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Coulomb energy of uniformly charged spheroidal shell systems
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We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal
shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb
energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest
Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly
charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations
show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the
possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state
model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy
as a function of the shell’s aspect ratio for both area-constrained and volume-constrained cases. Counterion
condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values
of shell volume fractions.
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I. INTRODUCTION

Shapes of physical systems as diverse as blood cell mem-
branes, colloidal particles, nanowires, and galaxies are often
considered as spheroidal with varying degrees of eccentricity.
Many charged structures such as colloids or emulsions are
usually modeled as spheroidal shells with a uniform surface
charge density.

In this article we provide the expression for the
Coulomb energy of a uniformly charged spheroidal
shell. Further, we derive a general expression for
the change in the Coulomb energy of a uniformly charged
shell due to small, area-conserving perturbations on the
spherical shape. Using the result, we explore the existence
of deformations that can lower the electrostatic energy relative
to the unperturbed charged sphere.

We note that a closed-form expression for the electrostatic
potential energy of a solid homogeneously charged spheroid
can been obtained [1]. Further, the electrostatic energy of a
conducting spheroidal shell as a function of the aspect ratio
is available elsewhere [2]. Calculations of the electrostatic
potential for a system of point charges inside dielectric
spheroids [3,4] have been performed as well. On the other
hand, it is useful to note the work in the context of solving
Poisson-Boltzmann equation in spheroidal geometry [5,6].
In this paper, we provide a comprehensive study of the
homogeneously charged spheroidal shell system.

Primary motivations behind our calculations stem from the
study carried out in Ref. [7], where equilibrium shapes of
charged, soft shells constrained to maintain a fixed volume
were analyzed using molecular dynamics simulations. Some
of the results derived in the present article were employed to
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verify the oblate-shaped shell structures found in Ref. [7] and
calculate the effects of ion condensation on the equilibrium
shape of these structures. The supporting information asso-
ciated with Ref. [7] also contained a brief derivation of the
electrostatic energy of a uniformly charged oblate spheroidal
shell. In this paper we derive the general expression for the
Coulomb energy of prolate spheroidal shells. For the sake of
completeness we also include the derivation of the Coulomb
energy of oblate shells showing details that were omitted in
Ref. [7]. We analyze the variation of the Coulomb energy
of spheroidal shells, subject to the constraints of fixed area
or volume, as the aspect ratio of the shell is changed. We
also examine the effects of ion condensation, computed via
a Manning-Oosawa two-state model analysis [8,9], on the
variation of the equilibrium free energy of the shell-counterion
system. Finally, we note that it is straightforward to augment
the energy expressions obtained here to reveal the gravitational
potential energy of a uniformly dense spheroidal surface which
is often used as a model to study galaxies [10].

The key findings of this paper are the following: (1) A
homogeneous prolate (cigar-shaped) spheroidal shell with
eccentricity greater than ∼0.9 has a lower electrostatic energy
than a spherical shell of the same area. The lowest-energy
shape of the shell, constrained to maintain its area, is a very
long and thin prolate spheroid whose energy approaches zero
as its major-axis length is stretched to infinity. (2) For shells
that are constrained to maintain their volume, the spherical
shape has the maximum Coulomb energy. An infinitely long
and thin wirelike shape and a thin, flat disk of infinite area are
the degenerate lowest-energy shapes with vanishing energy.
(3) Perturbation calculations show that, for the case of fixed
area constraint, the Coulomb energy of a uniformly charged
sphere can be lowered by a buckling-type deformation.
(4) Results from the two-state model approximation of the
shell-counterion system show that counterion condensation
favors the formation of spheroidal structures over a sphere of
equal area for high values of shell volume fractions.
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The paper is organized as follows. In Sec. II we provide
the expression for the Coulomb energy of a uniformly charged
spheroidal shell, discuss the important limiting cases, and spe-
cialize the expression for the case of constant area and constant
volume constraints. Section III shows the comparison between
the energy of a sphere and nearly spherical structures formed
by a small, generic perturbation around the spherical shape. In
Sec. IV we discuss the effects of charge renormalization on the
energies obtained for the spheroidal shell system, and Sec. V
presents our conclusion. Appendices A and B present the
derivation of the Coulomb energy of uniformly charged prolate
and oblate spheroidal shells, respectively, and in Appendix
C we derive the electrostatic energy of a uniformly charged
circular disk.

II. ELECTROSTATIC ENERGY OF UNIFORMLY
CHARGED SPHEROIDAL SHELLS

Consider a spheroidal shell with charge Q distributed
uniformly over its surface such that the charge density is given
by σ = Q/A, where A is the area of the spheroid. A spheroid
is an ellipsoid two of whose semiprincipal axes are equal.
Assuming that the equal lengths correspond to the dimensions
along the x and y axes, such that the cross section normal to
the z axis is a circle, we can describe the spheroidal shell via
the equation

r2

a2
+ z2

c2
= 1, (1)

where a and c are the semiprincipal axes, and r =
√

x2 + y2

is the distance between the point on the surface of the spheroid
and the z axis. A prolate spheroid is a spheroid where c > a,
whereas an oblate spheroid corresponds to the c < a condition
(see Fig. 1). Clearly when a = c, the spheroid reduces to a
sphere.

It is convenient to characterize the spheroid by defining the
aspect ratio λ defined as

λ = c

a
. (2)

Values of λ < 1 correspond to oblate spheroid, whereas a
prolate spheroid is associated with λ > 1. λ → 0 corresponds

a

c

z

x

c

a x

z

)b()a(

FIG. 1. (Color online) Cross section of a spheroid normal to the
y axis with c and a as the semiaxis lengths and λ = c/a being the
spheroid’s aspect ratio. (a) Prolate spheroid with λ > 1. (b) Oblate
spheroid with λ < 1.

to a circular disk, λ = 1 is a sphere, and the λ → ∞ limit
produces an infinitely long and thin rodlike spheroid. It is also
useful to introduce the eccentricity ep of a prolate spheroid
defined as

ep =
√

1 − a2

c2
. (3)

Similarly, we have the eccentricity eo for an oblate spheroid:

eo =
√

1 − c2

a2
. (4)

Note that either eccentricities lie between 0 and 1. When
eo,ep → 0, the spheroid reduces to a sphere. The limit eo → 1
leads to a circular disk and ep → 1 corresponds to a very long
and thin rodlike shape. We will invoke these limits at several
places in what follows.

In Appendix A we derive the electrostatic energy of a
uniformly charged prolate spheroidal shell. Our calculations,
which employ the standard method of separation of variables
[11,12], lead to the following result:

U (ep,c,σ ) = 4π2σ 2c3
1 − e2

p

ep

∑
n∈even

2n + 1

2

×Pn(1/ep)Qn(1/ep)[Hn(ep)]2, (5)

where n is an even integer, Pn and Qn are Legendre functions
of the first and second kind respectively, and Hn(ep) is the
integral

Hn(ep) =
∫ π

0

√
1 − e2

pcos2v Pn(cosv)sinv dv. (6)

It is useful to express the result in terms of the total charge Q

rather than σ . Using the fact that the area of a prolate spheroid
is

Ap(ep,c) = 2πc2
√

1 − e2
p T (ep), (7)

where

T (ep) =
√

1 − e2
p + sin−1(ep)

ep

, (8)

we obtain the electrostatic energy of a homogeneously charged
prolate spheroidal shell to be

Up = Q2

2c epT (ep)2

∑
n∈even

(2n + 1)

×Pn

(
1

ep

)
Qn

(
1

ep

)
Hn(ep)2, (9)

where Up ≡ Up(ep,c,Q). Equation (9) provides the first key
result of this paper. We point out that the above expression
for the Coulomb energy is obtained assuming that the prolate
spheroidal shell is in vacuum. If the medium surrounding the
shell is polarizable and uniform, the above result for the energy
must be scaled down by the dielectric constant of the medium.

