃(φ)ψ(1 − ψ)∇̃ δF̃

δψ

]
, (10)

where

τ̃ψ = β−1

2

D0

Dψ

. (11)

For the sake of simplicity, we do not use tildes hereafter.

III. ANALYSIS

First, we analyze the equilibrium properties of the model.
We calculate the interfacial tension as a function of the
surfactant load in the constant surfactant field approximation,
i.e., when the spatial variation of the equilibrium emulsifier
profile is neglected. We show how the critical point (i.e., where
the interfacial tension vanishes) enters the model, determine
the interface width and the dynamic factor (the speed of phase
separation), and show how these quantities behave for different
surfactant couplings. Next, we analyze the existence criterion
of the surfactant-free solution and the adsorption isotherms
as a function of the critical point. Finally, we give a precise
analytical approximation for the interfacial tension in a variant
of the model in which the surfactant load dependence of the
interface width is canceled.

A. Constant surfactant field approximation

Following the method of Engblom et al. [20], first we
study the model in the constant surfactant field approximation.
The simplest case is when the model is symmetric (i.e.,
e = 0). Since in this case the equilibrium planar interface is
represented by an odd function, μφ = 0 [20]. Therefore, one
can write φ± = ±φ0 and ψ± = ψ0. φ0 can be determined as a
function of ψ0 from Eq. (6) by introducing φ := φ0φ̂ so that φ0

represents the bulk equilibrium value of φ. Setting x → ±∞,
where φ̂ = ±1, then yields

φ2
0 = 1 − (λ1 + a)ψ0

1 − λ1 ψ0
. (12)
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Note that Eq. (12) is exact for e = 0, and this suggests a critical
point,

ψc = 1

λ1 + a
, (13)

at which φ0 vanishes (as long as a 
= 0), i.e., no phase
separation occurs. Since ψc is only the function of λ1 and
a, and does not depend on the particular form of Fψ , the
critical point exists in the models of Theissen and Gompper
[12], van der Sman and van der Graaf [14], Liu and Zhang
[17], Li and Kim [18], Engblom et al. [20], and Yun et al. [19].
Using Eq. (12) and taking ψ(x) ≡ ψ0, Eq. (6) simply becomes
the Euler-Lagrange equation of a CH model, φ̂3 − φ̂ = 2 ∂2

x̂ φ̂,
with the rescaled length x = ξ x̂, where

ξ 2 = 1 − λ2 ψ0

1 − (λ1 + a)ψ0
, (14)

and the planar interface solution can be approximated as

φ∗(x) = φ0 tanh[x/(2ξ )]. (15)

Similarly to the Euler-Lagrange equation, using the constant
surfactant approximation in the dynamic equation described
by Eq. (9) yields ∂t̂ φ̂ = ∇̂2[g′(φ̂) − 2∇̂2φ̂] with the rescaled
time t = t̂/s, where the dynamic factor (defined as the inverse
of the time scale) reads

s = 1 − (λ1 + a)ψ0

ξ 2
. (16)

The speed of the phase separation can be considered as v =
d(L/ξ )

dt
, where L is the characteristic wavelength of the pattern.

Therefore, using the scales yields v = sv̂; i.e., the speed of
phase separation is proportional to s. In the constant surfactant
field approximation the interfacial tension reads

σ =
∫ +∞

−∞
dx{F[φ∗(x)] − F0}, (17)

where F[φ∗(x)] is the integrand of Eq. (4) evaluated for
Eq. (15) and ψ∗(x) = ψ0, while F0 = F[φ∗(x),ψ∗(x)]x→−∞.
The relative interfacial tension then reads

κ := σ

σ0
= ξφ2

0 [1 − (λ1 + a)ψ0], (18)

where σ0 = 4/3 is the interfacial tension of the surfactant-free
system. Note that Eqs. (16) and (18) report that both the
phase separation speed and the interfacial tension vanish at
the critical point. Figure 1 shows the relative interface width
[ξ = (1 − dψ0)yξ ], the dynamic factor [s = (1 − dψ0)ys ], and
the relative interfacial tension [κ = (1 − dψ0)yκ ] as a func-
tion of the surfactant load in the constant surfactant field
approximation for different surfactant field couplings (see
Table I) in the case of λ1 + λ2 � a and for ψc < 1. In this
case the surfactant load dependence of the interface width
is significant: The original model using the regularization
of the surface Dirac δ function (∇φ)2 results in unphysical
behavior; namely, the interface width vanishes together with
the divergence of the speed of phase separation. In contrast,
the regularization proposing g(φ) gives a more physical result,
since the speed of phase separation decreases with decreasing
interfacial tension together with increasing interface width.
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FIG. 1. (Color online) Relative interface width, phase separation
speed (dynamic factor), and interfacial tension as a function of the
surfactant load in the constant surfactant field approximation in
the case of (a) the pure gradient (λ1 = 0, λ2 = d), (b) the fourth-
order polynomial (λ1 = d , λ2 = 0), and (c) the proposed (λ1 = d ,
λ2 = a + d) surfactant field couplings. (See also Table I.)

Unfortunately, however, the critical point is practically inac-
cessible numerically, because of the divergent interface width:
even an infinitesimal difference in the surfactant load can
result in orders of magnitude change in the interface width.
To resolve this problem, we propose a variant of the model
where λ1 = d and λ2 = a + d, yielding a constant interface
width, independen of the model parameters a, d, c, and β.

TABLE I. Exponents of the relative interface width [ξ = (1 −
d ψ0)yξ ], dynamic factor [s = (1 − d ψ0)ys ], and relative interfacial
tension [κ = (1 − d ψ0)yκ ] in the case of λ1,λ2 � a and ψc � 1 for
different surfactant couplings.

λ1 λ2 yξ ys yκ

0 d 1/2 −1 1/2
d 0 −1/2 2 1/2
d a + d 0 1 1
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Thus, the entire ψ0 = 0 . . . ψc range becomes accessible in
one single simulation, which becomes important when one
wants to address the migration of the surfactant from loaded
places to empty regimes, for example.

