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Image-charge forces in thin interlayers due to surface charges in electrolyte
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The surface forces arising in wetting films of nonpolar liquids or in thin air interlayers between an electrolyte
and a nonpolar medium in the case of discrete charging of the dielectric-electrolyte interface are considered.
The contributions of polarization effects to the distribution of the electrostatic potential in the three contacting
media were calculated. Within the Debye-Hückel approximation, the analytical solutions were derived for the
disjoining pressure in thin films, for the case of either dilute or relatively concentrated electrolyte solutions in the
aforementioned systems. Analysis of the analytical and numerical results demonstrated that for dilute solutions
the contribution of image forces to the disjoining pressure may significantly exceed the van der Waals forces for
films from a few to tens of nanometers thick.
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I. INTRODUCTION

Interfaces are usually charged. The surface charge arises
due to preferential transfer of a particular type of ion either
from the bulk part of the contacting phases to the interface,
or from the interfaces to the bulk phases, or, finally, due to
ion exchange between the interfacial region and the bulk parts
of the contacting phases. The first process is realized when
different types of ions have different adsorbability from the
solution to the interface. The dissociation of surface groups
leads to processes of the second kind, when the surface
acquires a charge with a sign determined by the nature of the
ionogenic group. Finally, a third kind of process is possible.
It is associated with a heterovalent isomorphic substitution of
ions in the interfacial layer of one phase by the ions from an
adjacent ionic solution.

In systems containing thin liquid interlayers, such as wet-
ting or emulsion films, liquid-filled nanopores, or interlayers
between particles of dispersed phase, charging of the interfaces
causes additional polarization effects and formation of surface
forces with an electrostatic origin. The study of phenomena
related to interface charging is of considerable interest for both
basic research and practical applications. Extensive studies in
this area have been conducted for decades [1–7]. The focus in
the theoretical studies of recent decades was on the systems
important for colloid physics, biophysics, or biochemistry,
in which the charges are located either in the vicinity of a
single interface between bulk electrolyte and dielectric phases,
or in the nanosize films of electrolytes, or, finally, in the
dielectric interlayers confined (at least on one boundary) by an
electrolyte solution [8–20].

In the aforementioned systems, phenomena related to
polarization of the interfaces and to the discreteness of charges
begin to play a key role. It is usually convenient to describe
polarization of the interfaces by introducing image charges.
For spatially confined systems with curved interfaces or for
two closely located plane interfaces (for thin interlayers), an
accurate description of polarization requires the introduction
of an infinite series of image charges. In addition, for

*Corresponding author: boinovich@mail.ru

nanosized systems, the effect of charge discreteness becomes
very appreciable, causing a significant deviation of system
properties compared to those predicted on the assumption of
uniform charge distribution. This deviation is most noticeable
at the scale of several atomic distances around the charge
location. As shown in numerous papers [12,13,18,20–23],
charge discreteness affects the electric potential distribution in
the vicinity of interfaces, diffusion and overcharging processes
at the interfaces, the disjoining pressure in liquid interlayers,
and the aggregation kinetics in dispersions.

Thus, Zhou [21] has shown that accounting for the
discreteness of charge at dielectric surfaces immersed in an
electrolyte solution gives a significant correction for the energy
of interaction between two plates separated by an electrolyte
interlayer. Monte Carlo simulations accounting for image
charges [22–24] have shown that discrete charge distribution
around spherical dielectric particles immersed in electrolyte
drastically increases surface overcharging and affects the
spatial distribution of the electric potential, especially in the
case of multivalent electrolytes. Ions located in the vicinity
of spherical particles induce an infinite number of image
charges, and the contributions from the high-order images
abruptly increase as the ions approach the particle surface.
In this system, as well as in the case of a charge in the
vicinity of a thin plane-parallel interlayer, correct calculation
of the contributions from the high-order images becomes
critical. The question of the physically reasonable number
of contributions ensuring the appropriate estimate of excess
energy of image charges is similar to the one arising in
calculations of many-body contributions to the energy of van
der Waals interactions between the nanoparticles or in thin
interlayers [25,26].