Appendix B provides the derivation for the Coulomb energy
of the oblate spheroidal shell. We note that a brief account of
this derivation appears in the supplementary information of
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Ref. [7]. We find the electrostatic energy to be

U (eo,a,σ ) = 4π2σ 2a3i

eo

∑
n∈even

2n + 1

2
Pn

(
i

√
1 − e2

o

eo

)

×Qn

(
i

√
1 − e2

o

eo

)
In(eo)2, (10)

where n is an even integer and In(eo) is the integral

In(eo) =
∫ π

0

√
1 − e2

osin2v Pn(cosv)sinv dv. (11)

Once again, we express below the result in terms of the total
charge Q. Using the fact that the area of an oblate spheroid is

Ao(eo,a) = 2πa2S(eo), (12)

where

S(eo) = 1 +
(

1

eo

− eo

)
tanh−1eo, (13)

we obtain the electrostatic energy of the uniformly charged
oblate spheroidal shell to be

Uo = Q2i

2aeoS(eo)2

∑
n∈even

(2n + 1)

×Pn

(
i

√
1 − e2

o

eo

)
Qn

(
i

√
1 − e2

o

eo

)
In(eo)2, (14)

where Uo ≡ Uo(eo,a,Q). Equation (14) provides the second
key result of this paper. In several physical situations, geomet-
ric constraints such as the constraint of fixed area or volume
are naturally present, and it is of interest to find the shell shape
that minimizes the Coulomb energy when only area-preserving
or volume-conserving deformations are allowed. Using the
above expressions for the electrostatic energy, we analyze the
Coulomb energy of a shell that is subjected to these constraints
and present the results in Secs. II B and II C. Before that we
take a quick look at the limiting cases of the energy expressions
found in Eqs. (9) and (14).

A. Limiting cases

We recall that both the prolate and oblate eccentricities
lie between 0 and 1. First we let ep,eo approach zero, which
corresponds to a spherical shell, and find

Up(ep → 0,a,Q) = Uo(eo → 0,a,Q) = Q2

2a
. (15)

We recover the well-known result for the energy of a uniformly
charged spherical shell.

Taking the limit eo → 1 of the oblate energy expression in
Eq. (14) gives

Uo(eo → 1,a,Q; n � 6) = 0.84872
Q2

a
, (16)

where, because of the rapid convergence of the sum in Eq. (14),
we have included terms up to n = 6 in obtaining the above
result. The limit eo → 1 corresponds to the shape of a circular
disk. It is possible to arrive at the energy of a uniformly charged
circular disk starting from the electrostatic potential on the

surface of the disk derived in Ref. [13]. We show the derivation
of the energy in Appendix C. The result is

Udisk = 8

3π

Q2

a
, (17)

where a is the radius of the disk and Q = πa2σ is the total
charge. We can now compare the disk energy obtained in
Eq. (16) with the above exact result and find the deviation to be
∼0.01%. Clearly, the two energies are in very good agreement.

The prolate energy expression [Eq. (9)] in the limit
of prolate eccentricity approaching unity gives Up(ep →
1,a,Q) = ∞; that is, the energy diverges. In this limit, the
prolate spheroid is transformed into a thin, long rodlike shape
where the width of the rod is shrunk at the same time as the
length of the rod is stretched out. The divergence of the energy
arises because, as the width narrows, the distance between the
charges on the surface shrinks faster in comparison with the
charges growing apart due to the extension in the length. As
we will find in the next section, when we impose constraints
of constant shell area or volume, the prolate energy no longer
diverges when the aforesaid limit is taken.

B. Charged spheroidal shells of equal area

We begin with the results for the application of area
constraint. We will assume the reference shell shape in the
analysis to be the sphere. The area of a prolate spheroid is
given by Eq. (7) which we rewrite as

Ap(ep,c) = 2πc2
√

1 − e2
p

[√
1 − e2

p + sin−1(ep)

ep

]
. (18)

This equation suggests that if Ap is fixed, c and ep are coupled.
Assuming that the area is constrained to that of a sphere of
radius R, c and ep become related via the equation

c(ep,R) = R

√√√√ 2√
1 − e2

p

[√
1 − e2

p + sin−1(ep)
ep

] . (19)

Eliminating c from Eq. (9) using the above equation, we arrive
at the expression for the electrostatic energy of a uniformly
charged prolate spheroidal shell constrained to a fixed area of
4πR2 as a function of the eccentricity ep:

Up,A(ep,R,Q)

=
Q2

√
1 − e2

p +
√

1
e2
p

− 1 sin−1(ep)

2R
√

2epT (ep)2

×
∑

n∈even

(2n + 1) Pn(1/ep)Qn(1/ep)Hn(ep)2. (20)

We proceed similarly with the case of an oblate spheroidal
shell. The area of an oblate spheroid is given by Eq. (12),
which we rewrite as

Ao(eo,a) = 2πa2

[
1 +

(
1

eo

− eo

)
tanh−1eo

]
, (21)

where tanh−1 denotes the inverse hyperbolic tangent function.
We note that in the limit eo → 1, the oblate shell reduces to a
structure resembling a circular disk having two faces with total
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area 2πa2. If Ao is fixed, eo and a are coupled and recalling
that the area is constrained to the value 4πR2, we obtain the
relation

a(eo,R) = R

√
2

1 + (
1
eo

− eo

)
tanh−1eo

. (22)

Eliminating a from Eq. (14) using the above equation, we
arrive at the expression for the electrostatic energy of a
uniformly charged oblate spheroidal shell subject to the
constraint of fixed area:

Uo,A(eo,R,Q)

=
Q2i

√
1 +

(
1
eo

− eo

)
tanh−1eo

2R
√

2eoS(eo)2

∑
n∈even

(2n + 1)

×Pn

(
i

√
1 − e2

o

eo

)
Qn

(
i

√
1 − e2

o

eo

)
In(eo)2. (23)

It is useful to express the energies in Eqs. (20) and (23) as
a function of the aspect ratio λ defined in Eq. (2). Noting that
ep = √

λ2 − 1/λ and eo = √
1 − λ2, we arrive at the result

UA(λ) =
{

Uo,A(
√

1 − λ2,R,Q) 0 < λ < 1

Up,A(
√

λ2 − 1/λ,R,Q) λ � 1
, (24)

where we have suppressed the dependence of UA on other
variables for brevity. The values of λ � 1 correspond to
prolate spheroids, and 0 < λ < 1 region corresponds to oblate
spheroids. Equation (24) provides the Coulomb energy of
uniformly charged spheroidal shells, all having the same area,
for values of the aspect ratio λ ranging from 0 to ∞.

We now analyze the variation of UA(λ) as λ is changed.
We set Q = R = 1 for simplicity. We first confirm that
UA(λ → 1) = 0.5 as should be the case for a uniformly
charged spherical shell (λ = 1 ⇒ a = c) for the aforesaid
parameters. Further, it is easy to check that UA(λ → 0) ∼ 0.6,
which is equivalent to the Coulomb energy of an infinitely
thin, uniformly charged circular disk of unit radius. Taking the
opposite limit, we find UA(λ → ∞) = 0, which suggests that
the Coulomb energy of a very thin and long wirelike shape (of
finite area) vanishes. We graph the function UA(λ) as a function
of λ in Fig. 2. We choose the number of terms appearing in the
series expansion in the energy expressions derived in Eqs. (20)
and (23) to be n = 6 as the series converges rapidly. As is
evident from Fig. 2, we observe that the sphere shape is a local
minimum. However, as the aspect ratio is increased to values
beyond ∼2.286, which corresponds to a prolate eccentricity of
∼0.9, the Coulomb energy is lowered below that of the sphere.
The energy continues to decrease as λ increases further, and
we find that the shape that corresponds to the lowest Coulomb
energy is the very thin and long prolate spheroidal shell (of
area 4π ), the minimum energy being 0. Further, the energy
of the oblate spheroidal shell increases upon increasing its
eccentricity (or lowering the aspect ratio λ), with the thin
circular disk corresponding to the shape of maximum energy.

