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Nonstationary disordered materials and media, those for which the probability distribution function of any
property varies spatially when shifted in space, are abundant and encountered in astrophysics, oceanography,
air pollution patterns, large-scale porous media, biological tissues and organs, and composite materials. Their
reconstruction and modeling is a notoriously difficult and largely unsolved problem. We propose a method
for reconstructing a broad class of such media based on partitioning them into locally stationary zones. Two
methods are used for the partitioning. One is based on the Shannon entropy, while the second method utilizes a
watershed transform. The locally stationary zones are then reconstructed based on a cross-correlation function
and one-dimensional raster path that we recently introduced [P. Tahmasebi and M. Sahimi, Phys. Rev. Lett. 110,
078002 (2013)], with overlaps between the zones to ensure seamless transition from one zone to another. A large
number of examples, including porous media, ecological systems, disordered materials, and biological tissues
and organs, are reconstructed and analyzed to demonstrate the accuracy of the method.
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I. INTRODUCTION

Disordered media, ranging from synthetic composite mate-
rials to natural ones such as rock, biological tissues and organs,
and tree patterns in forests, are ubiquitous and of fundamental
importance to many phenomena and processes of scientific
and practical interests [1,2]. Thus, their characterization and
modeling has been a long-standing problem. In principle,
disordered materials and media may be divided into two
broad classes. In one class are spatially stationary media,
those for which the probability distribution function (PDF)
of any property does not change when shifted in space and
hence its various statistics do not vary in space. Modeling and
analysis of stationary systems have made great progress [3–6],
particularly over the past few years [7,8].

In the second class are spatially nonstationary disordered
(NSD) media, for which the PDF of any property and its
various statistical properties vary spatially when shifted in
space. Such media are also referred to as macroscopically
heterogeneous media because there is no representative vol-
ume element such that if the media’s properties are averaged
over such a volume, they will not change if measured in
larger volumes or length scales. A review of a broad class of
disordered materials and media indicates that nonstationarity
is more of a rule than an exception. Examples of NSD systems
are encountered in astrophysics [9], oceanography [10], rock at
large scales [11,12], spatial patterns of environmental pollution
[13], and biological tissues and organs [14]. In addition, medi-
cal diagnostics based on computations with three-dimensional
(3D) images [15] that are often nonstationary have become
increasingly important.

Unlike stationary media though, the problem of modeling
and analyzing the NSD systems has proven to be fraught with
difficulties. Almost all of the past approaches to the problem
suffer from shortcomings and inaccuracy or are specific to
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a particular type of system without any generality. Even in
the case of large-scale porous media, a highly important and
much studied class of NSD systems, a methodology that can
analyze them is still lacking, even though there are ample
experimental data indicating that the spatial distributions of the
porosity, permeability, elastic moduli, and wave speeds of such
porous media follow nonstationary stochastic distributions
(see below).

The goal of this paper is to introduce a general method
for accurate description of NSD media. We do this through
an inverse method, usually referred to as a reconstruction
technique [1–8]: Given a certain amount of data, one tries
to construct a model of a NSD medium that closely matches
the data such that it also provides accurate predictions for
those properties of the system for which there are no data or,
if there are such data, they are not used in the reconstruction.
Exact reconstruction is not practical, but the method that we
introduce is capable of generating accurate realizations for a
wide variety of systems.

The rest of this paper is organized as follows. In the next
section we describe how to partition a NSD system into locally
stationary zones. Section III describes the reconstruction of the
locally stationary zones based on a cross-correlation function
and a one-dimensional raster path. To quantify the accuracy of
the reconstruction we compute a multiple-point connectivity
function, which is described in Sec. IV. The results are
presented in Sec. V, while important generalizations of the
method are discussed in Sec. VI. The paper is summarized in
Sec. VII.

II. SEGMENTATION OF A NONSTATIONARY SYSTEM
INTO LOCALLY STATIONARY REGIONS

Suppose that a d-dimensional data set is available for a
NSD medium of interest, which may be numerical or in the
form of an image, such as medical images or a cross-section
of a disordered material. We consider a point x in the data
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set and a segment or window centered around it. The latter
may be divided into two components: a stationary component
and a nonstationary part that we refer to as trends. Due to the
great progress over the past few years [3–8], the stationary
component may be reconstructed accurately. Thus, the main
task is to account for the trends that may be either deterministic
or stochastic. If the trends are only mildly varying or are of
low-variance statistics type, then accounting for them is not
too difficult. Our goal here, however, is devising a general
method that is capable of modeling strongly varying trends.
Breaking a data set into a stationary part plus trends has already
been developed for nonstationary time series and proven to be
successful [16]. Here we describe two methods for partitioning
a nonstationary medium into a set of locally stationary zones.