B. Adsorption isotherms

1. Existence of the ψ ≡ 0 solution

Considering Eq. (7) it is obvious that δF/δψ = μψ is an
algebraic equation, yielding the 1D equilibrium profile ψ∗(x)
in the implicit form

ψ∗(x) = ψ−

ψ− + (1 − ψ−) exp{β �f̂ [φ∗(x)] − c �ψ∗(x)} ,

(19)

where �ψ(x) = ψ∗(x) − ψ− and

�f̂ [φ∗(x)] = f̂ [φ∗(x)] − f̂ [ψ−]. (20)

Note that ψ∗(x) ≡ 0 is a solution of Eq. (19), since
ψ− = �ψ∗(x) = 0, and β�f [φ∗(x)] is bounded for φ∗(x) =
tanh(x/2). In contrast, this does not apply for models con-
taining no ideal mixing term in Fψ : In the model of Theissen
and Gompper δF/δψ = sψ − gψ∇2ψ + f̂ [φ] with f̂ [φ] =
γ1φ

2 + γ2l
2(∇φ)2 + γ3l

4(∇2φ)2 [12], yielding the 1D Euler-
Lagrange equation f̂ [φ∗(x)] = f̂ [φb] for the surfactant-free
solution φ∗(x) = φb tanh(x/ξ ). Since γ1,2,3 can be arbitrary,
f [φ∗(x)] = f̂ [φb] does not apply in general, therefore, the
surfactant-free equilibrium planar interface is not a solution of
the problem in principle. The derivation can be repeated in the
case of the model of Li and Kim [18], yielding dφ∗(x)/dx = 0
for the surfactant-free planar interface φ∗(x) = tanh(x/ξ ),
which is definitely not true. These cases shed light on a
general problem: The reduction of the free energy functional
to the CH model is necessary but not sufficient for the
surfactant-free planar interface to be the solution of the general
model in the case of ψ ≡ 0. The reason for this is that first
reducing the free energy, then solving the Euler-Lagrange
equation(s) is identical to a conditional extremum problem,
but a conditional extremum is not necessarily the extremum
of the general problem at all. Finally, we mention that this
discrepancy resulted in unrealistic adsorption isotherms in
the aformentioned models, where the adsorbed amount of
surfactant at the interface does not vanish even for zero far-field
surfactant load.

2. Langmuir and Frumkin adsorption isotherms for c = 0

Besides ensuring the existence of the pure equilibrium
planar interface solution, Eq. (19) plays one other important
role: for e = 0 and c = 0 the adsorption isotherm reads

ψa(ψ0) = ψ0

ψ0 + (1 − ψ0) exp[β θ (ψ0)]
, (21)

where ψa(ψ0) = ψ∗(x)|x=0 is the surfactant mole fraction at
the interface as a function of the bulk surfactant load ψ0, and
θ (ψ0) = �f̂ [φ∗(x)]|x=0, namely,

θ (ψ0) =
(

φ0

2ξ

)2{
ξ 2

[
λ1

(
φ2

0 − 2
) − 2 a

] − λ2
}
. (22)

Considering Eqs. (12) and (14) one can identify three charac-
teristic points of the ψa(ψ0) curve: As long as θ (ψ0) is bounded
on ψ0 ∈ [0,1],

ψa(0) = 0 and ψa(1) = 1

apply. Moreover, since θ (ψc) = 0, a third characteristic point
also exists, namely,

ψa(ψc) = ψc.

Since the model has the absolute scale ψ0 ∈ [0,1], there are
two essentially different cases:

(i) Previous works typically considered ψc > 1 [14,20],
for which we have only the first two characteristic points
together with ψa(ψ0) ∈ [0,1] on ψ0 ∈ [0,1]. In this case,
the Langmuir isotherms can be derived from Eq. (21) as
follows: If θ (ψ0) ≈ θ (0), and exp[βθ (0)] is small enough
to approximate the prefactor as 1 − ψ0 ≈ 1, the well-known
Langmuir adsorption isotherm

ψa ≈ ψ0

ψ0 + �
(23)

emerges with � = exp[βθ (0)]. Converting the model param-
eters used by both van der Sman and van der Graaf [14] and
Engblom et al. for Model 0 [20] results in a = 1/2, λ1 = 0,
λ2 = 1, and β � 8, respectively. Therefore, ψc = 2 was used
in their work, while θ (0) = −1/2 and exp[βθ (0)] � 0.018
was small enough to use Eq. (23) over almost the entire range
ψ0 ∈ [0,1] [see Fig. 2(a)]. We note that Eq. (22) starts as

 0.1

 1

 0.001  0.01  0.1  1

a

0

(a)

precise
approx

 0.0001

 0.001

 0.01

 0.1

 1e-05  0.0001  0.001  0.01

a

0

(b)

precise
approx

FIG. 2. (Color online) Adsorption isotherms from Eq. (21) (solid
black line) and Eq. (23) [dashed (red) line] in the case of ψc = 2
(a) and ψc = 0.01 (b). The corresponding model parameters are
a = 1/2, λ1 = 0, λ2 = 1, and β = 8 for (a) [14], and a = 201,
λ1 = −101, λ2 = 100, and β = 1/120 for (b). Note the strong error of
the Langmuir isotherm described by Eq. (23) in (b) for ψ0/ψc � 0.1.

032404-5
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θ (ψ0) = −(1/2) + (1/8)ψ0 + O(ψ2
0 ), therefore we have

ψa(ψ0) = ψ0

ψ0 + � exp(β θ1 ψ0)
(24)

in the first order, which becomes a Frumkin adsorption
isotherm for lateral interaction parameters strong enough to
win over θ1ψ0, namely, c(ψa − ψ0) > θ1ψ0 [see Eq. (19)], as
also suggested by Engblom et al. [20].