It is instructive to compare the results for the case of
uniformly charged spheroidal shells with that of conducting
spheroidal shells. Exact expressions for the latter have been
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FIG. 2. (Color online) Coulomb energy of charged spheroidal
shells of equal area as a function of their aspect ratio λ. The region
0 � λ < 1 corresponds to oblate shells and values of λ > 1 represent
prolate shells. Solid red line corresponds to the homogeneously
charged spheroidal shell, and dashed green line is the result for
the conducting spheroidal shell. The dotted blue line is energy of a
spherical shell (reference), which is 0.5 for either cases (homogeneous
or conducting). The above results are for Q = 1, R = 1. See text for
the meaning of symbols.

obtained elsewhere [2]. Using these exact results, the particular
expression for the case where the area is held fixed can be easily
derived and we summarize the final results as follows:

UA(λ) =
⎧⎨
⎩

Q2

2a(
√

1−λ2,R)
1√

1−λ2 tan−1
√

1−λ2

λ
0 < λ < 1

Q2

2c(
√

1−λ2/λ,R)
λ√

λ2−1
tanh−1

(√
λ2−1
λ

)
λ � 1

.

(25)

In the above equation, the functions a and c are given
by Eqs. (22) and (19), respectively. Similar to the above
analysis for homogeneously charged shells, we can evaluate
the variation of UA as a function of λ, and we obtain the green
dashed line in Fig. 2. We find that this line is always below the
red solid line. This implies that allowing the surface charges
to move freely, as is the case with the conducting shell, lowers
the Coulomb energy. In addition, it is important to note that
all the prolate conducting shells have a lower energy than a
spherical conducting shell. In sharp contrast, for uniformly
charged shells, the spherical shape is a clear local minimum
as evidenced by the red solid curve in the inset of Fig. 2.

C. Charged spheroidal shells of equal volume

We now analyze the Coulomb energy of spheroidal shells
that are subjected to the volume constraint; that is, all the
shells have the same volume. This analysis is very similar to
the one presented in the last subsection, and so we will keep the
following discussion brief. The volume of a prolate spheroid
is

�p(ep,c) = 4
3πc3 (

1 − e2
p

)
. (26)
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This equation suggests that if �p is fixed to (4/3)πR3, then c

and ep are related via the equation

c(ep,R) = R(
1 − e2

p

)1/3 . (27)

Eliminating c from Eq. (9) using the above equation, we arrive
at the expression for the electrostatic energy of a uniformly
charged prolate spheroidal shell constrained to a fixed volume
of (4/3)πR3 as a function of the eccentricity ep:

Up,V (ep,R,Q) =
(
1 − e2

p

)1/3
Q2

2R epT (ep)2

∑
n∈even

(2n + 1)

×Pn(1/ep)Qn(1/ep)Hn(ep)2. (28)

We proceed similarly with the case of an oblate spheroidal
shell. The volume of an oblate spheroid is given by

�o(eo,a) = 4
3πa3

√
1 − e2

o. (29)

If �o is fixed, eo and a are coupled, and recalling that the
volume is constrained to the value (4/3)πR3, we obtain the
relation

a(eo,R) = R(
1 − e2

o

)1/6 . (30)

Eliminating a from Eq. (14) using the above equation, we
arrive at the expression for the electrostatic energy of a
uniformly charged oblate spheroidal shell subject to the
constraint of fixed volume:

Uo,V (eo,R,Q) = Q2i
(
1 − e2

o

)1/6

2ReoS(eo)2

∑
n∈even

(2n + 1)

×Pn

(
i

√
1 − e2

o

eo

)
Qn

(
i

√
1 − e2

o

eo

)
In(eo)2.

(31)

As in the case of the area constraint, it is useful to express
the energies in Eqs. (28) and (31) as a function of the aspect
ratio λ. Carrying out the transformation from eccentricities
ep,eo to λ, we arrive at the result

UV (λ) =
{

Uo,V (
√

1 − λ2,R,Q) 0 < λ < 1

Up,V (
√

λ2 − 1/λ,R,Q) λ � 1
, (32)

where we have suppressed the dependence of UV on other
variables for brevity. Equation (32) provides the Coulomb
energy of uniformly charged spheroidal shells, all having the
same volume, for values of λ ranging from 0 to ∞.

In Fig. 3 we plot the change in UV as λ is varied for the
parameters Q = 1 and R = 1. We find that UV (λ → 1) = 0.5
as expected for the homogeneously charged sphere. We notice
that the sphere represents the shape of maximum Coulomb
energy which is in sharp contrast with the above analyzed
case of the area-constrained charged shells. We observe in
Fig. 3 that every other energy value is degenerate, in the sense
that there are two distinct shapes that correspond to the same
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FIG. 3. (Color online) Coulomb energy of charged spheroidal
shells of equal volume as a function of their aspect ratio λ. The region
0 � λ < 1 corresponds to oblate shells and values of λ > 1 represent
prolate shells. Solid red line corresponds to the homogeneously
charged spheroidal shell, and dashed green line is the result for
the conducting spheroidal shell. The dotted blue line is energy of a
spherical shell (reference), which is 0.5 for either cases (homogeneous
or conducting). The above result is for Q = 1, R = 1. See text for
the meaning of symbols.

energy, one of the shapes being an oblate and the other a
prolate. We find that the minimum energy for the volume-
constrained charged spheroidal shell is 0. The two shapes that
correspond to this value are a thin charged disk (of infinite
area), and a long and thin prolate spheroidal shape (of infinite
area). Again, this is in sharp contrast with the area-constrained
charged shell where the shape of minimum energy is unique
and is a prolate as pointed out in Sec. II B.

We compare the results for the uniformly charged shells
with conducting spheroidal shells. The energy expression for
the volume-constrained conducting shell problem is the same
as Eq. (25) except that the functions a and c are now determined
by Eqs. (30) and (27), respectively. Similar to Fig. 2, we find
the Coulomb energy of a conducting shell is always lower than
that of the homogeneously charged shell. Again, we attribute
this to the fact that for a conducting shell, the charges will
move until the shell surface becomes an equipotential, and
this movement always lowers the Coulomb energy. Finally,
we note that in Fig. 3, the energy profiles for the two different
scenarios (homogeneous and conducting) are similar in shape
which is in contrast with Fig. 2 for the area-constrained case.

III. ENERGY ANALYSIS OF PERTURBED SPHERES

Results of the preceding sections indicate that a uniformly
charged sphere is locally stable to perturbations towards a
prolate or oblate spheroid if the deformations preserve the
surface area. The stability of the charged sphere for arbitrary
perturbations in shape that preserve the area and maintain the
uniformity of the surface charge distribution is not addressed
yet. In this section, we explore this problem by deriving the
expression for the energy variation of the shell due to small
generic perturbations on the spherical shape.
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Consider a sphere of radius R0 that is represented by

	R0(θ,φ) = (R0 sin θ cos φ,R0 sin θ sin φ,R0 cos θ ), (33)

where θ ∈ [0,π ] and φ ∈ [0,2π ). A generic small perturbation
h(θ,φ) on the sphere produces a shape that can be represented
by

	R(θ,φ) = 	R0(θ,φ) + h(θ,φ)N̂ (θ,φ), (34)

where N̂ (θ,φ) = R−1
0

	R0(θ,φ) is the unit normal vector on
the sphere. Note that 	R(θ,φ) = 	R0(θ,φ)[1 + h(θ,φ)/R0], and
we consider perturbations to be small when they satisfy the
condition |h|/R0 
 1. The metric tensor of the undeformed
sphere is

gij =
(

R2
0 0

0 R2
0 sin2 θ

)
, (35)

with its determinant g0 = (g0)11(g0)22 = R4
0 sin2 θ . The deter-

minant of the metric tensor of the deformed shape defined in
Eq. (34) is [14]

g = g0 + δg, (36)

where

δg = g0[4hH + (g0)ij hihj + h2(4H 2 + 2K)] + O(h3),

(37)

with H = 1/R0 and K = (1/R0)2.
We assume that the charges on the surface interact via a pair

potential V (r), which depends only on the distance r between
them. We consider a homogeneous surface and allow only
those deformations that keep the area unchanged. Thus, the
charge density is the same even in the deformed shape. The
charge elements on the unperturbed shape are dq0 = σ0dA0 =
σ0

