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Asymmetric crystallization during cooling and heating in model glass-forming systems
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We perform molecular dynamics (MD) simulations of the crystallization process in binary Lennard-Jones
systems during heating and cooling to investigate atomic-scale crystallization kinetics in glass-forming materials.
For the cooling protocol, we prepared equilibrated liquids above the liquidus temperature Tl and cooled each
sample to zero temperature at rate Rc. For the heating protocol, we first cooled equilibrated liquids to zero
temperature at rate Rp and then heated the samples to temperature T > Tl at rate Rh. We measured the critical
heating and cooling rates R∗

h and R∗
c , below which the systems begin to form a substantial fraction of crystalline

clusters during the heating and cooling protocols. We show that R∗
h > R∗

c and that the asymmetry ratio R∗
h/R

∗
c

includes an intrinsic contribution that increases with the glass-forming ability (GFA) of the system and a
preparation-rate dependent contribution that increases strongly as Rp → R∗

c from above. We also show that the
predictions from classical nucleation theory (CNT) can qualitatively describe the dependence of the asymmetry
ratio on the GFA and preparation rate Rp from the MD simulations and results for the asymmetry ratio measured
in Zr- and Au-based bulk metallic glasses (BMG). This work emphasizes the need for and benefits of an improved
understanding of crystallization processes in BMGs and other glass-forming systems.
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I. INTRODUCTION

Crystallization, during which a material transforms from
a dense, amorphous liquid to a crystalline solid, occurs via
the nucleation and subsequent growth of small crystalline
domains [1]. Crystallization in metals has been intensely
studied over the past several decades with the goal of
developing the ability to tune the microstructure to optimize the
mechanical properties of metal alloys [2–4]. However, in situ
observation of crystallization in metallic melts is limited due
to the rapid crystallization kinetics of metals [5–7].

In contrast, bulk metallic glasses (BMGs), which are
amorphous metal alloys, can be supercooled to temperatures
below the solidus temperature Ts and persist in a dense,
amorphous liquid state over more than 12 orders of magnitude
in time scales or viscosity [8]. Deep supercooling of BMGs
provides the ability to study crystallization on time scales that
are accessible to experiments [9–12].

These prior experimental studies have uncovered funda-
mental questions concerning crystallization kinetics in BMGs.
For example, when a BMG in the glass state is heated to a
temperature Tf < Ts in the supercooled liquid region, crystal-
lization is much faster than crystallization that occurs when the
metastable melt is cooled to the same temperature Tf [13,14].
Asymmetries in the crystallization time scales upon heating
versus cooling of up to two orders of magnitude have been
reported in experiments [15,16]. The asymmetry impacts
industrial applications of BMGs because rapid crystallization
upon heating limits the thermoplastic forming processing time
window for BMGs [17–20].

Recent studies have suggested that the asymmetry in the
crystallization time scales originates from the temperature
dependence of the nucleation and growth rates [15], i.e.,
that the nucleation rate is maximal at a temperature below

that at which the growth rate is maximal. According to this
argument, crystallization upon heating is faster because of
the growth of the nascent crystal nuclei that formed during
the thermal quench to the glass. In contrast, crystallization is
slower upon cooling since crystal nuclei are not able to form
at high temperatures in the melt. However, there has been no
direct visualization of the crystallization process in BMGs,
and it is not yet understood why the asymmetry varies from
one BMG to another [21] and how sensitively the asymmetry
depends on the cooling rate Rp used to prepare the glass.
An improved, predictive understanding of the crystallization
process in BMGs will aid the design of new BMG-forming
alloys with small crystallization asymmetry ratios and large
thermoplastic processing time windows.