A. Partitioning based on the Shannon entropy

We describe the method for 2D media; its extension to
3D media will be clear. Let G represent the computational
grid used in the reconstruction, partitioned into blocks or
templates of size Lx × Ly . Likewise, the target system (TS) to
be reconstructed is partitioned into exactly the same number
of blocks of the same size Lx × Ly . The templates of G and
the TS are denoted, respectively, by TG and TTS. We denote by
DT (u) the data event at position u in TG, i.e., a realization of the
disorder generated to reconstruct the template TG centered at
u. We use “event” instead of “set” because the realization of the
disorder may change during the reconstruction. Between every
two neighboring blocks is an overlap region O of size �x × �y ,
representing DT , where �x = Lx and �y � Ly if the overlap
region is between two neighboring blocks in the vertical (y)
direction and �y = Ly and �x � Lx if the O is between two
neighboring templates in the x direction (see Fig. 1). The
purpose of the O regions is to preserve the continuity near the
common boundary between two neighboring blocks within a
stationary segment i, referred to as SSi , as well as between
neighboring blocks, but in two distinct segments SSi and SSj .

Figure 1 shows the schematic representation of the ap-
proach. The segmentation is carried out along a 1D raster path,
as shown in Fig. 1(a). Suppose, for example, that the 1D raster
path is along the horizontal (x) direction. The algorithm begins
at the path’s origin in G (the leftmost bottom template T(1)

G )
and moves along the raster path. It first identifies those blocks
of the TS that contain T(1)

TS and constitute a locally stationary
region. To identify them, one begins with T(1)

TS and computes
its Shannon entropy [17], given by

S1 = −
n∑

i=1

pi ln pi, (1)

with pi = (histogram of sample i)/(length of the sample) be-
ing the probability of having a state i in the TS and n the
number of pixels in the block. Here S1 is calculated by the
same method if the TS is not represented by an image but
by a data set. Then, beginning with T(1)

TS, we compute the
corresponding entropies of the nearest neighbors, next nearest
neighbors, etc., of T(1)

TS in both directions and denoted them
by S2,S3, . . . . So long as entropies S1,S2, . . . constitute a
second-order stationary set (or third order, if need be), i.e., one
for which the average and variance (and the third moment in

FIG. 1. (a) Two-dimensional grid G with the overlap regions O.
Arrows indicate the direction of the raster path. (b)–(e) Four locally
stationary zones. Numbers indicate the order by which the templates
are reconstructed.

the case of third-order stationarity) are spatially invariant, we
consider the blocks as belonging to the same locally stationary
zone. However, if the stationarity of the computed entropies is
lost, the search stops and one obtains a zone of the TS of size
m1 × n1 blocks that is locally stationary. Figure 1(b) shows
a 3 × 3 zone. The same procedure is used for the rest of the
TS blocks in order to identify other locally stationary zones.
Figures 1(c)–1(e) present several such segments. Each zone
is characterized by its own statistics and the trends are the
variations of such statistics between the zones.

B. Partitioning based on the watershed transform

The watershed transform (WST) is a method used for
partitioning a given system into various distinct parts and
is based on an image. In doing so, the general shapes and
topography of three distinct set of points are considered that are
(i) the local minima, (ii) the points between two different local
minima, and (iii) the points with a probability (of occurrence)
equal to that of the local minima. The idea behind the WST
is quite simple: Suppose that there is a hole in each local
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minimum through which water can flow with a constant flux.
After a while, one sees the separation bridges or lines that
prevent merging the water from different holes. Such lines
represent the watershed boundaries that are good indicators
for feature partitioning [18–21].