√
g0d

2 	x where σ0 = Q/A0 is the uniform charge density.
The charge elements on the perturbed shape are dq = σ0dA =
σ0

√
gd2 	x. Note that d2 	x is a shorthand for dθ dφ. The change

in the interaction energy brought about by the deformation of
the charged sphere is

H [h] = σ 2
0

2

∫ √
g(	x)d2 	x

√
g(	x ′)d2 	x ′ V (| 	R(	x ′) − 	R(	x)|)

− σ 2
0

2

∫ √
g0(	x)d2 	x

√
g0(	x ′)d2 	x ′

×V (| 	R0(	x ′) − 	R0(	x)|), (38)

where the integration is over x1 = θ, x2 = φ, x ′
1 = θ ′, x ′

2 =
φ′. We note that if H < 0, the energy of the perturbed sphere is
lower than that of the spherical system. The distance between
two arbitrary points on the deformed sphere is

r = | 	R(	x ′) − 	R(	x)|
= |( 	R0(	x ′) − 	R0(	x)) + (h(	x ′)N̂(	x ′) − h(	x)N̂(	x))|
= |	r0 + δ	r| = r0 + 	r, (39)

where 	r0 = 	R0(	x ′) − 	R0(	x) and δ	r = h(	x ′)N̂ (	x ′) − h(	x)N̂(	x).
The r in Eq. (39) can be expanded in terms of δ	r according to

| 	f + δ 	f | = f + 	f, (40)

where f = | 	f | and

	f =
	f · δ 	f
f

+ 1

2

δ 	f · δ 	f
f

− 1

2

( 	f · δ 	f )2

f 3
+ O(δf 3). (41)

Therefore,

	r = 1

2

r0

R0
[h(	x) + h(	x ′)] + 1

2r0
[h(	x) − h(	x ′)]2

+ 1

2

r0

R2
0

h(	x)h(	x ′) − r0

8R2
0

[h(	x) + h(	x ′)]2 + O(h3).

(42)

We expand V (r) and
√

g(	x)g(	x ′) in terms of h up to the
quadratic order:

V (r) = V (r0 + 	r)

= V (r0) + dV (r0)

dr0
	r + 1

2

d2V (r0)

dr2
0

(	r)2 + O(	r3),

(43)

√
g(	x)

√
g(	x ′) =

√
g0g

′
0

[
1 + 1

2

(
δg

g0
+ δg′

g′
0

+ δgδg′

g0g
′
0

)

− 1

8

(
δg

g0
+ δg′

g′
0

)2 ]
+ O(h3), (44)

where the prime on functions g0 and δg denotes that the
variable of the function is 	x ′; e.g., g′

0 is short for g0(	x ′). Note
that δg contains terms linear in h.

We formally write
√

g(	x)
√

g(	x ′) = √
g0g

′
0[1 + α(h) +

β(h2)] and V (r) = V (r0) + A(h) + B(h2), where α(h) and
A(h) are terms linear in h and β(h2) and B(h2) represent
terms quadratic in h. Equation (38) can therefore be written as

H = σ 2
0

2

∫
d2 	xd2 	x ′

√
g0g

′
0 [A(h) + α(h)V (r0)]

+ σ 2
0

2

∫
d2 	xd2 	x ′

√
g0g

′
0 [B(h2) + α(h)A(h)

+β(h2)V (r0)] + O(h3). (45)

Using Eqs. (37) and (42), we obtain A(h) = r0
2R0

dV (r0)
dr0

(h + h′)
and α(h) = 2

R0
(h + h′). Up to the linear term in h, Eq. (45)

becomes

H = σ 2
0 R3

0

2

∫
dθ dφ dθ ′dφ′ sin θ sin θ ′

×
[

2V (r0) + r0

2

dV (r0)

dr0

]
[h(θ,φ) + h(θ ′,φ′)] + O(h2).

(46)

Note that

r0(θ,φ,θ ′,φ′)

= R0

√
2 [1 − cos θ cos θ ′ − cos(φ − φ′) sin θ sin θ ′].

(47)

The existence of terms linear in h in Eq. (46) suggests
that the spherical shape is not necessarily an energy extreme,
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opening the possibility of shapes with lower energy than that
of the sphere. For V (r0) = 1/rα

0 , the term in the square bracket
becomes

2V (r0) + 1

2
r0

dV (r0)

dr0
= 1

rα
0

(
2 − α

2

)
. (48)

We find that for α = 1, which represents the Coulomb
potential, this term is nonzero. This indicates that the spherical
system may be unstable to the long-range Coulomb interaction.
We note that for α = 4, the above term vanishes implying there
are no linear terms in h for this potential. Furthermore, the sign
of the energy changes as the value of α goes beyond 4, implying
the distinct stability behaviors of the spherical shape for long-
and short-range potentials.

We now investigate if there exists a perturbation that can
lower the Coulomb energy of the uniformly charged sphere,
in other words, a deformation for which H < 0. We consider
a generic form for the perturbation h represented by h(θ,φ) =∑

l,m almYlm(θ,φ), where Ylm are the spherical harmonic
functions with l = 0,1,2, . . . and m = −l,−l + 1, . . . ,l. Here
alm are the unknown expansion coefficients or modes. As h

is taken to be a small perturbation, we require |alm| 
 R0.
We take m = 0, thus examining axisymmetric deformations.
The constraint of fixed area leads to the relation between the
coefficients al0. The variation of area [14] is

δA = 2
√

4πa00R0 +
∑
lm

|alm|2
[

1 + 1

2
l(l + 1)

]
. (49)

Setting δA = 0 leads to

2
√

4πa00R0 = −
∑
lm

|alm|2
[

1 + 1

2
l(l + 1)

]
. (50)

We find that a00 is always negative, implying a uniform
shrinking of the shell to preserve the area. When only uniform
shrinking (or expansion) is allowed, al0 = 0 for l > 0. For
this case, from Eq. (50), we obtain the relation 2

√
4πa00R0 +

a2
00 = 0. This equation has two solutions, a00 = −4

√
πR0,

which is unphysical as |a00| > R0, and a00 = 0. The latter
solution indicates no deformations on the sphere.

Now we consider perturbations characterized by two modes
a00 and a10:

h(θ,φ) = a00√
4π

+ a10

√
3

4π
cos θ, (51)

where θ ∈ [0,π ]. We note that the modes a00 and a10 are
coupled due to the constraint of fixed area [Eq. (50)] leading
to the relation

1
2a2

00 + 2
√

πR0a00 + a2
10 = 0. (52)

Recall that a00 � 0 and the above equation implies a10 can
assume positive or negative values. Physically, the perturbation
h of Eq. (51) corresponds to a buckling of the spherical shape.
If we identify θ = 0 as the north pole and consequently θ = π

as the south pole, we find that the north pole is buckled inward
for a10 < 0, and the south pole is buckled inwards for a10 > 0.

The change in the total Coulomb energy H of the system
(up to linear terms in h) for this perturbation can be calculated
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FIG. 4. (Color online) The total Coulomb energy change H vs
the coefficient a00. The inset shows the variation of H with a10. The
shape of the perturbed sphere is characterized by the two modes a00

and a10, which are coupled due to the constraint of the fixed area.

from Eq. (46), and we find

H = 3σ 2
0 R3

0

2
√

4π

∫
dθ dφ dθ ′ dφ′ sin θ sin θ ′ a00 + a10

√
3 cos θ

r0
.