We employ molecular dynamics (MD) simulations of bidis-
perse spheres interacting via Lennard-Jones potentials [22–24]
to visualize directly the crystallization process upon heating
and cooling in model metallic glass-forming systems. We per-
form thermal quenches of the system from a high-temperature
Ti in the equilibrated liquid regime to a glass at Tf = 0 and vary
the cooling rate Rc by several orders of magnitude. For cooling
rates below the critical cooling rate Rc < R∗

c , the system
begins to crystallize, whereas for Rc > R∗

c , the system remains
amorphous. We also performed MD simulations in which we
heat the zero-temperature glassy states (prepared at cooling
rate Rp > R∗

c ) through the supercooled liquid regime to Tf =
Ti over a range of heating rates Rh. For heating rates Rh < R∗

h,
the system begins to crystallize, whereas for Rh > R∗

h, it
remains amorphous. We also find that the critical heating
rate has an intrinsic contribution R∗

h(∞) and an Rp-dependent
contribution R∗

h(Rp) − R∗
h(∞) that increases with decreasing

Rp. We measured the asymmetry ratio R∗
h/R

∗
c as a function

of the glass-forming ability (GFA) and Rp for several binary
Lennard-Jones mixtures and find that R∗

h/R
∗
c > 1 and the ratio
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grows with increasing GFA and decreasing Rp. We show that
these results are consistent with predictions from classical
nucleation theory (CNT) that the maximal growth rate occurs
at a higher temperature than the maximal nucleation rate and
that the separation between the nucleation and growth peaks
increases with the GFA. Further, CNT is able to qualitatively
recapitulate the dependence of the asymmetry ratio on the
GFA as measured through R∗

c for both our MD simulations
and recent experiments on BMGs as well as on Rp for the MD
simulations [25].

The remainder of the manuscript is organized into three
sections: In Sec. II, we describe the MD simulations of binary
Lennard-Jones mixtures, the computational methods to detect
and structurally characterize crystal nuclei, and measurements
of the critical cooling and heating rates, R∗

c and R∗
h. In Sec. III,

we show results from MD simulations for the time-temperature
transformation diagram [26] and the asymmetry ratio R∗

h/R
∗
c

as a function of the glass-forming ability as measured by the
critical cooling rate R∗

c and the cooling rate used to prepare the
zero-temperature glasses Rp. We also compare our simulation
results for the asymmetry ratio to experimental measurements
of the ratio for two BMGs and to predictions of the ratio from
classical nucleation theory. In Sec. IV, we briefly summarize
our results and put forward our conclusions.

II. METHODS

We performed MD simulations of binary Lennard-Jones
(LJ) mixtures of N = NA + NB spheres with mass m at
constant volume V = L3 in a cubic simulation box with
side length L and periodic boundary conditions. We studied
mixtures with NA = NB and diameter ratio α = σB/σA < 1.
We employed the LJ pairwise interaction potential between
spheres i and j :

u(rij ) = 4ε[(σij /rij )12 − (σij /rij )6], (1)

where rij is their center-to-center separation, ε is the depth of
the minimum in the potential energy u(rij ), σij = (σi + σj )/2,
and u(rij ) has been truncated and shifted so that the potential
energy and force vanish for separations rij � 3.5σij [27]. We
varied the system volume V to fix the packing fraction φ =
πσ 3

A(NA + α3NB)/6V = 0.5236 [28] at each diameter ratio
α. For most simulations, we considered N = 1 372 spheres,
but we also studied N = 4 000 and 8 788 to assess finite-size
effects. Below, energy, length, time, and temperature scales are
expressed in units of ε, σA, σA

√
m/ε, and ε/kB , respectively,

where the Boltzmann constant kB has been set to be unity.

A. Cooling and heating protocols

For each particle diameter ratio, which yield different
glass-forming abilities, we performed MD simulations to
cool metastable liquids to zero temperature and heat zero-
temperature glasses into the metastable liquid regime to mea-
sure R∗

c and R∗
h at which the systems begin to crystallize. To

measure R∗
c , we first equilibrate the system at high temperature

Ti = 2.0 using a Gaussian constraint thermostat [27]. We then
cool the system by decreasing the temperature linearly at rate
Rc from Ti to Tf = 0:

T (t) = Ti − Rct. (2)

To measure the critical heating rate R∗
h(Rp) at finite rate Rp,

we first prepare the systems in a glass state by cooling them
from the high-temperature liquid state to zero temperature
at rate Rp > R∗

c . To measure the intrinsic critical heating
rate R∗

h(∞), we quench the systems infinitely fast to zero
temperature using conjugate gradient energy minimization.
For both cases, we heat the zero-temperature glasses using a
linear ramp,

T (t) = Rht, (3)

until Tf = 2.0. For both heating and cooling protocols, we
carried out Ntot = 1 000 independent trajectories and averaged
the results.