An important application of the WST is identifying similar
and distinct segments in an image. Clearly, if a region
contains small variations in some properties, it also has small
gradients in the same properties. This is taken advantage
of for identifying the distinct segments. First, the system is
partitioned into cells or blocks. Then each cell is expanded
by adding the boundary points to it, i.e., the points in the
neighboring cells. This is done by computing a distance
function between two points x and y, defined by

d(x,y) = inf

{∫
γ

||∇f [γ (s)]||ds

}
, (2)

which defines a geodesic distance where the infimum is over all
the paths γ inside the domain that we consider. The topological
distance between a point x and a set in the domain is the one
that minimizes d, which also has the minimum slope among
all the paths. In the present case the function f is simply the
pixelated image TS. Clearly, if two pixels are similar or if
the average values of the pixels within two neighboring cells
are equal or very close, then d ≈ 0. Thus, adding a new point
is continued only if that point is at a smaller distance d to
the region than to the other regions (hence smaller or zero
gradient in the property). The process of adding the points
continues until there is no eligible point. Then the remaining
points represent the watershed lines or boundaries.

The WST method is most useful for use in identification
of locally stationary zones of disordered media in which there
are large contrasts between the various zones. An example is a
fractured porous medium in which not only the permeabilities
of the porous matrix and the fractures differ by orders of
magnitudes, but the distribution of the orientations of the
fractures may also vary from zone to zone. Another system
for which the WST method is useful is a two-phase material in
which the conductivities or elastic properties of the two phases
differ very significantly. An example is shown in Fig. 2(a) in
which the dark areas represent, for example, high conductivity
or permeability regions, while the white areas indicate the
opposite. It is straightforward to show that the medium is
nonstationary. In this particular case one can visually detect
three different zones. However, the aim is to use the WST to
systematically identify such zones in a complex NSD medium.

FIG. 2. (a) Nonstationary fracture surface [38] and (b) its recon-
struction by the method for stationary media [8].

The WST method is suitable for such systems due to the
essence of the algorithm, namely, the aforementioned flowing
water that creates large contrasts between the watershed lines
and the catchment basins. Without defining any number of
regions or partitioning the system into several regions, we use
the WST to identify and separate the locally stationary regions.
If, however, we use the algorithm suitable for stationary
systems [8] for reconstructing the medium shown in Fig. 2(a),
we obtain the realization shown in Fig. 2(b) that cannot clearly
distinguish the distinct directional dark regions in various
zones.

In practice, given the TS, an initial segmentation procedure
consists of (a) clustering neighboring pixels following an
order based on increasing intensity gradients (and hence the
distance d) and (b) splitting the TS into different locally
stationary zones. The equivalent to the watershed line is the
line separating two different locally stationary zones. Consider
two sinks, for example, two opposite boundaries of a NSD
medium, such as a fractured porous medium. If the TS is
already pixelated, then one can directly use it. Otherwise, it is
first partitioned into cells or blocks that are ranked according
to the intensity of the gradients, leading to a ranked surface.
They are sequentially occupied according to the rank, from
the lowest to the highest. Neighboring occupied blocks are
then connected and considered part of the same zone, except
if their connection would promote the density of the two
areas towards different sinks. This can happen when different
orientations change the flow direction that creates a different
sink. In this case, their connection is avoided as they should
belong to different zones. The edge between them is part of
the watershed. At the end of the process, the set of such edges
forms one single watershed line that splits the TS into two
separate zones.

Thus, the WST method may be summarized as follows.
(i) Partition the TS into cells or blocks of fixed sizes. If the

TS is a pixelated image, it will not need partitioning.
(ii) Identify the edges between the background and the high

contrast regions. If the disordered medium is more or less a
binary one, i.e., one in which the two phases are more or less
uniform, but with strong contrast between the two, we first
carry out a preprocessing of the TS by filtering it. To do so,
we use two matrices

Fx =
⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦ , Fy =

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ (3)

for filtering in the x and y directions in 2D systems (and
similarly in 3D for which one must use nine matrices). Then
the quantities

Cx(n1,n2) = Fx ∗ T

=
3∑

k1=1

3∑
k2=1

Fx(k1,k2)T (n1 + k1,n2 + k2),

(4)
Cy(n1,n2) = Fy ∗ T

=
3∑

k1=1

3∑
k2=1

Fy(k1,k2)T (n1 + k1,n2 + k2),
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FIG. 3. (Color online) Segmentation of fracture surface of Fig. 2
by using the watershed transform.

where ∗ denotes the convolution operator, T represents the
target system TS, and the coordinates of the pixels are (n1,n2).
Finally, the quantity

G(n1,n2) =
√

C2
x (n1,n2) + C2

y (n1,n2) (5)

is calculated. It is G(n1,n2) that is used in the computations
with the WST, rather than the TS itself, because the computa-
tions are typically much more accurate when a preprocessing
is carried out and thus G(n1,n2) is used.

