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Effects of temperature on spinodal decomposition and domain growth of liquid-vapor
systems with smoothed particle hydrodynamics
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We present a numerical method for simulations of spinodal decomposition of liquid-vapor systems. The
results are in excellent agreement with theoretical predictions for all expected time regimes from the initial
growth of “homophase fluctuations” up to the inertial hydrodynamics regime. The numerical approach follows a
modern formulation of the smoothed particle hydrodynamics method with a van der Waals equation of state and
thermal conduction. The dynamics and thermal evolution of instantaneously temperature-quenched systems are
investigated. Therefore, we introduce a simple scaling thermostat that allows thermal fluctuations at a constant
predicted mean temperature. We find that the initial stage spinodal decomposition is strongly affected by the
temperature field. The separated phases react on density changes with a change in temperature. Although, the
thermal conduction acts very slowly, thermal deviations are eventually compensated. The domain growth in
the late stage of demixing is found to be rather unaffected by thermal fluctuations. We observe a transition
from the Lifshitz-Slyozov growth rate with 1/3 exponent to the inertial hydrodynamics regime with a rate of
2/3, only excepted from simulations near the critical point where the liquid droplets are observed to nucleate
directly in a spherical shape. The transition between the growth regimes is found to occur earlier for higher initial
temperatures. We explain this time dependency with the phase interfaces that become more diffuse and overlap
with approaching the critical point. A prolonging behavior of the demixing process is observed and also expected
to depend on temperature. It is further found that the observations can excellently explain the growth behavior
for pure nonisothermal simulations that are performed without thermostat.
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I. INTRODUCTION

The influence of hydrodynamics and temperature on the
dynamic process of phase transitions are still open issues. In
this work a simulation method for first-order phase transitions
of a one-component fluid is introduced. To be more precise, the
smoothed particle hydrodynamics (SPH) simulation method is
first applied to investigate the dynamics of liquid-vapor phase
transitions, especially the so-called spinodal decomposition
(SD), where a spontaneous separation occurs after the fluid
was instantaneously quenched to a completely unstable state.
With our method the whole separation process is in excellent
agreement with theoretically predicted properties for all
expected time regimes and results from other simulation
methods. In addition, SPH evolves the temperature, which
is a more realistic approach than most theories that treat the
process isothermal.

The separation process splits up into an initial- and a late-
stage time regime. The predictions for the initial stage concern
the growth of long-wavelength “homophase fluctuations” [1],
which follows from the Cahn-Hilliard-equation (CH) [2–4], a
transition from SD at deep quenches to a rather nucleation-like
SD for low quench depths near the critical point [1,5] and an
increase of the mean temperature that is due to latent heat
observed at nonisothermal simulations [6]. But also in the late
stage of phase separation, the domain growth (DG) regime,
the SPH results are in agreement with theoretical predictions.
The DG process is divided into different growth regimes
[7,8] that are characterized by different scaling behaviors
of the characteristic length of the domains ξ (t) ∼ tα . The
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exponents can be assigned to different growth processes. A
diffusion-driven coarsening growth was predicted by Lifshitz
and Slyozov (LS) [9] and is expected to yield an exponent
of α = 1/3. The influence of hydrodynamics is subdivided
in two regimes, where Siggia predicted a crossover from LS
to a viscous hydrodynamic regime (VH) with linear scaling
α = 1 [10], followed by Furukawas prediction of an inertial
hydrodynamic regime (IH) that corresponds to α = 2/3 [11].
Nevertheless, it must be mentioned that an all-embracing
theory is still not found. Many attempts with several simulation
methods have been made to prove these predictions (at least
partially) [11–20] and to find crossovers between the regimes
[21–27]. More recent works take the evolution of temperature
into account where a prolongation in the DG regime is
observed [6,28]. The SPH method allows us to evolve through
all the above-mentioned time regimes in a single simulation,
reaching from the early-stage SD to the late-stage DG regimes.