(ii) In the present work we focus on ψc < 1. Figure 2(b)
shows the breakdown of the Langmuir adsorption isotherm for
ψ0 ≈ ψc, indicating that Eq. (21) must be considered instead
of Eq. (23). For the sake of interest, we mention that, although
ψa(ψ0) ∈ [0,1] for ψ0 ∈ [0,1] still applies, ψa(ψ0) ∈ [0,ψc]
does not necessarily apply for ψ0 ∈ [0,ψc]. This means that
it is possible to overload the interface for ψ0 ∈ (0,ψc) in
principle, however, ψa(ψc) = ψc is still valid. This can be
seen in Fig. 5 of Engblom et al. [20]: For Model 2 the
parameters read a = 1 and λ1 = λ2 = 0, yielding ψc = 1. For
Model 3, a = 1/2, λ1 = 1, and λ2 = 0, indicating ψc = 2/3.
The Langmuir isotherms give a reasonable estimation for the
absorbed amount of surfactant at the interface for ψ0 < 0.1,
which is far from the critical value in both cases, and it is
obvious that the interface load can be higher than 2/3 in the
case of Model 3.

Finally, we give the general condition of adsorption. The
Taylor expansion of Eq. (21) [and also that of Eq. (23)]
yields ψa(ψ0) = exp[−βθ (0)]ψ0 + O(ψ2

0 ) > ψ0, from which
θ (0) < 0 follows, indicating

2 a + λ1 + λ2 > 0 (25)

as the general condition for adsorption.

C. A more precise estimation for the interfacial tension

In order to understand the role of model parameters and
apply the model for real systems, more sophisticated analytical
calculation for the interfacial tension is needed. First, we
approximate the equilibrium planar surfactant profile by taking
into account the algebraic Euler-Lagrange equation, Eq. (7),
instead of the constant field approximation. Then we present
calculations for the interfacial tension in our proposed model
λ1 = d and λ2 = a + d in both the symmetric (e = 0) and the
general asymmetric (e 
= 0) case.

1. Symmetric case

As discussed above, now we take into account that the equi-
librium planar surfactant profile ψ∗(x) varies in space. Since
Eq. (7) cannot be solved analytically for c 
= 0, first we
assume that ψ∗(x) remains sufficiently close to ψ0 to use the
second-order Taylor expansion of the logarithmic term in Fψ

around ψ0. Then we expand Eq. (7) for φ∗(x) defined by
Eq. (15) and ψ∗(x) = ψ0 + δψ∗(x) with respect to δψ∗(x) up
to the linear order, yielding

δψ∗(x) ≈ �f̂ [φ∗(x)]

c − 1
β ψ0 (1−ψ0)

, (26)

where �f̂ [φ∗(x)] is defined by Eq. (20) with φ− = −φ0.
Since there are two leading terms in �f [φ∗(x)], namely,
g[φ∗(x)] ∝ sech4(x/2) and [∂xφ

∗(x)]2 ∝ sech4(x/2), ψ∗(x) is

simply approximated as

δψ∗(x) ≈ A sech4(x/2), (27)

where the amplitude A can be calculated by taking Eqs. (26)
and (27) at x = 0, yielding

A = θ (ψ0)

c − 1
β ψ0 (1−ψ0)

, (28)

where θ (ψ0) is defined by Eq. (22). In the symmetric case
μψ = 0, therefore, the interfacial tension simply reads as

σ =
∫ +∞

−∞
dx{F[φ∗(x),ψ∗(x)] − F0 − μψ [ψ∗(x) − ψ0]}.

Using Eqs. (15) and (27), and taking into account the Taylor
expansion of the logarithmic term inFψ up to the second order,
the interfacial tension reads

σ = σCH + σψ + σ1 + σex, (29)

where

σCH = σ0
[
φ2

0

(
2 − φ2

0

)]
, (30)

σψ = 32

35
A2

[
1

β ψ0(1 − ψ0)
− c

]
, (31)

σ1 = − 2

105
φ2

0

[
8A

(
3 a + 10 d − 4 d φ2

0

)

+ 35
(
a + 4 d − 2 d φ2

0

)
ψ0

]
, (32)

σex = − 2

15
a φ2

0(8 A + 15 ψ0), (33)

where φ0 and A are defined by Eqs. (12) and (28), respectively.
The first correction to the constant surfactant field approxi-
mation around ψ0 = 0 comes from the Taylor expansion of
Eq. (29),

κ = 1 − (2a + d + q)ψ0 + O
(
ψ2

0

)
, (34)

where q = [(33a2 + 40ad + 12 d2)/70]β, accounting for the
correction due to ψ∗(x) 
= ψ0. Note that Eq. (18) reads
κ = 1 − (2a + d)ψ0 + O(ψ2

0 ) for λ1 = d and λ2 = a + d;
i.e., Eq. (34) starts with a different slope at ψ0 = 0.

2. Asymmetric case

In the case of e 
= 0 Eq. (8) is not symmetric, yielding the
general bulk equilibrium solution φ+ 
= φ− and ψ− 
= ψ+.
Therefore, one has to consider the full equilibrium problem,

μ+
φ = μ−

φ , (35)

μ+
ψ = μ−

ψ, (36)

ω+ = ω−, (37)

where ω = F − μ±
φ φ − μ±

ψ ψ is the grand potential density,
whereas μ±

φ = μφ|φ±,ψ± , μ±
ψ = μψ |φ±,ψ± , and ω± = ω|φ±,ψ± .

Note that there are four variables (φ± and ψ±) and three
equations. Since we are interested in the physical quantities
as a function of the surfactant load ψ0, we introduce

φ± = ±φ0 ± δφ± and ψ± = ψ0 ± δψ0, (38)
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where φ0 is defined by Eq. (15) and ψ0 is the only free
parameter, the “average” surfactant load ψ0 = (ψ− + ψ+)/2.
(Note that this is not the real average, since the extra amount
of the surfactant at the interface is not considered here.) This
variable transformation is convenient, since the equilibrium
values reduce to the symmetric solution for e = 0. Assuming
that e and c are chosen so that |δψ0/ψ0| and |δφ±/φ0| are
sufficiently small, Eqs. (35)–(37) can be expanded up to
linear order in δψ0 and δφ± around the symmetric solution,
resulting in

δψ0 = e φ0

μψψ − μ−1
φφ

[
e2 + (

μ0
φψ

)2] , (39)