(iii) Select a point at random and calculate the distances
d, defined by Eq. (2), between that point and the neighboring
points.

(iv) Add the neighboring points to a list of points that belong
to the zone that contains the randomly selected point if the
criterion for the addition is met. The criterion for addition is
that the distance between two points must be smaller than a
threshold value.

(v) If the list has been expanded (by adding new points to
it), repeat (iv).

(vi) Label all the points in the immediate neighborhood of
the list as the watershed line.

(vii) Repeat (iii)–(vi) until the identification of the locally
stationary zones is complete.

The same procedure is used if the TS is partitioned
into blocks or cells, except that one first calculates the
average property value (or pixels) within the cell and then
computes the distance function between a point representing
the average and those in the neighboring blocks or cells. For
example, the result for partitioning the nonstationary medium
of Fig. 2(a) is shown in Fig. 3, indicating that the WST has
correctly identified the three distinct nonstationary zones of the
medium.

Note that one can use larger matrices Fx and Fy , such as
5 × 5 or 7 × 7 matrices [in which case the sums in Eq. (4)
will run from 1 to 5 or to 7, respectively], but doing so will
also increase the computation time, and our own experience
indicates that the 3 × 3 matrices suffice for good accuracy.
One also can use other types of filters as a preprocessing step
before using the WST. For example, by using an erosion or
dilation filter one can remove or connect small features in a
TS to other structures. Such filters allow one to increase the
size of the system to be studied.

III. RECONSTRUCTION BASED ON A
CROSS-CORRELATION FUNCTION

The next step is to reconstruct the identified locally
stationary zones. The reconstruction may be unconditional,
one in which the reconstructed system does not have to
honor exactly specific hard (quantitative) data in the TS, or
conditional, one in which a certain amount of hard data must
be honored. We first describe the unconditional case, after
which the conditional case will be briefly described.

A. Unconditional reconstruction

The reconstruction of the locally stationary zones is carried
out by the method that we recently introduced [8] for stationary
media, where we demonstrated that, using a single 2D slice of
a 3D stationary medium as the input data, the method produces
accurate realizations of the entire 3D medium. Thus, not only
is the method accurate, it also addresses the long-standing
practical problem of how to reconstruct a 3D medium based
on 2D data. For completeness we describe the method here.
Let SSi(x,y) represent the datum at point (x,y) of a locally
stationary zone SSi . Examining SSi , one focuses on a portion
DT (u) of size �x × �y , the O region, and reconstructs it based
on a matching between the O and the entire SSi . We use a
cross-correlation function (CCF) [8] to quantify the quality of
the matching:

C(j,k) =
�x−1∑
x=0

�y−1∑
y=0

S(x + j,y + k)DT (x,y), (6)

with j and k varying within the entire SSi , where S is the
stationary segment. Equation (6) indicates that the desired
position of (j,k), the best match with the SSi , is one that
maximizes C(j,k). Thus, the reconstruction of each locally
stationary segment proceeds as follows [8]. Note that Eq. (6)
is completely similar to Eqs. (4); that is, the CCF is simply a
convolution.

(i) As the location of the CCF’s maximum is not known a
priori, we use 1/C and set a threshold 0 � δ � 1. If δ = 0, the
matching between the O regions and SS1 is perfect, whereas
δ > 0 generates an ensemble of realizations that do not match
the SS1 exactly. After some preliminary simulations we used
δ = 0.2.

(ii) The blocks of G along the raster path (Fig. 1) are
reconstructed one by one. For block 1 we generate several
realizations of the disorder in SS1, based on and constrained
by its statistics (such as the volume fractions of the phases) or
by sampling SS1. For each realization the CCF between the O
region of block 1 (to its right at the interface between blocks
1 and 2) and the entire SS1 is computed. Any realization for
which 1/C < δ is accepted; otherwise, it is discarded.

(iii) Once a large enough ensemble of acceptable realiza-
tions is generated, one of them is selected at random and
inserted in block 1. Typically, one generates 30–50 acceptable
realizations.