The analysis of image forces in systems where the charges
are located in ionic liquids or an aqueous electrolyte solution
in the vicinity of a thin dielectric layer confined between the
electrolyte and semi-infinite dielectric medium is an extremely
interesting and practically important issue in the theory of
stability of colloids and thin liquid films. A water droplet on
a substrate is a typical example of such a system with wide
practical applications. When the droplet is deposited onto the
substrate, an air interlayer is formed between the droplet and
the substrate at the moment of contact. In further evolution,
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this interlayer may either thin out and rupture for hydrophilic
substrates or remain stable for superhydrophobic surfaces. A
distinctive feature of the aforementioned system is that the
polarization effects and electrostatic forces acting in the thin
interlayers are effectively screened due to diffuse ionic clouds
dressing the real charges in the electrolyte medium.

In this work, we consider the surface forces arising in
wetting films of nonpolar liquids or in thin air interlayers
between an electrolyte and a nonpolar medium in the case of
discrete charging of the dielectric-electrolyte interface. We
obtain analytical solutions for the disjoining pressure in a
thin interlayer for a random ensemble of discrete surface
charges located in the dilute or concentrated electrolyte
solution. Finally, we show that for the systems of interest, the
contribution of image forces to the disjoining pressure of the
dielectric interlayer may significantly exceed the contributions
from other types of surface forces.

II. CHARGED INTERFACE

A. Electrostatic potential induced by a point charge located in
the electrolyte phase close to the interface in a bulk dielectric

medium–dielectric film–electrolyte solution system

The model system containing an interlayer with dielectric
permittivity ε1 and thickness h, confined by two semi-infinite
media with dielectric permittivities ε2 and ε3, is depicted in
Fig. 1.

Medium 2 is an aqueous electrolyte solution, whereas media
1 and 3 are dielectric. The point charge q that appears due to
charging of the electrolyte-dielectric interface is located within
the electrolyte medium at distance z0 from the position of the
interface. We will consider the resulting electrostatic fields
in the Cartesian coordinate system with the origin coinciding
with the charge position and the z axis normal to the interface
(Fig. 1). On one hand, the charge induces polarization of the
interfaces, and on the other hand, the formation of a diffuse
ionic atmosphere from electrolyte ions in the electrolyte
solution. The electric potential distribution in the contacting
media is described on the basis of the Poisson equation:

�φ(1) = 0 z0 < z < (z0 + h)

�φ(2) = −4π

ε2
[qδ(x,y,z) + ρ(x,y,z)] z < z0 (1)

�φ(3) = 0 z > (z0 + h),

+

Z

YX

h

+

+

+ -
-
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-

ε1

ε3

ε2

z=z0

FIG. 1. (Color online) Point charge in the electrolyte close to the
interface with a dielectric film.

where z0 and z0 + h are positions of the interfaces separating
the film from confining phases 2 and 3, respectively, and
δ(x,y,z) is the Dirac delta function. The bulk charge density in
the electrolyte may be related to the local concentration of ions,
ni , bearing the charge ezi each (where e is the elementary
charge, and zi is the valence of the ion) by the evident
relation

ρ =
∑

i

ezini . (2)

Within the Debye-Hückel approximation valid for moderate
electric fields (eφ � kT ), the ion density is proportional to
the electrostatic potential φ(2) inside the solution. Thus the
electrostatic potential in all contacting media is described by
the following set of Poisson-Boltzmann equations:

�φ(1) = 0 z0 < z < (z0 + h)

�φ(2) − κ2φ(2) = −4π

ε2
qδ(x,y,z) z < z0 (3)

�φ(3) = 0 z > (z0 + h),

with boundary conditions

z → ∞ φ(3) → 0

z → −∞ φ(2) → 0

z = z0 + h φ(1) = φ(3)

z = z0 + h
ε1∂φ(1)

∂z
= ε3∂φ(3)

∂z
(4)

z = z0 φ(1) = φ(2)

z = z0
ε1∂φ(1)

∂z
= ε2∂φ(2)

∂z
,

where κ2 = n0
4πe2(z2

++z2
−)

ε2kT
, n0 is the number concentration of

dissociated molecules, and z+ and z−− are valences of cations
and anions, respectively.