δφ± = e ∓ μ0
φψ

μφφ

δψ0, (40)

where μφφ = (∂2F/∂φ2)|φ0,ψ0 , μψψ = (∂2F/∂ψ2)|φ0,ψ0 , and
μ0

φψ = (∂2F/∂φ∂ψ)|e=0
φ0,ψ0

. The equilibrium planar interfaces
can be written as

φ∗
a (x) ≈ φ∗(x) + δφ∗

a (x),

ψ∗
a (x) ≈ ψ∗(x) + δψ∗

a (x),

where the corrections are defined as

δφ∗
a (x) = δφ+

tanh
(

x
2

) + 1

2
+ δφ−

tanh
(

x
2

) − 1

2
, (41)

δψ∗
a (x) = δψ0 tanh

(x

2

)
+ (B − A) sech4(x/2) (42)

(see Fig. 3). Here B is determined at x = 0, where φ∗
a (0) =

(φ− + φ+)/2 and ψ∗
a (0) = ψ0 + B. Expanding the Euler-

Lagrange equation described by Eq. (7) up to first order around
ψ0 results in

B = �f̂ [φ∗
a (x)]x=0

c − 1
βψ0(1−ψ0)

− δψ0, (43)

which reduces to Eq. (28) for e = 0. When calculating
the interfacial tension, one has to take into account that
Eqs. (35)–(37) have been taken up to first order in calculating
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FIG. 3. (Color online) Equilibrium planar interfaces as predicted
by Eqs. (15) and (27) in the symmetric case (e = 0; solid and
dashed black curves) case and with the corrections described by
Eqs. (41) and (42) for the asymmetric case [e = 8; solid and dashed
(red) curves], respectively, with the parameters β−1 = 100, d = 10,
a = 1, and ψ0 = 0.05. Surfactant interfaces are normalized as
�(x) = β−1[ψ∗(x) − ψ0].

equilibrium, the correction to the interfacial tension must be
calculated accordingly. The interfacial tension is calculated as

σ =
∫ +∞

−∞
dx{ω − ω−}, (44)

where the thermodynamic grand potential density has been
expanded in Eq. (37) around the symmetric solution φ∗(x) and
ψ∗(x) up to linear order as

ω ≈ F (1) − μ±
φ φ∗(x) − μ±

ψ ψ∗(x)

−μ±
φ,0 δφ∗(x) − μ±

ψ,0 δψ∗(x), (45)

where μ±
φ and μ±

ψ are taken up to first order in δφ± and δψ±

around the symmetric solutions μ±
φ,0 and μ±

ψ,0, respectively
[the same applies for F (1); i.e. it is taken around F0 up to
first order with respect to δφ∗

a (x), δψ∗
a (x), and their spatial

derivatives]. Note that although the terms containing μ±
φ,0 and

μ±
ψ,0 cancel in the bulk phases, μ−

ψ,0 
= μ+
ψ,0 and μ−

φ,0 
= μ+
φ,0

in general, because of the presence of the asymmetric term.
Therefore, Eq. (45) is not univalent at the interface. Apparently
this was the price of using the linear approximation for both
the background potentials and the grand potential density. To
resolve this discrepancy, we introduce the “average” grand
potential density instead of Eq. (45) as

ω̄ := F (1) − μ̄φ φ∗(x) − μ̄ψ ψ∗(x)

− μ̄φ,0 δφ∗(x) − μ̄ψ,0 δψ∗(x), (46)

where μ̄φ = (μ+
φ + μ−

φ )/2 and μ̄ψ = (μ+
ψ + μ−

ψ )/2. Note that
Eq. (46) is univalent and μ̄+

ψ = μ̄−
ψ , and it is also easy to

show that it results in the equilibrium condition identical
to Eq. (37), i.e., ω+ = ω− ⇔ ω̄+ = ω̄−. After some trivial
algebraic manipulation and integration the interfacial tension
reads

σ = σe=0 + σδg + σψ + σδφ + σδψ, (47)

where σe=0 is the interfacial tension in the symmetric case
defined by Eq. (29), while the corrections read

σδg = 4 φ0

105
{12(A − B)(a + d)φ0

− �φ+[24 A (a + d) − 35 (1 − {a + d}ψ0)]} ,

σψ = −2 e δψ0(μ0
φψ/μφφ),

σδφ = 4

105
φ0 �φ+ {7[15 − 2 a A + 2 Ad + 15(a − d)ψ0]

− 2 φ2
0(70 + 3 Ad − 70 d ψ0)

} + 8

3
Ae�φ−,

σδψ = 192 A(A − B)

105 β ψ0(ψ0 − 1)
+ 4

105

{
48 A(A − B)c

+φ0
[
105 e δψ0 + 4(A − B)φ0

(
7{a + d} − 4 d φ2

0

)]}
,

where �φ± = [(δφ−) ± (δφ+)]/2. It is trivial that A − B ∝ e,
meaning that the correction terms are proportional to e; i.e.,
they all vanish for e → 0. The relative interface tension reads

κ =1 − (2 a + d + q)ψ0+
(

p + 2 a3β2

35
e

)
ψ2

0 + O
(
ψ3

0 ,e2
)
,

(48)
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where p = a2 + (β/70){66a3 + 8ad(5 + d − 5cβ) − 12d2

(cβ − 1) + 3a2[11(1 − c β) + 18d]} and q is defined after
Eq. (34). Therefore, the asymmetry has only a marginal effect
on the interfacial tension near ψ0 = 0, however, the behavior
of the interfacial tension near the critical point necessitates
further analysis.