(iv) Next block 2 along the raster path within SS1 is filled
up with an acceptable realization of the disorder by steps (ii)
and (iii), the new O with the next block to be reconstructed is
identified, and the procedure is repeated.
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(v) Once the blocks of SS1 along the raster path have
been reconstructed, the algorithm moves into the next locally
stationary segment SS2, which may share a row of blocks with
SS1 or a row of the O regions, which make the transition from
SS1 to SS2 seamless. The algorithm then reconstructs blocks
4–10 shown in Fig. 1(c), using only the properties of SS2.
Once the blocks along the 1D raster path at the bottom of the
TS have been reconstructed, the path is continued on the next
horizontal row of blocks shown in Fig. 1(b).

(vi) To reconstruct block 11 in Fig. 1, we proceed in
the same way as for block 1 (using the image or statistics
of SS1). Note that block 12, for example, contains two O
regions, one with block 10 and another with block 2. In
this way all blocks of SS1 and SS2 are reconstructed. The
algorithm then moves into the locally stationary segment SS3

and reconstructs its blocks along the raster path, until it reaches
SS4 and proceeds in a similar manner. The process continues
until a realization of the completely reconstructed TS is
obtained. Clearly, one can generate multiple realizations of the
medium.

B. Conditional reconstruction

In this case the TS contains some hard data (HD) that must
be honored exactly, due to which the data event DT is the
entire block, not just the overlap regions O. Thus, conditional
reconstruction is a two-step process. First, one identifies
the realizations that honor the HD and then determines the
matching with DT . The algorithm computes the CCF and
checks whether 1/C < δ, where δ is the threshold. Those
realizations that honor the HD are identified and one of them
is selected randomly and inserted in the reconstruction grid G.

A problem may arise if the TS is very large or if
the generated realizations do not honor the HD, leading
to discontinuities and failure of the reconstruction. Such a
case, which is extremely rare, may be addressed by several
approaches. One is to increase the threshold δ to obtain new
realizations that, although they may have more significant
differences with the O regions that are larger than those with
a lower value of δ, are still acceptable. However, increasing
δ also allows the incorrect patterns to enter the ensemble,
which may subsequently lead to the generation of a poor
realization of disorder. An alternative approach is based on
template splitting. First, the patterns of disorder that honor the
HD with the initial threshold δ are identified. If, however, no
such pattern exists, the sector template is split into smaller
templates and the reconstruction proceeds with smaller parts.
The splitting continues until the ensemble of the disorder
patterns that honor the HD has at least one member.

If the medium under consideration is anisotropic, then the
proposed method will need modification for certain types of
anisotropy. For example, if the anisotropy is due to layering,
as is the case in large-scale porous media, then each layer
is by itself isotropic and it is the stratification that gives
rise to anisotropy. In that case, the method is still accurate.
All one has to do is use smaller templates or grid blocks at
the interfaces between the various layers. If, however, the
anisotropy is due to other more complex factors, such as the
direction-dependent pore-size distribution, then the method
would need modification, a matter that is currently under study.

C. Parameters of the algorithm

The algorithm’s parameters are the size of the templates, the
size of the overlap regions O, and the threshold δ for accepting
a realization of the disorder. The size of the O regions is a
fraction of the templates’ size (see Fig. 1) and is fixed once the
templates’ size is set. Our study of the stationary systems [8], as
well as the nonstationary ones described here, indicated that the
templates’ size is the most important factor. The size depends
on the heterogeneity of the TS: For a relatively homogeneous
TS a coarse grid suffices, whereas highly disordered media
require grids with small blocks. Thus, the templates’ size is
decided by the desired precision.

IV. CONNECTIVITY FUNCTION

To quantify the accuracy of the reconstructed systems, we
compute a general connectivity function for both the TS and
its reconstruction, which is the multiple-point connectivity
(MPC) function that has been used [8,22] in reconstructing
large-scale geological formations. The MPC is the probability
p(r; s) of having a sequence of s points in a phase in a
multiphase structure in a given direction r. If an indicator
function I (i)(u) is defined by

I (i)(u) =
{

1 for u ∈ phase i

0 otherwise, (7)

then p(r; s) is given by

p(r; s)

= Prob{I (i)(u) = 1,I (i)(u + r) = 1, . . . ,I (i)(u + sr) = 1}.
(8)

For the results that are described in this paper we computed
p(r; s) for s = 100. We emphasize that matching p(r; s) for
a complex system with that of its reconstruction is a highly
stringent test of the accuracy of the method, as one demands a
large number of points to be in the same phase, as opposed to
the two-point requirement used in the past. For convenience
we denote the MPC function by p(r).