Given the cylindrical symmetry of the system under
consideration it is expedient to proceed to the cylindrical
coordinate system ρ, ϕ, z and use a Hankel transform, which
reduces the initial system to the system of differential equation
with two variables λ, z, where λ is integrally conjugated with
ρ =

√
x2 + y2.

d2f (1)(λ,z)

dz2
− λ2f (1)(λ,z) = 0 z0 < z < z0 + h

d2f (2)(λ,z)

dz2
− (κ2 + λ2)f (2)(λ,z) = −2q

ε2
δ(z) z < z0 (5)

d2f (3)(λ,z)

dz2
− λ2f (3)(λ,z) = 0 z > z0 + h.

By solving the above system with boundary conditions,
Eq. (4), we find the following relations for the Hankel
transforms of the potential in the contacting media:

f (1)(λ,z) = 2q

λε1 + ξε2

exp[2λ(z0 + h)] + β13 exp(2λz)

[exp(2λh) − β ′
12β13]

× exp
( − λ(z + z0) − ξz0

)
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FIG. 2. (Color online) Potential maps illustrating the difference between the values of the electrostatic potential in the bulk dielectric–
dielectric thin film–electrolyte solution and the appropriate reference systems. We used different reference systems for different areas of each
map. Maps (a) and (b) were calculated for the 1-nm-thick air interlayer (ε1 = 1) separating the bulk dielectric liquid (“oil”, ε3 = 2) from an
aqueous 1-1 electrolyte solution, with bulk air–electrolyte reference system for air interlayer and electrolyte region, and bulk oil–electrolyte
system as a reference for oil region. Maps (c) and (d) were calculated for an oil (ε1 = 2) wetting film 1 nm thick on the surface of an aqueous
1-1 electrolyte solution, with the air (ε3 = 1) surrounding medium. For latter maps, bulk air–electrolyte reference system was used for air
half space, and bulk oil/electrolyte was a reference for oil and electrolyte regions. The parameters of electrolyte solutions were ε2 = 80 and
κ = 10−3 nm−1 for dilute solution [maps (a) and (c)] and ε2 = 40 and κ = 10 nm−1 for concentrated solution [maps (b) and (d)]. Points indicate
the charge location, and dashed lines correspond to positions of interlayer boundaries.

f (2)(λ,z) = q

ξε2
{exp(−ξ |z|) − β ′

12 exp[ξ (z − 2z0)]}

+ 4qλε1β13

(λε1 + ξε2)2

exp[ξ (z − 2z0) − 2λh]

{1 − β ′
12β13 exp(−2λh)}

f (3)(λ,z) = 2q

λε1 + ξε2

(1 + β13) exp(λz0 − ξz0 + 2λh − λz)

[exp(2λh) − β ′
12β13]

,

(6)

where ξ = √
λ2 + κ2; β ′

12 = (λε1 − ξε2)/(λε1 + ξε2); β13 =
(ε1 − ε3)/(ε1 + ε3).

The inverse Hankel transform of Eq. (6) allows us to
obtain the corresponding expressions for electric potential
distribution, φ(i)(x,y,z), in the Cartesian coordinate system. In
general, the analytical expressions for the inverse transforms
of Eq. (6) do not exist for an arbitrary set of system parameters.
At the same time, the potentials φ(i)(x,y,z) can be computed
numerically for any given values of the system parameters.
In this context, the evaluation of excess potential associated

with the geometry of the system is of particular interest. We
calculated the difference in the values of the electrostatic
potential in the bulk dielectric–dielectric thin film–electrolyte
solution and bulk dielectric–electrolyte solution systems. This
calculation allows us to estimate the cross contributions of the
two closely spaced boundaries to the value of the potential in
the three contacting media. In other words, in this calculation
we obtain the total contribution to the magnitude of the
potential φ(i) from all but the first-order images of the charge
under consideration.