B. Identification of crystal nuclei

To detect the onset of crystallization in our simulations [15],
we differentiate “crystal-like” versus “liquid-like” particles
based on the value of the area-weighted bond orientational
order parameter for each particle [29–31]. We define the
complex-valued bond orientational order parameter for par-
ticle i:

qlm(i) =
∑Nb

j=1 AijYlm[θ (�rij ),φ(�rij )]∑Nb

j=1 Aij

, (4)

where Ylm[θ (�rij ),φ(�rij )] is the spherical harmonic of degree
l and order m, θ (�rij ) and φ(�rij ) are the polar and azimuthal
angles for the vector �rij , j = 1, . . . ,Nb gives the index of the
Voronoi neighbors of particle i, and Aij is the area of the
face of the Voronoi polyhedron common to particles i and j .
The correlation coefficient [29] between the bond orientational
order parameters qlm(i) and qlm(j ), where particle j is a
Voronoi neighbor of i, and

Sij =
∑6

m=−6 q6m(i)q∗
6m(j )[∑6

m=−6 | q6m(i) |2 ]1/2[ ∑6
m=−6 | q6m(j ) |2 ]1/2 (5)

is sensitive to face-centered-cubic (FCC) order. When Sij >

0.7, i and j are considered “connected.” If particle i has
more than 10 connected Voronoi neighbors, it is defined as
“crystal-like.” The ratio Ncr/N gives the fraction of crystal-
like particles in a given configuration. In addition, we also
define a crystal cluster as the set of crystal-like particles that
possess mutual Voronoi neighbors. Distinct crystal clusters
that nucleate and grow upon heating and cooling are shown in
Fig. 1.

This general scheme for identifying crystal-like particle
clusters has been implemented in prior studies [33–35];
however, we made two improvements [36]. First, we defined
nearest-neighbor particles by Voronoi tessellation to remove
the arbitrariness associated with defining neighbors using a
cutoff distance. Second, the definition of the bond orientational
order parameter qlm weights each bond between the central
particle and its nearest neighbors by the area of the associated
Voronoi polyhedral face, such that qlm is a continuous function
of particle coordinates.
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FIG. 1. (Color online) Snapshots of the nucleation and growth of crystal clusters at several temperatures T as a monodisperse Lennard-Jones
system is heated from zero temperature to Tf = 2.0 at a rate Rh < R∗

h (top row) and cooled from initial temperature Ti = 2.0 to zero temperature
at a rate Rc < R∗

c (bottom row). Distinct, disconnected crystal nuclei are identified using the technique in Ref. [32] and are shaded different
colors. The far-right panel indicates the number of clusters Nc normalized by L3/σ 3

A as a function of temperature during a typical heating (top)
and cooling (bottom) trajectory. The maximum number of clusters Nmax

c is indicated by the horizontal dashed line.

C. Probability for crystallization

For each diameter ratio and rate, we measure the probability
for crystallization P (Rh,c) = NX/Ntot, where NX is the num-
ber of trajectories that crystallized with Ncr/N > 0.5 during
the heating or cooling protocol and Ntot is the total number
of trajectories (cf. insets to Fig. 2). We find that the data for
P (Rh,c) collapses onto a sigmoidal scaling function as shown
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FIG. 2. (Color online) Shifted and normalized probability for
crystallization [P (Rh,c) − P ∞

h,c]/(P 0
h,c − P ∞

h,c) versus the scaled heat-
ing or cooling rate log10(Rh,c/R

M
h,c)

1/κh,c . Circles (squares) indicate
data for cooling (heating) for diameter ratios α = 1.0 (filled symbols)
and 0.97 (open symbols). The insets show the fraction of crystal-like
particles Ncr/N as a function of temperature T during cooling (lower
left) and heating (upper right) for 12 configurations with α = 1.0. The
four solid, dashed, and dot-dashed curves in each inset correspond
to cooling and heating trajectories with rates slower than R∗

h,c, near
R∗

h,c, and faster than R∗
h,c, respectively. Trajectories for which Ncr/N

exceeds 0.5 (above the horizontal dashed line) are considered to have
crystallized during the heating or cooling protocol.