Most of the mesoscopic methods, and so our SPH method,
are based on the simple approach for the modeling of phase
separation, which is given by van der Waals (vdW) [29] who
proposed an equation of state (EOS) for liquid-vapor phase
transitions. The vdW theory predicts both, the existence of a
completely unstable region, which is enclosed by the spinodal
curve, and above that a metastable region enclosed by the
coexisting curve (binodal curve) that predicts the coexisting
liquid and vapor densities. The spinodal and binodal meet at
the so-called critical point. Surface tension arises naturally by
the use of the vdW-EOS in SPH and thus interfaces become
more diffuse when approaching the critical point. This was
first shown by Nugent and Posch [30] and, with a modified
vdW-EOS where an additional stress tensor is applied, in a
very recent work by Sigalotti et al. [31]. Both studied the
droplet formation after an instantaneous volume expansion. In
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this procedure only the mean density of the total volume gets
below the spinodal curve, but in fact the dynamical process
is only a reshaping of an initial squared (or cubed) liquid
droplet to a spherical one. This vdW-SPH approach has been
the basis for works on various subjects, such as the oscillation
and coalescence of droplets, the determination of the surface
tension, or modeling multiphase flow in two [32–37] and
recently also in three dimensions [38,39]. Nugent and Posch
pointed out that the attractive and repulsive components of
the pressure that are given by the vdW-EOS must be treated
separately with different smoothing lengths to obtain sensible
results. This practice has become a common method. However,
from a numerical point of view there is no explanation for this
choice and should even be avoided. Furthermore, all of these
works have been performed with low resolutions and could not
resolve the demixing process at temperatures near the critical
point.

The SPH method used in this work is based on the
modern formulation of SPH [40,41], which is derived from
a Lagrangian and yields very good conservation properties.
Physical viscosity is already applied to SPH [40,42] but
intentionally not included in our model in order to reduce the
complexity. SPH is suitable for very effective parallelization
strategies and allows us to perform simulations at very
high resolutions in three dimensions. An adequate choice
of kernel provides the enlargement of the smoothing range
and repeals the requirement of differentiation in long- and
short-range components. Instantaneous temperature quenches
in the unstable region allow us to observe the growth of
“homophase fluctuations” in SD and DG under considera-
tion of hydrodynamics. A thermostat treats the simulation
quasiisothermal, because thermal fluctuations at a fixed mean
temperature are expected to give a more realistic sight on the
separation process of a thermally quenched system than an
isothermal treatment. In the context of phase separation, SPH
has some advantages over other common simulation methods,
like the also mesoscopic Lattice Boltzmann method. It is easy
to determine the mean densities and temperatures, to follow
their evolution in a phase diagram, and to directly observe the
fluid flow.

The paper is structured as follows. In Sec. II the governing
equations and the SPH method are presented. In Sec. III first
the simulation method and the new scaling thermostat are val-
idated with both static and dynamic test cases. Afterwards, the
results of the numerical simulations for the phase separation
process without thermostat and with thermostat are presented.
The paper is closed by a conclusion in Sec. IV.

II. METHODS

In this section the simulation method and the related
governing equations are briefly discussed, with focus on
recent developments of the code. The SPH method was
simultaneously developed by Lucy [43] and Gingold and
Monaghan [44], originally for astrophysical purposes (see,
e.g., Ref. [45]). It has been extended and further developed un-
til recent days. Therefore, a lot of SPH code implementations
are available at present. Today the development also focuses
on smaller length scales, which poses further challenges. In
the present study a modification of the massively parallel

simulation code Gadget2 [46] is used. The modifications
comprise an equation of state that supports phase separation,
a new kernel interpolant, a thermal conduction equation, and
a herein newly developed scaling thermostat.