D. Analysis near the critical point

While the interfacial tension and the interface width for
the surfactant-free system are natural units of the theory, the
critical point ψc is defined by exclusively the properties of the
emulsifier via Eq. (13). Substituting ψ0 = ψc into Eqs. (29)
and (47) also yields κ = 0 (for a 
= 0), therefore, the critical
point is independent of the values of β, c, and e, showing the
robustness of the theory. In the symmetric case the relative
interfacial tension near the critical point can be obtained
by expanding Eq. (29) around ψc for δψ̄ = ψ0 − ψc � 0,
resulting in

κ =
[

33 α + 70 a ψ2
c (1 + c ψc α)

70 a2 ψ5
c (1 + c ψc α)

]
δψ̄2 + O(δψ̄3), (49)

where α = β(ψc − 1). Comparing Eq. (49) to the results of
previous work on the interfacial tension lowering [defined
as �σ = (κ − 1)σ0] indicates that the previously suggested
�σ ∝ log(1 − kψ0) relationship is not true for ψ0 � ψc 	 1.
This is not surprising, taking into account that �σ ∝ log(1 −
kψ0) emerges from the Langmuir isotherm described by
Eq. (23). Accordingly, in the work of van der Sman and van
der Graaf [14] the logarithmic expression has been found valid
even for ψ0 = 0 . . . 0.7, due to the fact that ψc = 2 applied in
that case, and the Langmuir isotherm was valid over almost
the entire range ψ0 ∈ [0,1]. In contrast, in the work by Liu and
Zhang [17] the log(1 − k ψ0) fit clearly shows a strong error
at significant surfactant loads, where the Langmuir isotherm
is not valid anymore (this is typical for ψc ≈ 1).

Equation (49) plays an important role also from the view-
point of spontaneous emulsification: If the coefficient of δψ̄2

is non-negative, spontaneous emulsification cannot happen at
ψ0 < ψc, since the interfacial tension is non-negative over the
entire range. In contrast, one can achieve negative interfacial
tensions for ψ0 < ψc when

c > ce = − 33

70 a ψ3
c

+ β−1

ψc(1 − ψc)
(50)

applies (or, in other words, when the interaction between
adjacent surfactant layers is strong enough). In these cases
an emulsification point (ψe < ψc) appears (see Fig. 4), at
which the interfacial tension vanishes with finite φ0. In
addition, above ψe emulsification starts spontaneously due
to hydrodynamic instabilities emerging from the negative
interfacial tension.

It is important to mention that the analysis is not straight-
forward in the asymmetric case. Although both δφ± → 0 and
φ0 → 0 apply for ψ0 → ψc, Eq. (40) results in δφ±/φ0 =
−1 + O(

√
δψ̄) (where δψ̄ = ψc − ψ0 � 0), while δφ±/φ0 ≡

0 for e = 0. This indicates a qualitatively different behavior
of the interfacial tension near the critical point in the case of
e = 0 and e 
= 0: Although the interfacial tension vanishes for
ψ0 = ψc exactly for any e ∈ R, Eq. (47) may not converge for

-0.01
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 0.05

 0.006  0.0065  0.007  0.0075  0.008  0.0085  0.009  0.0095  0.01
0

e

c=0
c>ce

FIG. 4. (Color online) Relative interfacial tension κ as a function
of the surfactant load ψ0, as predicted by Eq. (29) for β−1 = 120,
a = 201, and d = −101. Note that in the case of c = 1.2 × 104 >

ce = 9775.8 an emulsification point, ψe = 0.00818, appears, above
which spontaneous emulsification occurs due to the negative interfa-
cial tension.

ψ0 → ψc in the case of e 
= 0. This discrepancy emerges from
the linear approximation of Eqs. (35)–(37), however, a more
accurate derivation is beyond the scope of the present work.

IV. NUMERICAL SIMULATIONS

A. Methodology

1. Numerical solution of the Euler-Lagrange equations

In order to validate Eq. (29), we determine the interfacial
free energy using the numerical solution of the Euler-Lagrange
equations described by Eqs. (6) and (7) as follows. Equation (6)
is a second-order differential equation for φ, necessitating
two boundary conditions to define a two-point boundary
problem, while Eq. (7) is an algebraic equation prescribing the
relationship between φ and ψ implicitly for a given ψ0. The
boundary conditions for the planar interface solution, however,
read φ(x → ±∞) → φ±, ∂xφ(x → ±∞) → 0, representing
four constraints. Therefore, the problem is overdetermined,
and in these cases shooting-type numerical integrators are not
suitable in principle [22]. In addition, the problem is ill posed in
the sense that it is translational invariant; namely, if φ∗(x) and
ψ∗(x) are a solution, then φ∗(x − x0) and ψ∗(x − x0) are also
a solution for any x0 ∈ R. Consequently, relaxation-type meth-
ods might also fail to converge on a finite range [22]. In order
to avoid this problem, first we transform the equilibrium planar
interface problem from an infinite-range problem into a finite-
range problem by introducing the new independent coordinate:

x̂ := tanh(x/2). (51)

The new variables then read φ̂(x̂) = {φ[x(x̂)] − �}/h,
where � = −(φ− + φ+)/2 and h = (φ+ − φ−)/2, yielding
φ̂(±1) = ±1, and ψ̂(x̂) = ψ[x(x̂)]. For the conversion,
however, the values φ± must be known, but these are known
only for e = 0 analytically, therefore, we consider only the
symmetric case hereafter, where φ̂(x̂) = φ[x(x̂)]/φ0. The
spatial derivatives can be then expressed as

∂xφ̃ = t ∂x̂ φ̂, (52)

∂2
x φ̃ = t

[
t
(
∂2
x̂ φ̂

) + x̂(∂x̂ φ̂)
]
, (53)
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where φ̃ = φ/φ0 and t = 1/(∂x̂x) = (1 − x̂2)/2. The
Euler-Lagrange equations can be trivially transformed by
using Eqs. (52) and (53) and solved with the boundary
conditions φ̂(±1) = ±1 and ψ(±1) = ψ0 using a relaxation
method [22]. After having the solution φ̂∗(x̂) and ψ̂∗(x̂) one
can calculate the interfacial tension as

σ =
∫ +1

−1
dx̂{t (F[φ̂∗(x̂),ψ̂∗(x̂)] − F0

− μ̃ψ [ψ̂∗(x̂) − ψ0])}, (54)

where the integrand contains the transformed derivative
[∂xφ

∗(x)]2 = [t φ0 ∂x̂ φ̂
∗(x̂)]2, naturally.