In Fig. 2 we present the results of these calculations for
the air interlayer separating the bulk dielectric liquid from a
concentrated (a) or dilute (b) aqueous 1-1 electrolyte solution,
as well as for a dielectric wetting film 1 nm thick on the surface
of an aqueous 1-1 electrolyte solution for a concentrated
(c) and dilute (d) solution. The reference system is bulk
electrolyte–air for the electrolyte phase in (a) and (b) maps,
and for air phases in all maps; and bulk electrolyte–bulk
dielectric liquid for the electrolyte phase in (c) and (d) maps,
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and for dielectric liquid phases in all maps. It worth noting
that the potential maps presented in Fig. 2 provide an explicit
visualization of the electric fields of image charges in stratified
media and an estimation of the role of high-order images.

At the same time, for a number of practically important
values of parameters for this system, Eq. (6) for f (2)(λ,z),
which is required for further analysis of thin film stability, can
be reduced to a form suitable for analytical inverse Hankel
transform without loss of calculation accuracy.

It should be emphasized here that the analytical repre-
sentation of the potential distribution in medium 2, and its
dependence on the system parameters, is necessary for a
detailed analysis of the influence of interface charging on
the stability and energy of a thin dielectric layer. Since
in what follows we will only be interested in the film
thickness–dependent part of the electrostatic potential, we will
distinguish the term that depends on h in Eq. (6):

f
(2)
h (λ,z) = 4qλε1β13

(λε1 + ξε2)2

exp[ξ (z − 2z0) − 2λh]

{1 − β ′
12β13 exp(−2λh)} . (7)

Then for the thickness-dependent part of the potential
φ

(2)
h (z,ρ) we obtain

φ
(2)
h (z,ρ) =

∫
J0(ρλ)λ

4qλε1β13

(λε1 + ξε2)2

× exp[ξ (z − 2z0) − 2λh]

{1 − β ′
12β13 exp(−2λh)}dλ, (8)

where ρ =
√

x2 + y2.
We consider two limiting cases, κ � 1/h and κ � 1/h,

both permitting an analytical inverse Hankel transform for
φ

(2)
h (z,ρ). The first limit corresponds to concentrated solutions

in contact with dielectric films a few nanometers thick. The
behavior of the integrand in Eq. (8) is determined by its
exponential decay as exp(−2λh), and the main contribution
to the integral comes from the range λ ∈ [0; n/h], with n of
order of unity. Then for the case under consideration we can
put

λε1 + ξε2 ≈ κε2, β ′
12 ≈ −1, (9)

Using these approximations and taking into account the
identity

1

1 + β13 exp(−2λh)
=

∞∑
k=0

(−β13)k exp(−2kλh) (10)

we can rewrite Eq. (8) as

φ
(2)
h (z,ρ) = −

∞∑
k=0

(−β13)k+1 4qε1

ε2
2

×
∫

J0(ρλ)
λ2

κ2
exp[κ(z − 2z0) − 2λ(k + 1)h]dλ.

(11)

The integral in Eq. (11) is expressed through the second-
order Legendre polynomials. This leads to the following
relation for the film thickness–dependent part of the electric
potential within a nanosize dielectric film on the surface of a

concentrated electrolyte solution:

φ
(2)
h (z,ρ) = −

∞∑
k=0

(−β13)k+1 4qε1

κ2ε2
2

exp[κ(z − 2z0)]

× 8(k + 1)2h2 − ρ2

{[2(k + 1)h]2 + ρ2}5/2
. (12)

Note that mathematical procedure of fraction expansion
into a series used in Eq. (10) has a clear physical meaning. Each
term of the series in the resulting expansion, Eq. (12), describes
the contribution of the corresponding-order image charge.