A. Smoothed particle hydrodynamics

The SPH method is a mesoscopic mesh-free simulation
method where the volume of a fluid is divided in a set of
virtual mass elements mi (hereinafter referred to as SPH
particles). Every SPH particle is assigned to a volume that is
specified by a so-called smoothing length hi . These volumes
must not be regarded as separated volumes but as rather
overlapping each other. Any quantity can be approximated via
a weighted interpolation over the neighboring SPH particles.
The weighting function W (r,h), which is also called the
smoothing kernel, must satisfy the conditions that W (r,h) →
δ(r) for h → 0, W (r,h) � 0 is monotonically decreasing and
twice continuously differentiable [41]. A class of kernels that
fulfill these conditions and should further be stable against
pairing are the Wendland functions [47]. Instead of common
choices, like the class of B-splines or Lucy, we use the
Wendland C4 kernel function that allows a wider smoothing
range. It reads in three dimensions as

W (r,h) = 495

32π
(1 − r)6

+

(
1 + 6r + 35

3
r2

)
, (1)

where r = |r|/h and (·)+ = max(0,·). In practice a typical
number of neighbors N determines the smoothing length hi

via the estimated density, such that the kernel volume enclose
a constant mass [46].

As SPH is a mesh-free method and thus the particles follow
directly the flow of the fluid, the hydrodynamic equations can
be described in the Lagrangian frame [40]. The governing
equations for a heat conducting nonviscous fluid are namely the
continuity equation, the momentum equation, and the energy
equation, which read as

dρ

dt
= −ρ∇ · v, (2)

dv
dt

= −∇P

ρ
, (3)

du

dt
= −P

ρ
∇ · v − 1

ρ
∇j, (4)

where ρ, v, u, P , and j are the density, velocity, specific
internal energy, pressure, and heat flux vector, respectively.
The equations are solved for each SPH particle. One of the
main advantages of SPH is that the total mass of the system is
exactly conserved, when the total number of particles does not
change within a simulation [41]. The continuity Eq. (2) must
not be solved explicitly and can be replaced by the density
estimation

ρi =
N∑

j=1

mjWij (hi), (5)

where Wij (hi) = W (ri − rj ,hi). The resulting density tends to
overestimate the correct density. It therefore has to be corrected
by a correction term fully described in Ref. [47]. The main
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feature of SPH is that any spatial derivative of a scalar or
vector quantity reduces at least to the product of the quantity
itself and the derivative of the kernel. Thus, the momentum
Eq. (3), with respect to adaptive smoothing lengths, can be
derived by a Lagrangian and reads as

dvi

dt
= −

N∑
j

mj

[
fiPi

ρ2
i

∇iWij (hi) + fjPj

ρ2
j

∇iWij (hj )

]
, (6)

where the fi are correction factors due to the adaptivity of the
smoothing lengths and are defined by

fi =
[

1 + hi

3ρi

dρi

dhi

]−1

. (7)

The SPH formulation of the first term on the right-hand side
of Eq. (4) can easily be expressed in terms of the velocity as

dui

dt
= fiPi

ρ2
i

N∑
j

mj (vi − vj ) · ∇iWij (hi). (8)

The latter thermal conduction term includes a second deriva-
tive, since the heat flux vector is given by j = −κ∇T , with the
material specific thermal conductivity κ . One possible SPH
discretization is given by

dui

dt
=

N∑
j=1

mj

ρiρj

(κi + κj )(Tj − Ti)
rij

|rij |2 · ∇iW ij , (9)

where Wij = 1/2[Wij (hi) + Wij (hj )] is the arithmetic mean
between the two kernel values [48,49]. If the thermal conduc-
tivity is treated as a constant, the sum (κi + κj ) in Eq. (9) is
replaced by 2κ . Otherwise, the conduction can be expressed
in terms of the density and temperature.

In order to suppress nonphysical behavior at discontinuities,
it is necessary to take artificial viscosity into account. A
variation of the standard formulation of artificial viscosity [50]
is given by

�ij = −αv
sig
ij wij

2ρij

, (10)

where α is called the artificial viscosity constant with a typical
value in [0,1]. The signal velocity v

sig
ij = ci + cj − 3wij with

wij = vij · rij /|rij | (only if vij · rij < 0, otherwise wij = 0)
and ci is an estimate of the sound velocity. The ρij denotes the
arithmetic mean of the densities due to the particles i and j .
The implementation is realized by replacing any pressure term
Pi/ρ

2
i , due to a particle i, in Eqs. (6) and (8), by an interparticle

term Pi/ρ
2
i + �ij [46]. Note that artificial viscosity is solely

implemented for numerical reasons and must not be confused
with physical viscosity.