2. Numerical solution of the dynamic equations

Equations (9) and (10) represent a fourth-order nonlinear
parabolic PDE system. We use an advanced operator-splitting-
based semi-implicit pseudospectral method developed by
Tegze et al. [23] to solve the dynamic equations numerically
with periodic boundary conditions. With this method the use
of large time steps is allowed, contrary to the finite-difference
method, where the stability criterion limits the time steps as
h4, where h is the spatial discretization step.

B. Parameters

For validation of the model/numerical simulations we
determine the model parameters for a model system mimicking
water/CO2/macromolecular surfactant systems. Thus, the
interfacial tension is of the order of 50 mJ/m2 [24], and the
width of the interface loaded by macromolecules is of the order
of δ0 ≈ 0.1 μm [25]. The molecular weight of macromolecular
surfactants is typically of the order of 1000 g/mol, while the
density is considered to be approximately 1 g/cm3 [26,27],
yielding the average density of the system ρ ≈ 1000 kg/m3.
We choose the critical point ψc ≈ 0.01 [27], therefore, the
average molar volume of the system can be approximated
as v0 = 50 cm3/mol. The liquid-liquid diffusion coefficient
is typically D0 = 5 × 10−9 m2/s [28], and for the sake of
simplicity, M̃(φ) = 1 is chosen. The typical diffusion coeffi-
cient of macromolecules in water reads Dψ ≈ 5 × 10−11 m2/s
at room temperature (T ≈ 300 K) [29]. Considering these
physical parameters yields the model parameters

β−1 = 120 and τ̃ψ = 3600.

Furthermore, we choose

a = 201, d = −101, and c = 0,

yielding a realistic κ curve with ψc = 0.01 [27]. Now one
can see the huge difference between the cases considered
previously and in this work by comparing Figs. 3 and 4
of Sagisaka et al. [27] to Fig. 3 of Liu and Zhang [17].
In the water/liquid CO2/macromolecular surfactant system
the interfacial tension drops suddenly for small surfactant
loads (ψ0 	 ψc ≈ 0.01), then it converges to 0 for ψ0 → ψc.
In contrast, the relative interfacial tension lowering behaves
qualitatively differently in the work by Liu and Zhang,
prescribing slow changes for ψ0 	 1 and fast changes for
ψ0 → 1 (together with ψc > 1).

The Euler-Lagrange equations were solved for e = 0 as
a function of the surfactant load to test the validity of our
approximations for the interfacial tension, while the time
evolution of the system was studied as a function of the
surfactant load in two dimensions on a 1024 × 1024 grid with
�x = �y = �t = 1. The initial conditions were φ(r,0) =
φ0(� + αR[−1,1]) and ψ(r,0) = ψ0, where � ∈ [−1 : 1] is
a fixed volume fraction, R[−1,1] is a random noise of uniform
distribution on [−1,1], and α 	 1.

C. Results

1. Interfacial tension

First, the validity of our analytic approximations for the
interfacial tension is examined. Figure 5 shows the relative
interfacial tension obtained from different approaches in the
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FIG. 5. (Color online) (a) Dynamic factor and relative interfacial
tension predicted by different approaches (numerical solution of
the Euler-Lagrange equations, precise analytical calculation, and
constant surfactant field approximation) as a function of the surfactant
load. (b) Magnification of (a) near the critical point ψc = 0.01.
(c) Relative deviation ||κ|| = 2|(σ1 − σ2)/(σ1 + σ2)|, where σ1 and
σ2 are the interfacial tensions from the precise calculation and
the constant surfactant approximation (dashed curve) and from the
precise calculation and the numerical solution of the Euler-Lagrange
equations (solid curve), respectively.
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case of e = 0. Although the constant surfactant field approx-
imation gives a reasonable estimation, Eq. (29) matches the
numerical results almost perfectly. Since all curves converge
to 0 in the case of ψ0 → ψc, it is worthwhile investigating the
relative errors too. Both the constant surfactant approximation
(compared to the more precise analytic approximation) and the
analytic calculation (compared to the numerical results) show
a finite relative error at the critical point, which means that
σ = a(ψc − ψ0)2 + O[(ψc − ψ0)3] applies for all curves, but
with different a coefficients. We also note that the relative
error between the precise analytic approximation and the
numeric results shows a maximum at ψ0 ≈ 0.0002, which
is due to the fact that the error increases with increasing
deviation of the surfactant profiles obtained with the different
methods. Since the surfactant profile is exactly 0 at ψ0 = 0,
and the interfacial tension vanishes at ψ0 = ψc (the solution is

FIG. 6. (Color online) Time evolution of the system for average
surfactant load ψ0 = 0.005 in the case of e = 0. φ(r,t)/φ0 and
[ψ(r,t)/ψ0] − 1 are shown in (a1)–(d1) and (a2)–(d2), respectively,
at t = 100, 200, 500, and 1000 (time passes from top to bottom).

analytic in both cases), the interfacial tensions coincide at these
points, regardless of the method we choose. Consequently,
|σ1 − σ2| = 0 applies at ψ0 = 0 and ψ0 = ψc, but otherwise
the error is finite in between, showing a maximum at ψ0 ∈
(0,ψc). The relative error slightly modifies this picture, since
it can be finite at the critical point, for the reasons described
above. Summarizing, the relative errors indicate that the model
parameters should be fitted via Eq. (49) near the critical
point rather than using Eq. (18), because the coefficient for
the precise analytic estimation containing additional factors
compared to (49) is in qualitatively better agreement with the
numerical results. The importance of Eq. (29) is then twofold:
First, the model can be calibrated for real systems analytically.
Second, it shows that the critical point does not change as a
function of the level of precision in determining the interfacial
tension, showing the robustness of the theory.