(53)

We note that the shape of the perturbed sphere is independent
of the sign of the coefficient a10; to reverse the sign of a10 is
to rotate the shape by π . This suggests that terms linear in a10

should be absent in H . By making use of the parity of the inte-
grand in the four quadrants: {θ ∈ [0,π/2],θ ′ ∈ [0,π/2]}, {θ ∈
[0,π/2],θ ′ ∈ [π/2,π ]}, {θ ∈ [π/2,π ],θ ′ ∈ [0,π/2]}, and {θ ∈
[π/2,π ],θ ′ ∈ [π/2,π ]}, we find that the integral involving the
a10 cos θ term in Eq. (53) vanishes. Noting that the remaining
integral (involving the a00 term) in Eq. (53) can be read as the
total Coulomb energy of a uniformly charged spherical shell,
we arrive at the following analytical result for H :

H = 12π3/2σ 2
0 R2

0a00. (54)

Because a00 � 0, we see from Eq. (54) that H � 0. In other
words, the perturbation in Eq. (51) lowers the Coulomb energy
of the original unperturbed spherical shape. In Fig. 4 we
plot H versus a00 for σ0 = 1 and R0 = 1. Recalling that a00

characterizes the amount of buckling in the deformed shape,
we find that the system energy keeps decreasing with the rise in
the buckling of the shape. Noting that a00 and a10 are coupled
via Eq. (50), we obtain H as a function of a10 using Eq. (54):

H = 12π3/2σ 2
0 R2

0

(√
4πR2

0 − 2a2
10 −

√
4πR2

0

)
. (55)

As expected, H is found to be independent of the sign of a10.
In the inset of Fig. 4, we show the variation of H with
a10. The above calculations demonstrate that a uniformly
charged sphere is electrostatically unstable to a buckling-type
deformation in the constraint of fixed area.

Alongside the computation of H , which quantifies the
change in the total Coulomb energy, it is instructive to examine
how the Coulomb energy changes locally at specific points on
the shell surface as a result of the deformation proposed in
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Eq. (51). We define the local Coulomb energy at a point as the
interaction energy of the charge element at that point with all
the other charges on the surface. For the uniformly charged
sphere (undeformed state), the local Coulomb energy is the
same at all points on the surface.

We discuss, without any loss of generality, the case of
a10 < 0 for which the north pole (θ = 0) is buckled inwards.
For simplicity, we perform calculations for two points on the
surface: the north and the south poles. For the perturbation h

given by Eq. (51), we find the change in the local Coulomb
energy (relative to the original spherical conformation) of a
charge element located at the north pole to be

dH = 1

2
σ 2

0 dA′
∫

R0 sin θ dθ dφ
3

2r0
[h (θ,φ) + h (0,0)] ,

(56)

where dA′ = √
g0(xN )d2xN is the area element associated

with the charge in the undeformed (spherical) conformation
and r0 = 2R0 sin(θ/2). We are primarily interested in the sign
of dH ; if this interaction energy is negative (positive), that
would imply the local Coulomb energy for the deformed shape
is lowered (raised) relative to the original sphere. We define

HN = σ 2
0 R0

∫
dθ dφ sin θ

3

2r0
[h (θ,φ) + h (0,0)] (57)

and note that HN and dH have the same sign and differ by
a constant prefactor. Upon substituting h from Eq. (51) in
Eq. (57), the latter becomes

HN = 6
√

πσ 2
0

(
a00 + 2√

3
a10

)
. (58)

We follow a similar procedure to obtain the change in the local
Coulomb energy density HS at the south pole. We find that HS

is given by Eq. (58) with a10 replaced by −a10. Finally, noting
that the two modes a00 and a10 are coupled via Eq. (50), we
express HN and HS as functions of a00:

HN,S = 6
√

πσ 2
0

[
a00 ∓

√
2

3

(−4
√

πa00R
2
0 − a2

00

)]
, (59)

where the −(+) sign corresponds to the north (south) pole.
We plot HN and HS vs a00 in Fig. 5 for σ0 = 1,R0 = 1. We
find that as the magnitude a00 of the deformation (buckling)
is increased, the local Coulomb energy is lowered at the north
pole (HN � 0). On the other hand, at the south pole, the
local Coulomb energy is higher relative to its value in the
undeformed spherical case (HS � 0).

IV. CHARGE RENORMALIZATION IN
SPHEROIDAL SHELLS

In previous sections, we analyzed the Coulomb energy
of uniformly charged spheroidal and spherelike shells and
determined the conformations that correspond to the lowest
Coulomb energy under a given geometric constraint. The
shell was considered to be an isolated system in vacuum
with charges embedded on its surface. In realistic settings,
however, we expect the shells to be in an environment where
the surrounding medium (solvent) contains counterions that
neutralize the shell charge, rendering the overall system
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FIG. 5. (Color online) HN (dashed green) and HS (solid red) vs
a00 for the perturbation h characterized by two modes a00 and a10.
The above plot is for the case when a10 < 0, which corresponds to
the inward buckling of the north pole. See text for the meaning of the
symbols.

electroneutral. In this light, results obtained thus far are
reliable in the event that the associated counterions remain
in the bulk, far from the shell surface. In situations where
a significant fraction of the total number of counterions
condense on the shell, the free energy of the shell-counterion
system determines the equilibrium shell conformations. We
note that at infinite dilution, in the spherical case, the entropy is
expected to dominate the shell-counterion Coulomb attraction,
leading to no counterion condensation on the shell surface.
However, at finite shell concentrations (volume fractions),
condensation is expected to occur, even in salt-free settings
[15–17]. The condensation of the counterions can be viewed
as renormalizing the (bare) charge on the shell [15]. This
renormalized charge and consequently the behavior of the
equilibrium free energy of the shell-counterion system can be
obtained in a qualitative way by using the Manning-Oosawa
two-state model [8,9,16,18]. In this section, we use this
two-state model approximation and compute the renormalized
charge on uniformly charged oblate and prolate spheroidal
shells at finite shell concentrations in salt-free settings and
find the variation of the equilibrium free energy of the system
as a function of the shell aspect ratio.

We investigate the effects of counterion condensation on
spheroidal shells of equal area and spheroidal shells of equal
volume. For either case, we take the area (volume) to be
constrained to that of a sphere of radius R. We consider a
Wigner-Seitz (WS) cell of volume VWS containing a single
shell of volume �, with Q charge on its surface, placed at
the center. We work with finite values of the shell concen-
tration η = �/VWS. The cell also contains N counterions,
each of charge Q/N making the overall shell-counterion
system electroneutral. The counterions are separated into two
distinct groups: free ions and condensed ions. The condensed
counterions are restricted to have translational motion in a thin
layer of volume Vc = A(λ,R)b surrounding the shell, where
A(λ,R) is the area of the shell and b is the thickness of the layer.
Note that as we restrict our analysis to shells constrained to a
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fixed area or volume, the area A (and the volume �) of the shell
can be considered as a function of the aspect ratio λ and R.
Free ions occupy the available space in the WS cell which
in the dilute limit can be approximated to be the volume of
the cell. We choose experimentally relevant parameters: total
charge Q = 600 electron units (which amounts to ∼100 mV
of surface potential), N = 1000 counterions, and R = 10 nm.
Calculations are performed for room temperature T = 300 K,
and we take water as the dielectric medium surrounding the
shell.

Let α be the fraction of counterions that condense. Clearly,
(1 − α)N ions remain free in the bulk. Further, the condensed
ions neutralize the surface charge on the shell reducing the
net charge to (1 − α)Q. We approximate the WS cell to be
spherical with volume VWS = (4/3)πR3

WS, with RWS being
the radius of the cell that gets determined by the shell volume
fraction (concentration) η. We vary the shell concentration η

from 10−12 to 10−4. We write the free energy (in units of kBT )
associated with the shell as

F (α,λ) = (1 − α)2U (λ) + αN ln

[
αN
3

A(λ,R)b

]
− αN

+ (1 − α)N ln

[
(1 − α)N
3

VWS

]
− (1 − α)N,

(60)

where 
 is the thermal de Broglie wavelength. The first term is
the electrostatic potential energy of the shell with renormalized
charge (1 − α)Q. The function U (shown below) represents
the bare (unrenormalized) Coulomb energy and is determined
based on particular geometric constraint employed. The
second and third terms stem from the entropic contribution
of the αN condensed ions, and the last two terms correspond
to the entropy of (1 − α)N free counterions. Note that within
this model, the entropy of both free and condensed ions is
assumed to be that of an ideal gas. Also, just like U , the form
of the area A of the shell and its volume � depends on the
constraint applied as shown below.