V. RESULTS

In what follows we present and discuss several examples,
selected from a variety of disciplines. In almost all the cases,
we generated several realizations of reconstructed TS and
computed the MPC function, all of which will be presented
below.

A. Porous media

Various properties of large-scale porous media, such as oil
reservoirs and groundwater aquifers, are correlated, with the
correlations being long ranged and nondecaying. The spatial
distribution of the properties of such porous media, such
as their permeability and elastic moduli, is often described
[12,23] by a fractional Brownian motion (FBM), a nonsta-
tionary stochastic process with a covariance function given by

C(r) − C(0) ∼ r2H , (9)
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TS

Reconstructed

0
0.05

0.1
0.15

0.2
0.25
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0.35
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1 21 41 61 81

p(
r)

r

Digi�zed Image
CCFReconstructed
TS

FIG. 4. (Color online) The TS is a 3D model of a large-scale
porous medium, generated by the FBM. Shown are its reconstruction
and a comparison between the computed MPC functions p(r).

where r is the distance between two points and H is the Hurst
exponent such that H > 1/2 (H < 1/2) indicates long-range
positive or persistent (negative or antipersistent) correlations,
whereas H = 1/2 represents the case in which the increments
of the FBM are random. We generated a 3D system of
size 120 × 120 × 64 using the FBM with H = 0.6. Figure 4
presents the model porous medium along with three examples
of its reconstructed model. Also shown is a comparison of
the computed MPC functions p(r) (where r = |r|) for the
realizations and the original TS. The agreement is illuminating
in that, since the synthetic porous medium is precisely
nonstationary, the method reproduces it very closely as well.

Another 3D example, shown in Fig. 5 [24], is also a
synthetic complex porous medium of size 200 × 150 × 30
in which the permeability varies spatially. Oil reservoirs
typically have such a structure [25]. The nonstationarity of
the medium is due to different distributions of the orientations
and thicknesses of the channels in various zones, and large
contrasts between the channels and the background. Its
reconstructed model and a comparison between the computed
MPC functions are also shown in Fig. 5. Once again, the
agreement is excellent.

The next two examples are provided by 2D spatial distri-
butions of ellipses. Figure 6 [26] presents one in which the
TS is composed of a uniform background in which oriented
ellipses, aligned in two distinct directions, at 45◦ and 135◦
relative to the horizontal line, have been distributed. The size
of the system is 200 × 200. Shown also is the reconstructed
system and a comparison of the computed MPC functions.
The agreement is very good. A more complex example of
the same type of system is shown in Fig. 7, where the TS
contains a distribution of ellipses with some of them having

TS Reconstructed

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

1 51 101

p(
r)

r

Digi�zed Image
CCF
TS
Reconstructed

FIG. 5. (Color online) The TS is a synthetic complex three-
dimensional porous medium in which the permeability varies spa-
tially. The nonstationarity is due to different distributions of the
orientations and thicknesses of the channels in various zones.

two main variable properties, their orientation and thickness
[27]. The orientations vary from the upper to lower parts,
while the thickness of the particles is different in the upper
or lower part and middle parts. The size of the system
is 100 × 250. Figure 7 also presents reconstruction of the
system and compares the computed MPC functions. Overall,
the agreement is reasonable.

TS Reconstructed

0

0.1
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0.4

0.5
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1 21 41 61 81

p(
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CCF
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FIG. 6. The TS is a distribution of oriented ellipses, aligned in
two distinct directions, at 45◦ and 135◦, relative to the horizontal line.
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TS Reconstructed

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 11 21 31 41

p(
r)

r

Digi�zed Image
CCF
TS
Reconstructed

FIG. 7. The TS is a distribution of ellipses in which some ellipses
have two main spatially varying properties, orientation and size. The
orientations are from the upper to lower part and the thicknesses are
different in the upper or lower part and middle parts.