Now we consider the second limit, corresponding to dilute
solutions and films that are not very thiсk, when the condition
κ � 1/h holds. In this case, the definitional domain of the
integrand in Eq. (8) can be divided into sections [0, κn],
[κn,m/h], and [m/h,∞], where m and n are numbers of
the order of unity. Given that κ � 1/ρ, the magnitude of the
integrand beyond the two first sections is small and decays
fast [because of the factor exp(−2λh)]; hence, we may neglect
the contribution from the last section to the total integral. The
relation of contributions to the total integral from the two first
sections can be estimated as

[0,κn]

[κn,m/h]
∝ κ

1
h

= κh � 1. (13)

Hence, we may neglect the contribution from the first
section as well. Then without essential loss of accuracy, we
can assume that the main contribution to the integral comes
from the range λ � κ , and put

λε1 + ξε2 ≈ λ(ε1 + ε2), β ′
12 ≈ ε1 − ε2

ε1 + ε2
≡ β12. (14)

Using approximations (14) and taking the identity (10) into
account, we can integrate Eq. (8) to get

φ
(2)
h (ρ,z) =

∞∑
k=0

4qε1β
k+1
13 βk

12

(ε1 + ε2)2

× 1√
{[2h(k + 1) − z + 2z0]}2 + ρ2

. (15)

To evaluate the accuracy of the derived analytical approx-
imations for the thickness-dependent part of the electrostatic
potential, we have calculated the values of φ

(2)
h (0,0) for various

film thicknesses using approximate relations, Eqs. (12) and
(15), and by direct numerical integration of Eq. (8). The
relative deviations of the potentials calculated by analytical
approximations from those computed numerically, shown in
Fig. 3, substantiate the conclusion that the analytical relations
obtained here for φ

(2)
h (ρ,z) accurately reproduce the thickness-

dependent part of the electrostatic potential for the appropriate
ranges of thicknesses satisfying the conditions κ � 1/h or
κ � 1/h.

B. Forces induced by an ensemble of discrete charges in a
dielectric interlayer confined by bulk dielectric medium and

electrolyte solution

Equations (12) and (15) derived above allow us to calculate
the potential induced by a single charge in the electrolyte
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FIG. 3. (Color online) The relative deviations of the potentials
calculated by analytical approximations, Eq. (15) for κh � 1 (line 1),
and Eq. (12) for κh � 1 (line 2), from those computed by numerical
integration of Eq. (8).

medium, with consideration of the polarization effects at
the interfaces. However, in real systems, interface charging
involves the formation of the ensemble of charges at the
interface. The lateral positions of these charges are disordered,
first of all because of the thermal motion of ions. We will use
the cut-out disk method [12,13,27–29] to calculate the electric
potential induced by a whole ensemble of charged entities in
the electrolyte medium. In this method, summation over an
infinite number of discrete randomly distributed charges is
replaced by integration over the surface with averaged charge
density. The charge density around the chosen point charge is
approximated in the model by a step function

σ (ρ) =
{

0 0 < ρ < ρ0

σ = q/πρ2
0 ρ0 < ρ < ∞ , (16)

where πρ2
0 is the average area per charge in the adsorption

layer. Then the full potential of the electric field, φ
(2)
� induced

at the location of a given adsorbed charge by all the other
real adsorbed charges and by all the image charges can be
calculated as

φ
(2)
� (0,0) = φ0(0,0) + 2

ρ2
0

∫ ∞

ρ0

φ(ρ,0)ρdρ, (17)

where φ0(0,0) is the potential of the field induced by all
the images of the given charge, and φ(ρ,0) is the potential
induced by a point charge at a distance ρ from the given
charge and by all its images. Combining Eqs. (17) and (12),
we get the following relation for the thickness-dependent part
of the potential in the concentrated electrolyte solution:

φ
(2)
� (0,0) = −

∞∑
k=0

(−β13)k+1 qε1

κ2ε2
2

exp[−2κz0]