For the case of shells subject to the equal area constraint,
the function U (λ) reads

U (λ) =UA(λ) =
{

lBUo,A(
√

1 − λ2,R,Q) 0 < λ < 1

lBUp,A(
√

λ2 − 1/λ,R,Q) λ � 1
,

(61)

where Uo,A and Up,A are available from Eq. (24), which
provides the expression for the Coulomb energy of uniformly
charged spheroidal shells of equal area, and the above result
is expressed in units of kBT by introducing the Bjerrum
length lB. Recall that the values of λ � 1 correspond to
prolate spheroids and 0 < λ < 1 region corresponds to oblate
spheroids. Owing to the constraint, the area of the shell is
simply A(λ,R) = 4πR2. The shell volume � follows from
Eqs. (26), (19), (29), and (22):

�(λ,R) =
{

�o(
√

1 − λ2,a(
√

1 − λ2,R)) 0 < λ < 1

�p(
√

λ2 − 1/λ,c(
√

λ2 − 1/λ,R)) λ � 1
.

(62)

For the volume-constrained problem, U (λ) follows from
Eq. (32):

U (λ) =UV (λ) =
{

lBUo,V (
√

1 − λ2,R,Q) 0 < λ < 1

lBUp,V (
√

λ2 − 1/λ,R,Q) λ � 1
.

(63)

Following Eqs. (7), (12), (27), and (30), the area function A

for this case becomes

A(λ,R)

=
{

Ao(
√

1 − λ2,a(
√

1 − λ2,R)) 0 < λ < 1

Ap(
√

λ2 − 1/λ,c(
√

λ2 − 1/λ,R)) λ � 1
.

(64)

Finally, owing to the constraint, the shell volume is simply
� = 4πR3/3.

We approximate the thickness b of the condensed layer by
the Gouy-Chapman (GC) length b = 1/(2πlBσ ), where σ is
the unrenormalized charge density on the shell surface [18].
Higher charge density or longer Bjerrum length leads to a
stronger shell-counterion attraction implying a thin condensed
layer; this is indeed reflected when b is chosen as the layer
thickness as seen from the above expression. We also note
that the GC length is a length scale associated with the planar
interface, and hence our analysis is limited to the regime where
b is shorter than the characteristic lengths associated with the
shell. We have carried out the following analysis by choosing
the Bjerrum length lB as the thickness of the condensed layer,
and we find no changes in the conclusions reached below.

The free energy F in Eq. (60) can be considered as a
function of λ and α. For a given λ (shape), we minimize the
free energy with respect to α to find the fraction of counterions
that condense on the shell. We obtain the extremum condition

−ξ (1 − α) + N ln

[
α

1 − α

1

η

�(λ,R)

A(λ,R)b

]
= 0, (65)

where ξ = 2U (λ) measures the strength of the Coulomb
interactions and η is the volume fraction of the shells given by

η = �

VWS
. (66)

For a given λ and η, we solve Eq. (65) using Mathematica
and obtain α as a function of λ. We carry out the study for
a wide range of shell volume fractions ranging from 10−12

to 10−4. Using the value of α, the renormalized electrostatic
energy U of the shell at equilibrium is known from Eq. (61) or
Eq. (63) (depending on the constrained problem under study),
by replacing Q with (1 − α)Q:

U (λ,Q) = U (λ,(1 − α)Q). (67)

Employing the above result and the equilibrium value of the
condensate fraction α [obtained as the solution of Eq. (65)],
it is easy to show that the difference in the equilibrium free
energies of a spheroidal shell and a spherical shell, dF , defined
as

dF (λ) = F (λ) − F (λ → 1) (68)
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FIG. 6. (Color online) Equilibrium free energy difference, dF ,
between a homogeneously charged spheroidal shell and a sphere of
identical parameters (z = 0.6, N = 1000, R = 10 nm) as a function
of the aspect ratio λ for the area-constrained system. The effects of
charge renormalization due to counterion condensation are included
via a two-state model analysis calculation. The red curve is the case
for the counterion-free system and acts as a reference line. All other
curves take into account ion condensation on the shell surface and
correspond to different values of the shell volume fraction η. Results
are shown for η = 10−12 (green squares), 10−10 (blue circles), 10−8

(orange triangles), 10−6 (cyan inverted triangles), and 10−4 (brown
diamonds). We find that the spherical conformation, which is a local
minimum for the isolated spheroidal system (red line), becomes a
free-energy maximum at η = 10−4.

is given by

dF = 1 + α

1 − α
U − 1 + αs

1 − αs

Us + N ln
1 − α

1 − αs

. (69)

In Eq. (69), αs and Us denote, respectively, the values of the
condensate fraction and the renormalized Coulomb energy for
a spherical shell.

We now analyze the variation of dF as λ is changed. We
consider λ values from 0 to 4 like in the study of the Coulomb
energy of isolated, homogeneously charged spheroidal shells
recorded in Figs. 2 and 3. We begin with the case of fixed
shell area. In Fig. 6 we plot dF , computed from Eq. (69), as a
function of λ for various values of η. The red solid line is the
Coulomb energy dU of isolated spheroidal shells of equal area
measured relative to the Coulomb energy of the spherical shell
with identical parameters. This line acts as a reference curve to
all other lines which are the result of taking ion condensation
into consideration. Recall that for the counterion-free case,
the spherical shape is a local energy minimum as evidenced
by the dU plot. For low η (=10−12), which corresponds
to a very dilute system, we find that the dF curve (green
squares) lies in the vicinity of the no-condensation result (dU ).
However, as η rises, we observe significant deviations from
the unrenormalized energy curve for both oblate (λ < 1) and
prolate (λ > 1) regions.

We find that for all shapes (λ), as the volume fraction η is
increased, α increases, that is more counterions condense on
the shell surface. A major consequence of the enhanced charge
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FIG. 7. (Color online) Equilibrium free energy difference, dF ,
between a homogeneously charged spheroidal shell and a sphere of
identical parameters (z = 0.6, N = 1000, R = 10 nm) as a function
of the aspect ratio λ for the volume-constrained system. The effects of
charge renormalization due to counterion condensation are included
via a two-state model analysis calculation. The red curve is the case
for the counterion-free system and acts as a reference line. All other
curves take into account ion condensation on the shell surface and
correspond to different values of the shell volume fraction η. Results
are shown for η = 10−12 (green squares), 10−10 (blue circles), 10−8

(orange triangles), 10−6 (cyan inverted triangles), and 10−4 (brown
diamonds). We find that in the event of ion condensation, for all values
of η, the spherical conformation continues to have the highest free
energy among all spheroidal shapes.

renormalization is the reduction of the positive free energy
difference between the spheroidal shell and the sphere (see
Fig. 6 inset). Further, for high η values (η = 10−6, 10−4), we
find that all prolate shells have less free energy as compared to
the sphere, which is in stark contrast from the no-condensation
result (red line). For the same η values, we also find that oblate
shells with small aspect ratios have lower free energy than
a spherical shell (dF < 0). For the volume fraction of η =
10−4 (brown diamonds), the spherical shell has the maximum
equilibrium free energy among all shapes. Thus, according
to the above analysis based on the two-state model, for the
area-constrained shell system, counterion condensation has a
profound effect in modifying the energy landscape associated
with the isolated shell, favoring the formation of spheroidal
structures over the spherically shaped ones as the shell volume
fraction is increased.