The last example is a cross section of a fracture surface
of rock shown in Fig. 8, which was already described in the
discussion of the watershed transform. The size of the system
is 100 × 140, in which the fractures have a constant thickness,
but are orientated [27] with the orientation distributions being
different in various zones. Three examples of its reconstruction
and a comparison of the computed MPC functions are also
shown in Fig. 8. The agreement is excellent. In fact, for some
of the realizations one cannot even distinguish between the
MPC functions for the TS and the realization.
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FIG. 8. The TS is a fracture pattern in a cross section of rock.
Shown are its reconstruction and the comparison of the MPC
functions.
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FIG. 9. (Color online) The TS is a shallow-water tidal-dominated
system.

B. Ecological systems

Next we present the results for several ecological systems.
The first example is one in which the TS is a shallow-water,
tidal-dominated system [28] with a size of 200 × 500. The
comparison of the original TS and its reconstructed model as
well as the computed MPC functions for several realizations
and the TS are shown in Fig. 9. The agreement between the
two is good. Another example is provided by the delta of
the Ganges River [29], a highly complex and nonstationary
system. We reconstructed the map with a size of 400 × 300.
The results are shown in Fig. 10. The agreement between
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FIG. 10. (Color online) The TS is the delta of the Ganges River.
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FIG. 11. Conditional reconstruction of the delta of a river with
many channels or, more generally, a disordered branched structure.
We also indicate the spatial distribution of the hard data. Note that
the nonstationarity of the system is due to the average and variance
of the channels’ thickness and orientation being different in all the
directions.

the original map and the reconstructed model is very good,
particularly given the complexity of the system.

To illustrate the result with conditional simulation, we
consider the system shown in Fig. 11 [30], a highly complex
nonstationary system of size 200 × 200. Also shown are the
hard data for both the background and branching structure. The
reconstructed system and a comparison of the computed MPC
functions are also shown in Fig. 11. Once again, the agreement
is excellent. Clearly, honoring the HD imposes a more stringent
constraint on the reconstruction process, resulting in even
better agreement.

The next example is a cross section of a dicot wooden
stem, magnified by a factor of 400 [31] and shown in Fig. 12.
A stem is one of two major structural axes of a vascular plant.
The image was digitized into a 300 × 400 grid, the same as
that of the grid G. Its reconstruction and a comparison of the
computed MPC functions are also presented in Fig. 12. The
agreement is excellent.

C. Disordered materials

One way of fabricating various structures and materials
made of inorganic nanoparticles is through the self-assembly
by exploiting the interfacial properties of the particles in a
solution [32]. We consider an image of a self-assembly of
nanosize spherical SiO2 particles [33], shown in Fig. 13. The
image was partitioned into a 300 × 400 grid and reconstructed
using a grid G of the same size. The results are shown in
Fig. 13, indicating good agreement.

Another example is provided by the cross section of a
synthetic fracture surface of a disordered material of size
100 × 200, shown in Fig. 14 [34]. Its reconstruction and
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FIG. 12. Cross section of the TS, dicot wooden stem, and its
reconstruction. Shown are the computed MPC functions.

comparison of the computed MPC functions are also shown in
Fig. 14. The agreement is good, given the complexity of the
system.

D. Biological tissues and organs

Imaging, computing, and analyzing living organs have
become a highly active research field [14,15]. Figure 15
presents a part of an image of a child’s brain [35]. A grid
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FIG. 13. The TS is a self-assembly array of SiO2 nanosphere.
Shown are its reconstruction and the computed MPC functions p(r).
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FIG. 14. The TS is a synthetic fracture surface. The fractures have
a constant thickness, but are oriented, with the orientation distribution
being different in various regions.

G of size 354 × 481, the same as that of the TS, was used to
reconstruct and analyze the image. The results are shown in
Fig. 15. The reconstruction mimics closely the original image.
The quality of the reconstructed model can be improved further
and extended to full 3D images.

The final example is a cross section of human skin [36],
shown in Fig. 16, a notoriously complex material. The
agreement between the original image of size 200 × 400 and
its reconstructed model, measured in terms of the closeness of
the computed MPC function for both, is good.
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FIG. 15. The TS is a 2D image of a child’s brain. Shown are
a realization of its reconstructed image and the comparison of the
computed MPC functions.
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FIG. 16. The TS is a cross section of human skin.