The physical properties of the phase separation process for
a one-component fluid can be described by the vdW-EOS. The
vdW theory predicts a fluid to separate into two phases when
the fluid undergoes a certain critical point (Pc,Tc,ρc). The
separation process is mainly controlled by two components,
which can be expressed in terms of the critical point. The first
one is a repulsive component and comes up by the assumption
of a covolume b = kbTc/(8Pc), where kb = kb/μmp with kb

the Boltzmann constant, μ the mean molecular weight and

mp the proton mass. The second component is the cohesive
pressure a = 27(kbTc)2/(64Pc) and acts ultimately as an
attractive force. These considerations result in the mechanical
[Eq. (11)] and caloric [Eq. (12)] equations of state for a SPH
particle:

Pi = ρikbTi

1 − bρi

− aρ2
i , (11)

ui = kbTi − aρi. (12)

Note that Eq. (12) can be used to compute the actual
temperature of a particle, which provides that an expansion
or compression in terms of the density leads to cooling or
heating of the fluid. Furthermore, a minimum internal energy
umin = −a/b can be derived, since the value of density is
not allowed to exceed 1/b and Ti � 0. The vdW equation
had first been applied to SPH in order to study the formation
of liquid drops in two dimensions [30]. However, common
choices for the smoothing kernel like Lucys kernel always
required a separation of Eq. (11) into two components, which
severally had to be applied to different smoothing lengths.
This differentiation in a long-range attraction and a short-range
repulsion was necessary to get sensible results. However, the
Wendland kernel from Eq. (1) supports much wider smoothing
ranges than the common kernels like Lucys or the B2 spline.
Hence, there is no need to differentiate attractive and repulsive
pressure terms within the formulation of SPH that is used in
this work.

The integration in time is done by the generally symplectic
leapfrog kick-drift-kick algorithm. The implementation to
SPH is described in Ref. [46]. It is reasonable to use adaptive
timesteps in order to reduce the computational effort, which,
however, is accompanied by the loss of symplecticity of the
integration scheme. In order to minimize errors due to the
adaptivity, the timesteps are chosen individually. Thus, the step
size of a particle i is set by choosing the minimum timestep of
several criteria, but bounded by a maximum step size 	tmax.
The criteria are given by an acceleration criterion, the Courant
criterion and a criterion due to temperature flow from Eq. (9).
The total timestep condition is given by

	ti = min

[√
2η1

v̇i

,
η2hi

v̂
sig
i

,
η3(ui − umin)

(d/dt)ũi

,	tmax

]
, (13)

where η1,2,3 are integration accuracy parameters and v̂
sig
i =

maxj [vsig
ij ]. The individual timesteps are kept to a binary

hierarchy, so that all particles are integrated synchronously at
last after the actual existing maximum timestep. As discussed
in Ref. [49], energy is barely conserved if particles have
unequal timesteps; therefore, Eq. (9) is only integrated at times
of synchronization.

B. Scaling thermostat for SPH

The SPH method, as described above, conserves total
energy. Thus, an increase of kinetic energy of the fluid is
accompanied with a loss of total internal energy and vice versa.
This can be seen as a consequence of the hydrodynamic equa-
tions. Furthermore, taking artificial dissipation and thermal
conduction into account, where the dynamic process becomes
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irreversible, the total energy is still conserved. Combined with
the caloric vdW-EOS Eq. (12), the mean temperature T of the
system may change as the particle densities diverge within the
process of phase separation. When the focus of interest is on
the evolution of these separated phases, it might be desirable to
keep T at a constant desired value T0. One way is to keep each
temperature Ti fixed at T0, which would generate an isothermal
process, but could not preserve thermal fluctuations within
the dynamical system. The two remaining possibilities are
either to shift or to scale the mean temperature to the desired
value. The former is not reasonable since temperatures below
T could result in negative temperatures. Therefore, the scaling
approach is implemented in the way that the new particle
temperatures T̃i are given by