×
[

1

(k + 1)3h3
− 8[

4(k + 1)2h2 + ρ2
0

]3/2

]
. (18)

The thickness-dependent part of the potential electric
energy for the monolayer of charges adsorbed in medium 2 at
the (2-1) interface is calculated as the product of the magnitude
of adsorption, �(21) at that interface on the corresponding part

of the potential energy of a single charge in the electric field
induced by other real adsorbed charges and by all the image
charges. Therefore, for the contribution of image forces to the
disjoining pressure of interlayer 1 we can write

�image = −dU

dh
= −d(qφ�)

dh
�(21). (19)

From Eqs. (18) and (19), and given that �(21) = 1/πρ2
0 ,

we obtain the expression for the image-charge component for
the disjoining pressure in a dielectric film confined by bulk
dielectric and concentrated electrolyte solution:

�image(h) =
∞∑

j=1

(−β13)j
q2ε1

κ2ε2
2

exp[−2κz0]
1

πρ0
2

×
[ −3

j 3h4
+ 96hj 2

(
4j 2h2 + ρ2

0

)5/2

]
. (20)

Recall that Eq. (20) was derived under the condition
κ � 1/h; therefore, its applicability to films with a thickness
of several monolayers (i.e., on the order of 1 nm) is justified
for solutions of symmetric 1-1 electrolyte with concentration
greater than 1M . Such solutions can be treated in the frame of
the Debye-Hückel approximation for the case of insignificant
ion-ion correlations only. Although the constraint on the
solution concentration becomes somewhat milder as film
thickness increases, strictly speaking, Eq. (20) still remains
valid only in relatively concentrated electrolytes.

By analogy with the derivation for concentrated solutions
presented above, we can combine Eqs. (17) and (15), and
performing first a differentiation over film thickness (to avoid
divergence) and then an integration over ρ, to get

�image =
∞∑

k=0

4q2ε1β
k+1
13 βk

12

(ε1 + ε2)2

1

πρ2
0

(k + 1)

×
(

1

2{[h(k + 1) + z0]}2

+ 4

ρ2
0

{[2h(k + 1) + 2z0]}√
{[2h(k + 1) + 2z0]}2 + ρ2

0

)
. (21)

As mentioned above, for sufficient strictness of Eq. (21),
the restriction κ � 1/h must hold. For 1-nm-thick films, this
corresponds to dilute electrolyte solutions with concentration
less than 10−3 M . As film thickness increases, the constraint on
the low ion concentration becomes more and more strict. At the
same time, for pure water, where Debye length is on the order
of one hundred nanometers, Eq. (21) works satisfactorily for
the wide range of thicknesses up to several tens of nanometers.

III. CONTRIBUTION OF IMAGE FORCES TO THE
STABILITY OF THIN AIR INTERLAYERS

AND WETTING FILMS

The values of the disjoining pressure calculated by Eqs. (20)
and (21) determine the contribution of image forces to the total
disjoining pressure of a thin dielectric interlayer separating the
bulk electrolyte phase and the dielectric. To assess the role of
this type of surface force in the stability of thin interlayers, we
have calculated the isotherms �image(h) for wetting films of oil
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FIG. 4. (Color online) Contribution of image forces to the dis-
joining pressure of (1) air interlayer between an electrolyte solution
and a dielectric liquid, and (2) dielectric wetting film on surface of
electrolyte solution. The calculations were performed for a concen-
trated electrolyte solution using Eq. (20) with the following values
of system parameters: ε2 = 40; κ = 10 nm−1; σ = 0.05 C m−2; z0 =
0.1 nm; ε = 2 for dielectric liquid.

on the surface of aqueous solutions and for the air interlayers
between a drop of an aqueous solution and a substrate with
a low dielectric constant. The results of calculations for a
concentrated electrolyte solution are presented in Fig. 4.