E. Numerical comparison

To further test the accuracy of the reconstruction method,
we also computed the effective permeabilities of the model
porous media shown in Figs. 4 and 5. The effective permeabil-
ities of the model in Fig. 4 are 0.124, 0.85, and 0.101 (arbitrary
units) in the x, y, and z directions, respectively. The average
effective permeabilities of the reconstructed models were
0.121, 0.88, and 0.100, respectively. Similarly, the effective
permeabilities of the model porous medium in Fig. 5 were
computed to be 1.125, 0.98, and 1.114 in the x, y, and z

directions, while the corresponding average permeabilities of
the reconstructed models turned out to be 1.135, 1.104, and
1.121. In both cases, the agreement is excellent.

VI. DISCUSSION

Two important aspects of the method that we describe in
this paper deserve further discussion.

A. Reconstruction of three-dimensional systems using
two-dimensional data

In two previous papers [8] we showed how the method
that we proposed is capable of reconstructing 3D stationary
materials and media based on a single 2D slice of data. Clearly,
the same method cannot be used for nonstationary disordered
media. While our work on extending a modification of the
method proposed in [8] to nonstationary media is ongoing,
we suspect that if a nonstationary medium contains n locally
stationary zones, at most n 2D slices of data, one from each
zone, would be sufficient to reconstruct a 3D NSD medium.
Thus, one uses the 2D slices as the hard data that must be
honored and utilizes the method described in this paper to
reconstruct the rest of the system.

B. Integrating several types of data

In this paper the TS was represented by an image. However,
we point out that our reconstruction method is not the only
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one that uses a conceptual framework, the image of the TS,
for reconstruction; others have done the same in the past.
Moreover, with 3D printing approaching commercialization,
reconstruction of 3D images based on 3D images obtained
from printing will be a powerful tool for generating models of
3D disordered media.

However, what distinguishes the proposed method from the
previous ones is that the CCF is a multiscale function and as
such it contains information from all the length scales relevant
to the medium under consideration. More importantly, in a
separate paper [37] we have shown how to integrate various
types of data, in terms of either images or numerical data
(such as the porosity distribution or well log data), with the
basic method based on the CCF that we introduced previously
[8] and used in this paper to reconstruct the locally stationary
zones in a NSD medium. Briefly, suppose that one has m types
of hard (quantitative or numerical) and/or soft (qualitative)
data. One computes, according to the number of variables
at hand, the corresponding CCFs and hence selects the final
pattern of heterogeneity based on such functions. Thus, Eq. (6)
is generalized to

Coverall(x) = CT (DT ,T ) +
m∑

k=1

ωkCkT (kDT ,kT ), (10)

where 0 � ωk � 1 is the weight for the kth TS or data set, CkT
is its corresponding CCF, and kDT is the data event for the kth
type of data. One may include any type data, both numerical
and in the form of images. Extensive discussions and examples
are described elsewhere [37].

VII. SUMMARY

This paper describes a method for reconstruction of
nonstationary materials and media. The method is based on

partitioning a nonstationary medium into locally stationary
zones and reconstructing each zone based a cross-correlation
function and a one-dimensional raster path that we introduced
previously [8]. The segmentation of the nonstationary system
into locally stationary zones is done by two distinct methods.
One is based on Shannon entropy, while the second method
is based on a technique introduced in the present paper,
which is based on watershed transform. It was demonstrated
that the method generates highly accurate reconstruction and
realizations a wide variety of materials and media.

In our view, the advantages of the approach are (i) low
computational cost, (ii) high accuracy, (iii) applicability to
any type of nonstationary system, (iv) the possibility of
incorporating hard data to be honored exactly, and (v) the
possibility of carrying the computations in a parallelized mode.

Past experience [1,2] has indicated that a reconstruction
method that regenerates only low-order statistics of a disor-
dered medium is not sufficient for reproducing the high-order
ones and thus a high-quality model. Our method addresses this
deficiency by directly generating realizations of multiple-scale
structures in a stochastic manner that reproduce the medium’s
multiple-point statistics through the CCF and the overlap
regions.

Clearly, the method is not expected to be accurate for all
types of materials and media. Our work has targeted highly
heterogeneous materials and media and the results presented
here and in Ref. [8] demonstrate that the method is accurate
for reconstructing them. Whether it can be equally accurate
for other types of media remains for future investigations.
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