in Fig. 2:

(
P (Rh,c) − P ∞

h,c

)
P 0

h,c − P ∞
h,c

= 1

2

⎧⎨
⎩1 − tanh

⎡
⎣log10

(
Rh,c

RM
h,c

)1/κh,c

⎤
⎦

⎫⎬
⎭ ,

(6)

where P ∞
h,c is the probability for crystallization in the limit

of infinitely fast rates Rh,c → ∞, P 0
h,c is the probability for

crystallization in the Rh,c → 0 limit, RM
h,c is the rate at which

P (Rh,c) = (P 0
h,c + P ∞

h,c)/2, and κh,c is the stretching factor.
We find that κc ≈ 0.25 and κh ≈ 0.2 for α = 1.0, and these
factors increase by only a few percent over the range in α that
we consider. We define the critical heating and cooling rates
R∗

h and R∗
c by the rates at which P (Rh,c) = 0.5, i.e.,

R∗
h,c = RM

h,c10
κh,c tanh−1

[
P 0
h,c

+P∞
h,c

−1

P 0
h,c

−P∞
h,c

]
. (7)

As shown in the insets to Fig. 2, for Rh,c � R∗
h,c most

of the configurations crystallize during heating or cooling.
In contrast, for Rh,c 	 R∗

h,c, none of the configurations
crystallize.

III. RESULTS

An advantage of MD simulations is that they can provide
atomic-level structural details of the crystallization dynamics
that are often difficult to obtain in experiments. In Fig. 1,
we visualize the nucleation and growth of clusters of crystal-
like particles during the heating and cooling simulations. In
both cases, the number of clusters reaches a maximum near
T ≈ 0.5. In Fig. 3, we show the maximum number of clusters
Nmax

c (normalized by L3/σ 3
A) that form during the heating

and cooling protocols. We find that more crystal clusters
form during the heating protocol compared to the cooling
protocol for all particle diameter ratios studied, which is
supported by the measured time-temperature-transformation
(TTT) diagram. In addition, we will show below that the
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FIG. 3. (Color online) Maximum value Nmax
c of the number of

crystal clusters Nc(T ) normalized by L3/σ 3
A (averaged over 1 000

trajectories) during the cooling (squares) and heating (circles)
protocols at rates Rc ≈ 0.5R∗

c and Rh ≈ 0.5R∗
h for LJ mixtures with

diameter ratios α = 1.0, 0.97, and 0.95. For all systems, the maximum
number of crystal clusters is larger for the heating protocol compared
to that for the cooling protocol and Nmax

c decreases with increasing
glass-forming ability (decreasing α).

asymmetry ratio R∗
h/R

∗
c > 1, and that the ratio grows with

increasing GFA (increasing diameter ratio) and decreasing Rp.
We find that CNT can qualitatively describe the dependence of
the asymmetry ratio on the GFA, as measured by the critical
cooling rate R∗

c , for both our MD simulations and recent
experiments on BMGs, as well as on the preparation cooling
rate Rp for the MD simulations.

A. Intrinsic asymmetry ratio

The critical heating and cooling rates can be obtained by
fitting the probability for crystallization P (Rh,c) as a function
of Rh or Rc to the sigmoidal form in Eq. (6). We first investigate
the minimum value for the asymmetry ratio R∗

h(∞)/R∗
c , which

is obtained by taking the Rp → ∞ limit. [The asymmetry ratio
R∗

h(Rp)/R∗
c for finite preparation rates Rp will be considered

in Sec. III C.] In Fig. 4, we plot R∗
h(∞)/R∗

c versus R∗
c (for

diameter ratios α = 1.0, 0.97, 0.96, 0.95, and 0.93). We find
that R∗

h(∞) > R∗
c for all systems studied, which is consistent

with classical nucleation theory (CNT). As shown in Fig. 1,
more crystal nuclei form during the heating protocol than
during the cooling protocol. In addition, CNT predicts that
the growth rates for crystal nuclei are larger during heating
compared to cooling. In Sec. III B, we will show that both
factors contribute to an increased probability for crystallization
during heating.