Analysis of the data suggests that screening of the surface
charge by an electric double layer in concentrated electrolyte
with a low Debye length allows for effective weakening of
the polarizing effect of the charge on the film interfaces.
As a result, the magnitude of the contribution of image
forces decreases rapidly with film thickness; for interlayers of
nanometer thickness in both the aforementioned systems, it is
as little as a few Newtons per square meter. The sign of �image

does not depend on the sign of the charge, and is determined by
the relation between the dielectric constants of the contacting
media. Thus, the image forces induce a destabilizing effect on
air interlayers, contributing to their breakthrough. Conversely,
for oil films the image forces induced by discretely charged
electrolyte-oil interface promote film stabilization.

Now consider the case of a dilute electrolyte. As follows
from Eq. (21), the isotherm of the disjoining pressure is defined
by two terms that have different character of dependence
on film thickness. For films with a thickness on the order
of a few molecular layers, the prevailing contribution comes
from the first term decaying as the inverse square of the film
thicknesses. However, for film thicknesses greater than 2 nm,
the contribution from the second term starts to dominate. This
term is almost independent of thickness. This independence
should not confuse the reader, since it is necessary to keep
in mind that Eq. (21) is valid only for those thicknesses for
which κ � 1/h. For any arbitrary electrolyte concentration
(in other words, for any fixed k) this condition breaks down
with an increase in thickness, and for large film thicknesses
(κ � 1/h) the disjoining pressure vanishes as 1/h4 according
to Eq. (20). The results of the calculation (Fig. 5) show that for
dilute electrolyte solutions the contribution of image forces
to the disjoining pressure is very significant for both the
wetting dielectric films and for the air interlayers. Again, as
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FIG. 5. (Color online) Contribution of image forces to the dis-
joining pressure of (1) air interlayer between an electrolyte solution
and a dielectric liquid, and (2) dielectric wetting film on surface
of electrolyte solution. The calculations were performed for a dilute
electrolyte solution using Eq. (21) with the following values of system
parameters: ε2 = 80; κ = 10−3 nm−1; σ = 0.05 C m−2; z0 = 0.1 nm;
ε = 2 for dielectric liquid.

in the case of concentrated solutions, these forces contribute
to stabilization of wetting films and promote the rupture of air
interlayers.

As follows from Eqs. (20) and (21), one of the key
parameters affecting the magnitude of the contribution of
image forces to the stability of thin layers is the area per
unit charge at the interface. Charging of aqueous solution–oil
and aqueous solution–gas interfaces can be flexibly varied
by changing either the pH of the aqueous solution or salt
concentration [30]. The results of calculations of the effect of
the surface charge density, σso, at the solution-oil interface (or,
in other words, of the average distance between the charges at
that interface, ρso) on the contribution of image forces to the
disjoining pressure of the oil wetting film on the surface of 1-1
electrolyte are presented in Fig. 6. Analysis of Eq. (21) and the
data presented indicates a very steep increase in the disjoining
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FIG. 6. (Color online) Dependence of image forces contribution
to the disjoining pressure on the density of surface charges. The
calculations were performed for dielectric wetting film with thickness
of (1) 1 nm and (2) 5 nm, on a surface of a dilute electrolyte solution,
using Eq. (21) with the following values of system parameters: ε2 =
80; κ = 10−3 nm−1; z0 = 0.1 nm; ε1 = 2.
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FIG. 7. (Color online) The isotherms of van der Waals (1) and
image-charge (2) contributions to the total disjoining pressure (3)
of heptane wetting film on the water surface. The calculations
of image-charge forces were performed using Eq. (21) with the
following values of system parameters: ε1 = 1.923; ε2 = 80; ε3 = 1;
κ = 10−3 nm−1; z0 = 0.1 nm; σ = 0.05 C m−2; the van der Waals
forces were calculated as described in [13].

pressure with a decrease in the average distance between
charges: For small thicknesses �image(h) is proportional to
the surface charge density, while for thicker films it scales as
the square of the charge density.