FIG. 7. (Color online) Time evolution of the system for average
surfactant load ψ0 = 0.0099 in the case of e = 0. φ(r,t)/φ0 and
[ψ(r,t)/ψ0] − 1 are shown in (a1)–(d1) and (a2)–(d2), respectively,
at t = 100, 200, 500, and 1000 (time passes from top to bottom).
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2. Phase separation

(a) Symmetric case. The time evolution of the system was
scanned as a function of ψ0. Figures 6 and 7 show snapshots of
the simulations at t = 100, 200, 500, and 1000 [corresponding
to Figs. 6(a)–6(d) and 7(a)–7(d)] in the case of ψ0 = 0.005 and
ψ0 = 0.0099, respectively. It can clearly be seen that the phase
separation is significantly slower for ψ0 = 0.0099 (Fig. 7) than
for ψ0 = 0.005 (Fig. 6). To quantify the results, we introduce
the amount of liquid-liquid interfaces,

Q(t) :=
∫

dV {[∇φ̂(r,t)]2}, (55)

where φ̂(r,t) = φ(r,t)/φ0 ∈ [−1,1] is the normalized liquid-
liquid order parameter. Figure 8(a) shows Q(t) for different
surfactant loads (ψ0/ψc = 0.0, 0.25, 0.5, 0.75, 0.95, 0.99, and
0.999 from bottom to top, respectively). The curves are linear
and parallel to each other in the log-log plot, implying the
master curve

Q(t) = [t/τ (ψ0)]q, (56)

where the time scale reads τ (ψ0) = exp[p(ψ0)/q], while
p(ψ0) and q are the parameters of the linear fit log[Q(t)] =
p(ψ0) − q log(t). Equation (56) means that the qualitative
behavior of the system is independent of the surfactant load,

104

105

 5  6  7  8  9  10

Q

t / 100

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.002  0.004  0.006  0.008  0.01
0

(b)

s (numerical)
 (numerical)

FIG. 8. (Color online) Time evolution of the symmetric system.
(a) Amount of liquid-liquid interfaces as a function of time for average
surfactant loads ψ0/ψc = 0.0, 0.25, 0.5, 0.75, 0.95, 0.99, and 0.999
(from bottom to top). (b) Dynamic factor (or relative speed of phase
separation) defined by Eq. (57) [(red) circles] at surfactant loads
corresponding to those in (a), compared to the relative interfacial
tension κ obtained from numerical solution of the Euler-Lagrange
equations.

therefore, the dynamic factor can be written as

s = τ (0)

τ (ψ0)
= exp[−�p(ψ0)/q], (57)

where �p(ψ0) = p(ψ0) − p(0), i.e., the vertical distance
between the lines corresponding to ψ0 and ψ0 = 0 in Fig. 8(a).
The numerical simulations resulted in q ≈ 0.28, while the
distances read �p(ψ0) = 0.0, 0.228 22, 0.452 37, 0.708 46,
1.080 54, 1.509 33, and 2.169 71 (from bottom to top,
respectively). The calculated dynamic factors are shown in
Fig. 8(b), as a function of the surfactant load. It is obvious
that the numerical dynamic factor (i.e., the relative speed
of phase separation) follows the reduction of the interfacial
tension, rather than Eq. (16), or, in other words, the dynamical
system is driven by the interfacial tension. This is an important
result, showing that even though the constant surfactant

FIG. 9. (Color online) Time evolution of the asymmetric system
for average surfactant load ψ0 = 0.005. φ(r,t)/φ0 and [ψ(r,t)/ψ0] −
1 are shown in (a1)–(d1) and (a2)–(d2), respectively, at t = 100, 200,
500, and 1000 (time passes from top to bottom).
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approximation results in a reliable estimation for the relative
interfacial tension, it is absolutely not sufficient to predict the
speed of phase separation. The error of s relative to κ is due
to (i) finite-size effects and (ii) the fact that the surfactant load
in the bulk phases changes constantly even during a single
simulation because of the conservative dynamics (however,
this change is less than 1% in our simulations).

(b) Asymmetric case. Finally, the effect of the asymmetry
is investigated. We apply e = 10, yielding the estimated
relative difference |δψ0/ψ0| � 10%, indicating significant
asymmetry, as also shown in Figs. 9 and 10. Note, however,
that Fig. 10 corresponds to ψ0 = 0.0097 now, indicating
a slight shift in the critical point due to the asymmetry.
Furthermore, the amplitude of the surfactant at the interface
vanishes relative to δψ0 near the critical point. Parallel to Fig. 8,
Fig. 11 shows the numerical dynamic factor as a function of

FIG. 10. (Color online) Time evolution of the asymmetric sys-
tem for average surfactant load ψ0 = 0.0097. 2 φ(r,t)−φ−

φ+−φ− − 1 and
[ψ(r,t)/ψ0] − 1 are shown on (a1)–(d1) and (a2)–(d2), respectively,
at t = 100, 200, 500, and 1000 (time passes from top to bottom).
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FIG. 11. (Color online) Time evolution of the asymmetric sys-
tem. (a) Amount of liquid-liquid interfaces as a function of time for
different average surfactant loads. (b) Dynamic factor (or relative
speed of phase separation) defined by Eq. (57) [(red) circles] at
surfactant loads corresponding to those in (a), compared to the
relative interfacial tension κ obtained from numerical solution of
the Euler-Lagrange equations in the case of e = 0.

the surfactant load in the asymmetric case. The amount of
liquid-liquid interfaces is defined again by Eq. (55), but with
φ̂(r,t) := 2φ(r,t)−φ−

φ+−φ− − 1, transforming the bulk values φ− and
φ+ to −1 and +1, respectively (φ+ and φ− were measured
from the simulations here). According to Fig. 11(b) it is clear
that the asymmetry has only a marginal effect on the speed of
phase separation compared to the symmetric case, which is in
agreement with Eq. (48), showing that e is not of the leading
order of κ . In addition, the marginal effect of the asymmetry
applies over the entire range ψ0 ∈ [0,ψe=10

c ], where the critical
point is only slightly shifted compared to the symmetric
system; namely, ψe=10

c ≈ 0.0098 has been found (we had
equal dynamical factors s = 4 × 10−4 for ψ0 = 0.00999 and
ψ0 = 0.0098 in the case of e = 0 and e = 10, respectively).
Summarizing, it has been shown that asymmetry plays only a
secondary role in the model, even near the critical point, which
is only slightly shifted for moderate asymmetry. Finally, we
mention that in the case of asymmetry the transient times found
are significantly smaller; i.e., pattern formation starts faster
than in the case of e = 0. This is the reason why the time range
t = 10 . . . 100 has been chosen for measuring the dynamic
factor, instead of t = 500 . . . 1000, as in the case of e = 0.
(Practically we chose ranges in which the log[Q(t)]-vs-log(t)
lines were parallel to each other, to make the measurement of
s possible.) In this case the exponent q = 0.26 emerges with
�p = 0.0, 0.242 88, 0.459 53, 0.711 55, 1.068 20, 1.395 20,
and 2.033 70, for the same average surfactant loads ψ0/ψc

used in the symmetric case, respectively.
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V. CONCLUSIONS