In Fig. 4, we also show that the asymmetry ratio R∗
h(∞)/R∗

c

increases as the critical cooling rate R∗
c decreases, or equiv-

alently as the glass-forming ability increases. In the MD
simulations, we were able to show a correlation between the
asymmetry ratio and the critical cooling rate over roughly an
order of magnitude in R∗

c . In Sec. III B, we introduce a model
that describes qualitatively this dependence of the asymmetry
ratio on R∗

c .
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FIG. 4. (Color online) Intrinsic asymmetry ratio R∗
h(∞)/R∗

c ver-
sus the critical cooling rate R∗

c (for diameter ratios α = 1.0, 0.97, 0.96,
0.95, and 0.93) normalized by R0 = 1 K/s on a logarithmic scale.
The inset shows the intrinsic asymmetry ratio versus log10 R∗

c /R0

on an expanded scale. The filled circles indicate data from the MD
simulations and filled squares indicate data from experiments on Zr-
and Au-based BMGs [15,16]. The prediction [Eq. (12)] from classical
nucleation theory (solid line) with A′ = (8πAD4

0)/3a3 = 0.5 [in
units of ε2/(m2σ 4

A)], 	 = 0.26, and Qeff = 2.6 interpolates between
the MD simulation data at high R∗

c and experimental data from BMGs
at low R∗

c .

B. Classical nucleation theory prediction
for the asymmetry ratio

In classical nucleation theory (CNT), the formation of
crystals is a nucleation and growth process: fluctuations in the
size of crystal nuclei that allow them to reach the critical radius
r∗, and then growth of postcritical nuclei with r > r∗. Several
recent studies [37–39] have explored a two-step mechanism
for nucleation in supercooled liquids. In the current study, we
measure the asymmetry in the critical cooling and heating
rates, which is not sensitive to the nucleation mechanism.

To form a critical nucleus, the system must overcome a
nucleation free-energy barrier:


G∗ = 16π

3

	3


G2
, (8)

where 
G is the bulk Gibbs free-energy difference per volume
(in units of ε/σ 3

A) and 	 is the surface tension between the solid
and liquid phases (in units of ε/σ 2

A). We assume that 
G =
c(Tm − T ) [40], where Tm is melting temperature, Tm − T is
the degree of undercooling, and c ∼ Lv/Tm is a dimensionless
parameter that characterizes the thermodynamic drive to
crystallize and will be used to tune the GFA of the system
(where Lv is the latent heat of fusion). Within CNT, the rate of
formation of critical nuclei (i.e., the nucleation rate) is given
by

I = AD0 exp

(
−Qeff

T

)
exp

(
−
G∗

T

)
, (9)
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FIG. 5. (Color online) The nucleation I/AD0 (solid lines; left
axis) and growth Ua/D0 (dashed lines; right axis) rates as a function
of temperature T for increasing values of the glass-forming ability
(GFA) c = 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, and 0.5 (from top to
bottom) that span the range of diameter ratios from α = 1.0 to 0.93.
The filled circles indicate the maximum rates (I ∗ and U ∗) for each
GFA. As the GFA increases, I ∗ and U ∗ decrease and the difference
TU − TI between the temperatures at which the maxima in U (T ) and
I (T ) occur increases (inset).

where A is an O(1) constant with units σ−5
A , D0 is the

atomic diffusivity with units σA

√
ε/m, and Qeff is an effective

activation energy for the diffusivity with units ε. After the
nucleation free-energy barrier 
G∗ has been overcome and
crystal nuclei reach r � r∗, the growth rate of crystal nuclei is
given by

U = D0

a
exp

(
−Qeff

T

) [
1 − exp

(
−
GV

T

)]
, (10)

where a the characteristic interatomic spacing.
In Fig. 5, we plot the nucleation I/AD0 and growth rates

Ua/D0 with Qeff = 2.6 and Tm ≈ 1.40 from MD simulations
of binary LJ systems [41], 	 = 0.26, which is typical for
BMGs [15], while varying the GFA parameter from c = 1.2 to
0.5 (corresponding to diameter ratios from α = 1.0 to 0.93).
Both I (T ) and U (T ) are peaked with maxima I ∗ and U ∗ at
temperatures TI and TU . In Fig. 5, we show that as the GFA
increases, I ∗ and U ∗, as well as TI and TU decrease. However,
TI decreases faster than TU , so that the separation between the
peaks, TU − TI , increases with GFA.