Figure 7 shows the variation of dF with λ for different η

values in the case of fixed-volume constraint. Once again, the
solid red line corresponds to the counterion-free system and is
the Coulomb energy of the uniformly charged spheroidal shell
measured relative to the electrostatic energy of the sphere.
As Fig. 3 shows, the spherical shape is the conformation of
maximum energy for this particular constraint. This conclusion
remains unchanged when we include the effects of charge
renormalization via the two-state model analysis as seen from
Fig. 7. For a very dilute system, η = 10−12 (green squares),
we find that the dF curve lies in the vicinity of the dU

line. Increasing η leads to a rise in α which is seen to
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weaken the (negative) difference between the equilibrium
free energies of spheroidal and spherical shells (see Fig. 7
inset). Thus, judging by the variation of dF determined
by the two-state model analysis, we find that oblate and
prolate shaped structures continue to be energetically favored
over the spherical conformation in the event of counterion
condensation. Further, the monotonic trend of free energy
decrease with increasing the eccentricity of the spheroidal shell
observed for the isolated shell system is seen to persist in the
wake of counterion condensation as well.

We note that as the counterions are mobile, under certain
conditions, the charged shell is better approximated as a
conducting surface as opposed to a homogeneously charged
one. In that event, the above analysis can be carried out
using the expressions of electrostatic energy for conducting
spheroidal shells provided in Eq. (25). We observe that
for all values of η, the conducting spheroidal shell has a
lower free energy upon deformation in comparison with the
homogeneously charged shell (see Ref. [7] for details of this
calculation for oblate spheroidal shells under the constraint of
constant volume). Further, we find that the main conclusions
regarding the effects of counterion condensation reached above
for either constraints remain unchanged when we repeat
the two-state model analysis assuming that the shell is an
equipotential surface.

Finally, we note that the study of condensation effects
based on the above two-state model employs a number of
approximations. For example, the free energy associated with
this model, Eq. (60), does not take into account the shell-
counterion and counterion-counterion Coulomb interactions
explicitly. Another approximation is to put the shell in a
counterion-only, salt-free environment. Also, the distribution
of counterions around the spheroidal shell is considered to
be isotropic, which is clearly a simplification for shapes that
deviate significantly from the spherical conformation. In this
light, we view the above results as qualitative. Quantitative
results that address many of the aforesaid simplifications can
be obtained by employing approaches based on the solution
of the Poisson-Boltzmann equation for spheroidal geometry
[19].

V. CONCLUSION

We report the exact expression for the electrostatic energy
of a uniformly charged spheroidal shell. We analyze the
variation in the electrostatic energy as the aspect ratio of the
shell is changed from 0 to ∞ for the area-constrained and
volume-constrained cases. The prolate spheroidal shell with
its major-axis length stretched to infinity is found to have the
lowest Coulomb energy among spheroidal shells of equal area.
Further, we reveal the nonmonotonic variation in the Coulomb
energy when a spherical shell is elongated to a prolate spheroid
keeping the shell area fixed. For spheroidal shells that have
the same volume, a sphere has the highest Coulomb energy.
In addition, our perturbation calculations show that there exist
area-conserving buckling-type deformations on the sphere that
can lower the total Coulomb energy. For the spheroidal shell
system, we use a two-state model of free and condensed ions
to evaluate the renormalization of the shell charge due to
counterion condensation. We find that ion condensation has a

significant effect in modifying the free energy landscape with
spheroidal structures being favored over a sphere of the same
area as the shell volume fraction is increased. These results
add to the theoretical foundation required to understand the
control of spheroidal shapes in materials using electrostatics
in combination with other forces such as those arising due to
the elastic nature of the material [7].
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APPENDIX A: COULOMB ENERGY OF UNIFORMLY
CHARGED PROLATE SPHEROIDAL SHELLS

In this section we derive the expression shown in Eq. (9)
for the Coulomb energy of a homogeneously charged prolate
spheroidal shell. We consider prolate spheroidal coordinates
u,v,φ, which are related to the Cartesian coordinates x,y,z by

x = cep sinh(u)sin(v)cos(φ), (A1)

y = cep sinh(u)sin(v)sin(φ), (A2)

z = cep cosh(u)cos(v), (A3)

where

0 � u < ∞, 0 � v � π, − π < φ � π. (A4)

The set (u,v,φ) uniquely characterizes a point in the three-
dimensional space. It is straightforward to show that the metric
coefficients are

hu = hv = cep

√
sinh2u + sin2v, hφ = cep sinhu sinv

(A5)

using which the form for the Laplacian ∇2� is readily obtained
to be [12]

∇2� = 1

c2e2
p(sinh2u + sin2v)

×
[

1

sinhu

δ

δu

(
sinhu

δ�

δu

)
+ 1

sinv

δ

δv

(
sinv

δ�

δv

)]

+ 1

c2e2
psinh2u sin2v

δ2�

δ2φ
. (A6)

The prolate spheroidal shell in these coordinates is repre-
sented by the simple equation u = u0, where u0 is connected
to the eccentricity via the relation

sechu0 = ep. (A7)

The region of space interior to the spheroid corresponds to
the values 0 � u < u0 and the exterior region is represented
by the u > u0 domain. We begin by finding the electrostatic
potential generated by the uniformly charged prolate shell
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represented by the equation u = u0. Since there is axial
symmetry in the problem, the electrostatic potential will
depend only on coordinates u and v. Writing the solution as
�(u,v) = U (u)V (v) and substituting it in the Laplace equation
∇2� = 0, we find, upon using Eq. (A6), that the variables
separate and the functions U and V satisfy the differential
equations

1

sinhu

δ

δu

(
sinhu

δU

δu

)
− nU = 0, (A8)

1

sinv

δ

δv

(
sinv

δV

δv

)
+ nV = 0. (A9)

A closer examination of these equations reveals the general
solution for the potential to be

�(u,v) =
∞∑

n=0

[AnPn(coshu) + BnQn(coshu)]Pn(cosv),

(A10)

where n is an integer, Pn and Qn are Legendre functions of the
first and second kind, respectively, and An and Bn are unknown
coefficients. In order to ensure that the solutions are bounded
in the interior and exterior regions of the spheroid, we find that
An must vanish in the domain u > u0 and Bn = 0 in the region
where 0 < u < u0. We thus have the following form for the
potential inside and outside the oblate shell:

�in(u,v) =
∞∑

n=0

AnPn(coshu)Pn(cosv), (A11)

�out(u,v) =
∞∑

n=0

BnQn(coshu)Pn(cosv). (A12)

The potential must be continuous at the shell surface
u − u0 = 0, that is, �in(u0,v) = �out(u0,v). This boundary
condition leads to the relation

AnPn(coshu0) = BnQn(coshu0) (A13)

for n = 0,1,2, . . .. Note that coshu0 = 1/ep. The discontinuity
in the normal component of the electric field at the charged
surface provides another boundary condition:

−û · ∇�out + û · ∇�in = 4πσ, at u = u0. (A14)

Using the expression for the gradient in prolate spheroidal
coordinates, the above equation becomes

1

hu

δ�in

δu

∣∣∣
u=u0

− 1

hu

δ�out

δu

∣∣∣
u=u0

= 4πσ. (A15)

Employing equations (A11), (A12), and (A5), the above
boundary condition leads to the relation

∞∑
n=0

[AnP
′
n(1/ep) − BnQ

′
n(1/ep)]Pn(cosv)

= 4πσcep√
1 − e2

p

√
1 − e2

pcos2v. (A16)

Equations (A13) and (A16) allow us to evaluate the undeter-
mined functions An and Bn. We first eliminate Bn in favor of

An using Eq. (A13) obtaining

Bn = AnPn(1/ep)

Qn(1/ep)
. (A17)

Substituting Bn from above in Eq. (A16), we obtain
∞∑

n=0

[
AnP

′
n(1/ep) − AnPn(1/ep)

Qn(1/ep)
Q′

n(1/ep)

]
Pn(cosv)

= 4πσaep√
1 − e2

p

√
1 − e2

pcos2v. (A18)

Using the fact that the Wronskian of Pn(z) and Qn(z) is given
by

W (Pn(z),Qn(z)) = 1

1 − z2
, (A19)

Eq. (A18) can be simplified to

∞∑
n=0

AnPn(cosv)

Qn(1/ep)
=

4πσc
√

1 − e2
p

ep

√
1 − e2

pcos2v. (A20)

Multiplying both sides of the above equation with Pl(cosv)sinv

and using the orthogonality relation∫ π

0
Pn(cosv)Pl(cosv)sinv dv = 2

2n + 1
δnl, (A21)

we obtain

An = 2n + 1

2
4πσc

√
1 − e2

p

ep

Qn(1/ep)Hn(ep), (A22)

where Hn(ep) is the integral

Hn(ep) =
∫ π

0

√
1 − e2

pcos2v Pn(cosv)sinv dv. (A23)

It is easily checked that for odd n the integral in the above
equation vanishes. Hence, we have A1 = A3 = A5 · · · = 0.
Using An in Eq. (A17), Bn is known as well, and consequently
from Eqs. (A11) and (A12), we obtain the desired electrostatic
potential at any point in space.