T̃i = Ti

T0

T
. (14)

Due to the same conflicts that occur with integrating the
conduction term, the synchronization points are also used
to update the internal energies by the additional thermal
scaling term kb(T̃i − Ti). It should be noticed that in molecular
dynamics (MD), thermostat methods, especially the velocity
rescaling method, are used in a very similar way to realize
a constant temperature ensemble [51]. Actually, the SPH
method, in its simplest nonadaptive formulation, is closely
related to MD [52]. The velocity rescaling method for MD
does not reflect the proper physical properties of a canonical
ensemble and must be extended to more advanced but also
common methods, e.g., the Berendsen coupling or Nosé-
Hoover thermostat, because it does not allow fluctuations
in temperature. However, for SPH the scaling approach
is quite suitable because it already treats the temperature
as a mesoscopic field quantity. Furthermore, it allows the
temperature field to fluctuate around a given mean value.

III. SIMULATION RESULTS

In the past decades several approaches have been made
in understanding phase separation processes and effects of
hydrodynamics on the dynamical process. Therefore, spin-
odal decomposition (SD) has been studied extensively, both
experimentally and theoretically. Since almost all theoretical
derivations commonly treat the process isothermal, which
is indeed an appropriate approximation for quenches in the
neighborhood of the critical point, thermal SD simulations
have been performed with a thermal Lattice-Boltzmann (LB)
method [6] where the temperature field and thermal conduction
were applied. When the SD occurs the mean temperature is
found to increase due to latent heat and the domains grow
slower than in the isothermal case. However, the thermal
fluctuations that arise from compression and expansion play a
decisive role for the evolution of deep-quenched systems. This
evolution of dynamics is far from clear and shall be focused on
in this work from the early stage, where the phases separate, up
to the late stage, where the system reaches local equilibrium
and is dominated by domain growth and coarsening. The SPH
method allows us to observe the thermal evolution for each
phase in a direct manner, whereas the thermostat extension
allows us to observe fluctuations at a fixed mean temperature.

First the accuracy of the scaling thermostat is demonstrated
by both static and dynamic thermal conduction test cases.
This is followed by simulations with and without applied
thermostat, where the SD and DG regimes are studied and
compared with theoretical predictions in detail. The results for
various quench depths and applied thermostat are presented in
the last part.

The distribution of the initial SPH-particle configuration is
realized by a relaxation process. The desired number of SPH
particles are uniform randomly distributed in the simulation
box before they are integrated in time with an artificial
repulsive force term. The particles reach a nearly equilibrated
state after a certain number of timesteps. The resulting
configuration is a so called glasslike distribution. Note that
a small noise in the SPH-density estimation (depending on the
number of neighbors N and the initial value of the density
ρ0) is generated by the nonequidistant spacing of the particles.
But in the context of SD a noisy density field is even desired.
The simulation box is a cube of side length L = 1 and the
total mass M = ρ0L

3. Therefore, the mass of one particle is
mi = M/Ntot, where Ntot is the total number of particles. For
a fixed number of neighbors that is set to N = 250 for all
the simulations hereinafter, and an initial density ρ0 = 0.5
the initial standard deviation of the SPH-density is σρ ≈
5.7 × 10−4. The covolume and cohesive pressure are expressed
in terms of the critical point (Tc,Pc,ρc) = (32/27,8/27,2/3),
which yields a = 2.0 and b = 0.5. Further constant parameters
in all simulations are thermal conductivity κ = 0.01, artifi-
cial viscosity α = 1.0, the integration accuracy parameters
(η1,η2,η3) = (0.0025,0.15,0.1), and 	tmax = 10−4. Periodic
boundary conditions are applied, since boundary effects shall
be neglected here.