To determine the critical heating and cooling rates, R∗
h

and R∗
c , we must calculate the fraction of the samples NX

that crystallize and the probability for crystallizing P (Rh,c) =
NX/Ntot, where Ntot is the total number of samples, upon
heating and cooling. Within classical nucleation theory, the
probability to crystallize upon cooling from Ti to Tf is given
by [42]

P (Rc) = 4π

3R4
c

∫ Tf

Ti

I (T ′)
[∫ Tf

T ′
U (T ′′)dT ′′

]3

dT ′. (11)

We assume that Ti is above the liquidus temperature Tl , and Tf

is below the glass transition temperature Tg , where the time
required to form crystal nuclei diverges. We can rearrange
Eq. (11) to solve for the critical cooling rate at which P (R∗

c ) =
0.5:

(R∗
c )4 = 8π

3

∫ Tf

Ti

I (T ′)
[∫ Tf

T ′
U (T ′′)dT ′′

]3

dT ′

= A′
∫ Tf

Ti

dT ′ exp

(
−Qeff

T ′

)
exp

(
−
G∗

T ′

)

×
[∫ Tf

T ′
exp

(
−Qeff

T ′′

)[
1 − exp

(
−
GV

T ′′

)]
dT ′′

]3

,

(12)

where A′ = (8πAD4
0)/(3a3) and we assumed that A, D0, and

a are independent of temperature. A similar expression for
the intrinsic critical heating rate R∗

h(∞) can be obtained by
reversing the bounds of integration in Eq. (12).

In Fig. 4, we plot the intrinsic asymmetry ratio R∗
h(∞)/R∗

c

predicted from Eq. (12) versus the critical cooling rate R∗
c after

choosing the best value A′ = 0.5 that interpolates between the
MD simulation data at high R∗

c and experimental data from
BMGs at low R∗

c . We find that CNT qualitatively captures the
increase in the asymmetry ratio with increasing GFA over a
wide range of critical cooling rates from 1K/s (experiments
on BMGs) to 1012K/s (MD simulations of binary LJ systems).
A comparison of Figs. 4 and 5 reveals that the increase in the
intrinsic asymmetry ratio is caused by the separation of the
peaks in the growth and nucleation rates U (T ) and I (T ) that
occurs as the GFA increases. Thus, we predict an enhanced
value for TU − TI in experiments on BMGs since the critical
cooling rate in experiments is orders of magnitude smaller than
in the MD simulations.

The fact that R∗
h(∞) > R∗

c is also reflected in the asymmetry
of the “nose” of the time-temperature-transformation (TTT)
diagram. In Fig. 6, we show the probability P that the system
has crystallized at a given temperature T after a waiting time
t for monodisperse LJ systems. We find that Tmin ∼ 0.5–0.6 is
the temperature at which the waiting time for crystallization is
minimized and that the time to crystallize is in general longer
for T < Tmin compared to T > Tmin. Because crystallization
on average occurs at a higher temperature during heating and a
lower temperature during cooling, the asymmetry in the TTT
diagram indicates that slower rates are required to crystallize
during cooling than during heating, i.e., R∗

c < R∗
h.

C. Asymmetry ratio for finite Rp

In Sec. III B, we assumed that the initial samples (i.e.,
the zero-temperature glasses) for the heating protocol were
prepared in the Rp → ∞ limit and thus were purely amor-
phous. How does the asymmetry ratio R∗

h(Rp)/R∗
c depend on

Rp when the preparation cooling rate Rp is finite and partial
crystalline order can occur in the samples? In this section,
we show results for the asymmetry ratio R∗

h(Rp)/R∗
c for

monodisperse systems using a protocol where the samples are
quenched from equilibrated liquid states to zero temperature
at a finite rate Rp and then heated to temperature Tf at
sxs rate Rh (see Sec. II A.) Note that when Rp/R∗

c ≈ 1, some
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FIG. 6. (Color online) The time-temperature-transformation
(TTT) diagram during cooling is visualized by plotting the probability
to crystallize P (increasing from light to dark) from 96 samples as
a function of temperature T and waiting time t for LJ systems with
diameter ratio α = 1.0. A sample is considered crystalline if the
number of crystal-like particles satisfies Ncr/N > 0.5. The initial
states are dense liquids equilibrated at T = 2.0. Each initial state is
cooled (at rate Rc 	 R∗

c ) to temperature T < Tl , where Tl ≈ 1.4 is
the liquidus temperature, and then run at fixed T for a time t .