For the computation of the electrostatic energy, the knowl-
edge of the potential on the shell surface suffices. Using
Eqs. (A11) and (A22), we obtain the surface potential as

�shell(v,ep,c) =
4πσc

√
1 − e2

p

ep

∑
n∈even

2n + 1

2
Pn(1/ep)

×Qn(1/ep)Hn(ep)Pn(cosv), (A24)

where the summation is over even integers n = 0,2,4, . . .. The
electrostatic energy of a charged spheroidal shell can be written
as

U = 1

2

∫
σ �shell dA. (A25)

The shell surface area element in the prolate spheroidal
coordinates is given by

dA= hvhφ dv dφ = c2
√

1 − e2
p

√
1 − e2

pcos2v sinv dv dφ,

(A26)
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where the second equality follows from Eq. (A5). After
substituting this expression for the area element in Eq. (A25),
using Eq. (A24), and changing the variable from σ to Q, we
obtain the expression in Eq. (9).

APPENDIX B: COULOMB ENERGY OF UNIFORMLY
CHARGED OBLATE SPHEROIDAL SHELLS

We now derive the expression for the electrostatic energy
of a uniformly charged oblate spheroidal shell. As most of
the steps involved in this derivation are analogous to the
above derivation for the prolate case, we will present only
the key steps of the procedure. We begin by employing the
oblate spheroidal coordinates u,v,φ, which are related to the
Cartesian coordinates x,y,z by

x = aeo cosh(u)sin(v)cos(φ), (B1)

y = aeo cosh(u)sin(v)sin(φ), (B2)

z = aeo sinh(u)cos(v), (B3)

where

0 � u < ∞, 0 � v � π, − π < φ � π. (B4)

The set (u,v,φ) uniquely characterizes a point in the three-
dimensional space. It is straightforward to show that the metric
coefficients are

hu = hv = aeo

√
sinh2u+ cos2v, hφ = aeo coshu sinv

(B5)

using which the form for the Laplacian ∇2� = 0 is readily
obtained. The oblate spheroidal shell in these coordinates
is represented by the simple equation u = u0, where u0 is
connected to the eccentricity via the relation

sechu0 = eo. (B6)

The region of space interior to the spheroid corresponds to the
values 0 � u < u0 and the exterior region is represented by
the u > u0 domain.

Once again, we start by determining the electrostatic poten-
tial generated by this uniformly charged oblate shell. Since this
system has axial symmetry, the electrostatic potential created
by the oblate spheroid will depend only on the coordinates
u and v. Employing separation of variables we can write
the solution as �(u,v) = U (u)V (v), upon which the Laplace
equation separates into two differential equations for u and v.
A closer examination of these equations reveals the general
solution for the potential to be

�(u,v) =
∞∑

n=0

[AnPn(i sinhu) + BnQn(i sinhu)]Pn(cosv),

(B7)

where Pn and Qn are Legendre functions of the first and second
kind, respectively, and An and Bn are unknown coefficients. In
order to ensure that the solutions are bounded in the interior
and exterior regions of the spheroid, we find that An = 0 in
the domain u > u0, and Bn = 0 when 0 < u < u0. We thus
have the following form for the potential inside and outside

the oblate shell:

�in =
∞∑

n=0

AnPn(i sinhu)Pn(cosv), (B8)

�out =
∞∑

n=0

BnQn(i sinhu)Pn(cosv). (B9)

The boundary condition that the potential must be continuous
at the shell surface u − u0 = 0 leads to the relation

AnPn(i sinhu0) = BnQn(i sinhu0) (B10)

for n = 0,1,2, . . .. Note that sinhu0 = (1/eo)
√

1 − e2
o. The

discontinuity in the normal component of the gradient of
the electric potential at the charged surface provides another
boundary condition which upon employing the expression for
the gradient in oblate coordinates becomes

∞∑
n=0

[AnP
′
n(i sinhu0) − BnQ

′
n(i sinhu0)]icoshu0Pn(cosv)

= 4πσa

√
1 − e2

osin2v. (B11)

Using Eqs. (B10) in (B11), we can eliminate Bn in favor of An

and solve for the latter, obtaining

An = 2n + 1

2

4πσa i

eo

Qn

(
i

√
1 − e2

o

eo

)
In(eo), (B12)

where In(eo) is the integral

In(eo) =
∫ π

0

√
1 − e2

osin2v Pn(cosv)sinv dv. (B13)

As before, in arriving at this result we employed the property
of the Wronskian of the Legendre polynomials and their
orthogonality relation. It is easily checked that for odd n,
In(eo) vanishes, implying A1 = A3 = A5 · · · = 0. Using An

in Eq. (B10), Bn can be evaluated as well, and consequently
from Eqs. (B8) and (B9), the electrostatic potential is known
everywhere in space.

For the computation of the electrostatic energy, the knowl-
edge of the potential on the shell surface suffices. Using
Eqs. (B8) and (B12), we obtain the surface potential as

�shell(v,eo,a)

= 4πσa i

eo

∑
n∈even

2n + 1

2
Pn

(
i

√
1 − e2

o

eo

)

×Qn

(
i

√
1 − e2

o

eo

)
In(eo)Pn(cosv). (B14)

The shell surface area element in the oblate spheroidal
coordinates is given by

dA = a2
√

1 − e2
osin2v sinv dv dφ. (B15)

Using Eqs. (B14) and (B15) in Eq. (A25), and changing the
variable from σ to Q, we obtain the energy expression in
Eq. (14).
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APPENDIX C: COULOMB ENERGY OF A UNIFORMLY
CHARGED DISK

In this Appendix, we derive the exact expression for the
Coulomb energy of a uniformly charged circular disk of radius
a, total charge Q, and uniform charge density σ = Q/(πa2).
The potential on the surface of the disk as a function of ρ, the
radial coordinate, has been derived in Ref. [13] and is given by

V (ρ) = 4σaE

(
ρ2

a2

)
, (C1)

where E(m) is the complete elliptic integral of the second kind:

E(m) =
∫ π/2

0

√
1 − m sin2θ dθ. (C2)

Note that 0 � ρ � a. This result can be used to obtain the
electrostatic energy Udisk of this disk. Interestingly, while the
potential on the disk surface is only available as an elliptic
integral, we will soon see that the total electrostatic energy of
the disk reduces to a simple form.

Starting with the definition of the electrostatic energy, U =
(1/2)

∫
σV dA, we have

Udisk = 1

2
σ

∫ a

0
V (ρ)2πρ dρ. (C3)

Substituting V (ρ) from Eq. (C1) and using Eq. (C2), we obtain

Udisk = 4πσ 2a

∫ a

0
dρ

∫ π/2

0
dθ

√
1 − ρ2

a2
sin2θ ρ. (C4)

Carrying out the integral with respect to ρ first by employing
the substitution t = 1 − ρ2sin2θ/a2, we obtain

Udisk = 4πσ 2 a3

3

∫ π/2

0

1 − cos3θ

sin2θ
dθ. (C5)

The integral over θ equates to 2 leading to the following
expression for the energy

Udisk = 8π

3
σ 2a3. (C6)
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