So far, we have only discussed the contribution of image
forces to the disjoining pressure of a thin interlayer. However,
the stability of wetting films or thin interlayers is determined
by the concurrent action of surface forces with various origins.
The van der Waals forces are the most ubiquitous ones present
in any system. In the systems analyzed here, charging takes
place at only one of the two film interfaces; thus, there is
no electrostatic interaction of the real charges located on the
opposite boundaries. We will also neglect the image forces
associated with a diminutive solubility of water in oil films
[13].

For a comparative analysis of the contribution of forces of
different nature to the stability of the films, we have calculated
the total disjoining pressure in a wetting oil film on the water
surface and in the air interlayer between the oil and water at a
temperature of 20 °C. The van der Waals forces were calculated
on the basis of the method and the experimental data presented
in [13,31]. Figure 7 shows the results of calculations for
heptane films on the water surface. For this system, the negative
sign of the van der Waals forces (line 1) contributes to the
destabilization of the film. In contrast, the contribution of the
image forces (line 2) is positive. When film thickness is about
1 nm, the first type of force prevails, leading to the instability
of heptane films less than 1.5 nm thick (line 3). However, due
to faster decay of the van der Waals forces compared to the
image forces for dilute solutions, the stabilization of thicker
films is possible due to the image forces effect.

For air interlayers (Fig. 8), both types of forces lead to a
negative disjoining pressure, mutually reinforcing instability
of the air gap. However, while the contribution of image forces
for a film 1 nm thick is on the order of 10% of the total
disjoining pressure, for h > 3 nm this contribution becomes
dominant. Specifically, the image forces should determine
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FIG. 8. (Color online) The isotherms of van der Waals (1) and
image-charge (2) contributions to the total disjoining pressure (3)
of air interlayer separating bulk heptane and water phases. The
calculations of image-charge forces were performed using Eq. (21)
with the following values of system parameters: ε1 = 1; ε2 = 80;
ε3 = 1.923; κ = 10−3 nm−1; z0 = 0.1 nm; σ = 0.05 C m−2; the van
der Waals forces were calculated as described in Ref. [13].

the features of the displacement of air cushions formed
between an aqueous droplet and a substrate with low dielectric
constant.

IV. CONCLUSIONS

Despite considerable advances in the theory of surface
forces, some important application-specific problems still
require theoretical study. In particular, more detailed analysis
is needed to better understand the forces that determine the
behavior of thin air interlayers arising in the contact between
an aqueous droplet and a substrate [32–34]. The study of
surface forces acting in thin wetting films of oil on the surface
of aqueous electrolyte solutions will further the advancement
in solving the problem of separating oil-water emulsions or
cleaning oil slicks from the surface of natural water basins.
The analysis performed in this work indicates that image
forces may play a key role in either stabilizing or thinning
out thin interlayers for both the air gaps and the oil wetting
films.

In the aforementioned systems, the charges are located
within aqueous electrolyte solutions close to the interface
with a thin dielectric interlayer separating the electrolyte from
another bulk dielectric medium. The distinctive feature of
this system is substantial screening of both the polarization
effects and the electrostatic forces in thin interlayers due to
the formation of diffuse ionic atmospheres, which obscure the
surface charges in the electrolyte. In addition, the discrete
character of surface charge leads to uneven distribution
of electrostatic potential in contacting media. Within the
Debye-Hückel approximation, we have derived analytical
solutions for the disjoining pressure in thin films, for the
case of either dilute or concentrated electrolyte solutions
in the aforementioned systems. Analysis of the analytical
and numerical results obtained here leads to the conclusion
that for dilute solutions, the contribution of image forces
to the disjoining pressure may significantly exceed the van
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der Waals forces for films a few nanometers thick. This
dominance of image forces would undoubtedly be especially
important for interlayers tens of nanometers thick. How-
ever, the relations derived in this work are only correct
for thicker films as long as the condition holds that film
thickness is much less than the Debye length in the electrolyte
solution.
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