In this work we have analyzed the Ginzburg-Landau
free-energy-functional-based generalized van der Sman/van
der Graaf–type diffuse interface model of surfactant-assisted
phase separation. We have shown that different regularization
of the surface Dirac δ function leads to different qualitative be-
havior in the speed of phase separation, equilibrium interfacial
tension, and interface width as a function of the surfactant load.
The original, gradient-square regularization yields unphysical
behavior of both the interface width and the speed of phase
separation. In contrast, using the double-well function instead
yields a coherent physical picture, however, with a divergent
interface width at the critical point ψc being present in the
general model (the critical point ψc is the surfactant load where
the interfacial tension vanishes). Accordingly, we proposed a
hybrid regularization of the surface Dirac δ function, resulting
in a constant interface width but a decreasing interfacial
tension and phase separation speed as well, making the model
numerically wieldy even near the critical point. Contrary
to previous work, we analyzed the general model over the
entire relevant surfactant load range, which reads ψ0 ∈ [0,1]
for ψc > 1 and ψ0 ∈ [0,ψc] for ψc � 1, respectively. First,
we have shown that a realistic Langmuir/Frumkin isotherm
emerges from the presence of the logarithmic therm, which
then must be used in physically consistent models. Second,
since the amount of surfactant absorbed at the interface (i.e.,
the interface load) is equal to the bulk value (far-field load) at
ψ0 = ψc, it has been proven that the approximations made in
previous work for the Langmuir/Frumkin isotherms are valid
only for ψc > 1; however, the systems of interest may show
even ψc 	 1. In these cases, extended analysis is needed
to investigate the qualitative behavior of the system when
ψ0 � ψc. The analysis was based on a precise analytical
derivation of the interfacial tension, which was then validated
by numerical calculations in the case of model parameters
mimicking a real water/liquid CO2/macromolecular surfactant
system. The numerical results are in excellent agreement with
the analytical calculations. Time-dependent simulations have
also been performed, showing that (i) the qualitative behavior
of the system is not a function of the surfactant load, and
(ii) the speed of phase separation follows the reduction in
the relative interfacial tension. It has also been shown that
asymmetry (when bulk phases affect the presence of the

surfactant field differently) enters the system only at second
order around ψ0 = 0 and it has only a minor effect on both
the location of the critical point and the speed of phase
separation as a function of the surfactant load. Finally, we
mention that the interfacial tension has been found to vanish
as ∝(ψ0 − ψc)2 near the critical point. In contrast, experiments
clearly indicate ∝ log(ψ0/ψc) behavior over almost the entire
range ψ0 ∈ [0,ψc] [27], yielding a linear relationship near
ψc instead of a quadratic one, suggesting that spontaneous
emulsification is possible in these systems. Such a situation
can be described either by changing the model parameters
appropriately to establish an emulsification point ψe < ψc, at
which the interfacial tension vanishes, or by applying nonlin-
ear coupling of the surfactant field at the level of the free energy
functional. Moreover, since macromolecular surfactants result
in a typical liquid-liquid interface width of the order of
0.1 μm, fluid flow may also play a significant role in the time
evolution of the system. One must not forget that the dynamical
equations used in this study describe diffusion-controlled
processes but avoid the fast phase separation kinetics observed
experimentally during liquid-liquid spinodal decomposition
in binary systems. In other words, the liquid described by
a pure diffusion-type equation cannot flow, so it must then
be corrected appropriately. Nevertheless, there are different
ways to introduce such a correction. The phenomenological
approach is to modify Fick’s law to describe the relaxing solute
flux (finite speed of sound) instead of the instantaneous one,
thus introducing a second time derivative for the chemical
concentration accounting for a wave mode [30,31]. Another
possibility is to simply apply the Navier-Stokes equation with
an appropriate Korteweg pressure tensor, a problem which has
been studied for binary [32,33] and multicomponent [34,35]
systems, as well as for the case of surfactant-assisted liquid
phase separation as mentioned earlier. Such a development,
however, is a topic for future study.
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L. Gránásy, J. Comput. Phys. 228, 1612 (2009).

[24] L. C. Nielsen, I. C. Bourg, and G. Sposito, Geochim.
Cosmochim. Acta 81, 28 (2012).

[25] E. Torino, E. Reverchon, and K. P. Johnston, J. Colloid Interface
Sci. 348, 469 (2010).

[26] S. S. Adkins, X. Chen, I. Chan, E. Torino, Q. P. Nguyen, A. W.
Sanders, and K. P. Johnston, Langmuir 26, 5335 (2010).

[27] M. Sagisaka, T. Fujii, Y. Ozaki, S. Yoda, Y. Takebayashi,
Y. Kondo, N. Yoshino, H. Sakai, M. Abe, and K. Otake,
Langmuir 20, 2560 (2004).

[28] W. Lu, H. Guo, I. Chou, R. Burruss, and L. Li,
Geochim. Cosmochim. Acta 115, 183 (2013).

[29] M. G. Davidson and W. M. Deen, Macromolecules 21, 3474
(1988).

[30] P. Galenko and D. Jou, Phys. Rev. E 71, 046125 (2005).
[31] P. Galenko and V. Lebedev, Phys. Lett. A 372, 985 (2008).
[32] G. Tegze, T. Pusztai, and L. Gránásy, Mater. Sci. Eng. A

413–414, 418 (2005).
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