of the samples crystallize during the cooling preparation, yet
these samples are still included in the calculation of the
probability P (R∗

h(Rp)) to crystallize. In Fig. 7, we show
the results for the asymmetry ratio R∗

h(Rp)/R∗
c from MD
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∗ h
(R
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)/

R
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FIG. 7. (Color online) Asymmetry ratio R∗
h(Rp)/R∗

c plotted ver-
sus the preparation cooling rate Rp normalized by the critical cooling
rate R∗

c from MD simulations with α = 1.0 (filled circles) and the
prediction from CNT (solid line) with the same parameters used for
the fit described in the legend of Fig. 4 and the GFA parameter set to
c = 1.2. The vertical dashed line indicates Rp = R∗

c . The horizontal
dashed lines R∗

h(Rp)/R∗
c = 1.18 and 1 indicate the plateau value in

the Rp 	 R∗
c limit and R∗

h = R∗
c , respectively. The gap between the

horizontal dashed and dotted lines give the magnitude of the intrinsic
asymmetry ratio for this particular GFA (cf. Fig. 4).

simulations. We find that R∗
h(Rp)/R∗

c grows rapidly as Rp

approaches R∗
c from above and reaches a plateau value of

∼ 1.2 in the limit Rp/R∗
c 	 1.

The critical heating rate R∗
h(Rp) at finite Rp can also

be calculated from CNT using an expression similar to
Eq. (12) with an additional term that accounts for cooling
the equilibrated liquid samples to zero temperature at a finite
rate. In Fig. 7, we show that the asymmetry ratio R∗

h(Rp)/R∗
c

predicted using CNT agrees qualitatively with that from the
MD simulations. The number of crystal nuclei that form
during the quench increases with decreasing Rp, which causes
R∗

h(Rp)/R∗
c to diverge as Rp → R∗

c . The predicted intrinsic
contribution to the asymmetry ratio for Rp ∼ R∗

c is small,
and R∗

h(Rp)/R∗
c is dominated by the preparation protocol. In

contrast, the asymmetry ratio R∗
h(Rp)/R∗

c ≈ 1.2 is dominated
by the intrinsic contribution in the Rp 	 R∗

c limit. As shown in
Fig. 4, the size of the intrinsic contribution to the asymmetry
ratio can be tuned by varying the GFA, which controls the
separation between the peaks in the nucleation I (T ) and
growth U (T ) rates.

IV. CONCLUSION

We performed MD simulations of binary Lennard-Jones
systems to model the crystallization process during heating
and cooling protocols in metallic glasses. We focused on
measurements of the ratio of the critical heating R∗

h and cooling
R∗

c rates, below which crystallization occurs during the heating
and cooling trajectories. We find: (1) R∗

h > R∗
c for all systems

studied, (2) the asymmetry ratio R∗
h/R

∗
c grows with increasing

glass-forming ability (GFA), and (3) the critical heating rate
R∗

h(Rp) has an intrinsic contribution R∗
h(∞) and protocol-

dependent contribution R∗
h(Rp) − R∗

h(∞) that increases with
decreasing cooling rates Rp used to prepare the initial samples
at zero temperature. We show that these results are consistent
with the prediction from classical nucleation theory that the
maximal growth rate occurs at a higher temperature than
the maximal nucleation rate and that the separation between
the peaks in nucleation I (T ) and growth U (T ) rates increases
with the GFA. Predictions from CNT are able to qualitatively
capture the dependence of the asymmetry ratio on the GFA
as measured through R∗

c for both our MD simulations and
recent experiments on BMGs as well as on Rp for the
MD simulations. Thus, our simulations have addressed how
the thermal processing history affects crystallization, which
strongly influences the thermoplastic formability of metallic
glasses.
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