A. Validation of the scaling thermostat approach

The SPH implementation of the thermal conduction equa-
tion with the new approach for a scaling thermostat have not
yet been applied to the vdW-EOS. In order to evaluate the
performance and accuracy of these, a validation test case is
performed with the four resolutions of 104,5 × 104,105, and
106 SPH-particles. We consider a planar thermal interface of
a homogeneous liquid phase with the initial density ρ0 = 1.5.
The interface is located at xm = 0.5 in x direction and separates
the initial temperatures of Tl = 1.0 and Tr = 0.8, where the
indices r and l denote the right and the left half of the box,
respectively. This initial configuration is purposefully chosen
to be out of the binodal region. Hence, thermal effects due to
phase separation are neglected.

First we are interested in the capability of the thermal
conduction to capture a test case, which can be analytically
solved [49,53]. That is the initial configuration described
above, but concerning a fluid at rest. To meet this, the velocities
are kept fixed at zero. The analytic solution for the temperature
is given by an error function term,

T (x,t) = T + 	T

2
erf

(
x − xm

2
√

χt

)
, (15)

where 	T = |Tl − Tr | and χ = κ/ρ0cp is called thermal
diffusivity with cp = 1. The internal energy is related to
the temperature by Eq. (12). Therefore, the internal energy
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FIG. 1. (Color online) Time sequences of the temperature field T of a resting fluid with an initial thermal discontinuity at xm = 0.5 with
106 SPH-particles and periodic boundary conditions. While in panel (a) the pure thermal conduction equation is used, in panel (b) the thermal
conduction equation and scaling thermostat are applied. The symbols represent the simulation results. The corresponding analytic solutions are
drawn by the solid lines. The inset boxes show enlargements of the central region of size (xm ± 0.04,T ± 0.015).

solution is also given by an error function term that is similar
to Eq. (15). This relation is mainly given by the density-
weighted cohesive pressure term, which causes a noise at the
conversion from temperatures to internal energies, when the
glasslike distribution is used for the initial particle positions.
One of the interesting features of the thermal conduction
term is that those noisy temperature differences are instantly
smoothed out. That is why the internal energies are used
for initialization instead of the temperatures. Note that this
procedure does not have any effect on the mean values
of the quantities but on single-particle values. As periodic
boundaries are applied, they must be taken into account in
the analytic solution. Figure 1 shows a comparison of the
temperature profiles from the simulation results with 106 SPH
particles at six different times of the pure thermal conduction
equation [Fig. 1(a)] and with the additionally applied scaling
thermostat [Fig. 1(b)]. The inset boxes show the enlarged
central regions. The symbols represent the simulation results
and are obtained via a histogram calculation with 50 bins in x

direction.

Both simulations reproduce the analytic solution well, but
a closer look at the inset boxes in Fig. 1 reveals that the
simulation with pure thermal conduction tends to overestimate
the temperature values not only in the central region but in the
whole simulation volume. This can be addressed to the kernel
interpolation procedure that produces density estimations that
are slightly too high. However, this incorrect behavior is
compensated by the scaling thermostat, which almost perfectly
predicts the temperature values expected from the analytic
solution. In order to verify the functionality of the scaling
thermostat in dynamic systems the same initial configuration
is used but with released particles. In this case the analytic
solution is expected to hold only a short period of time,
which is just as long as the density can be considered to
be approximately homogeneous. In addition, these density
changes that are due to the particle movement (and therefore
the fluid flow) repeal the similarity between the evolution
of the internal energy and the temperature. In Fig. 2 the
evolution of the densities, temperatures, and internal energies
for the four different resolutions with applied thermostat are
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FIG. 2. (Color online) Time sequences of the temperatures T , internal energies u, and densities ρ, for the calculations with thermostat. The
different lines and colors represent the results for the resolutions 104 (short-dashed blue line), 5 × 104 (long-dashed green line), 105 (solid red
line), and 106 (dashed-dotted orange line).
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FIG. 3. (Color online) Comparison of density rendered cross-section slices from simulation snapshots at the times t = 0.4, 0.65, 1.00, 4.00,
7.00, and 10.00. The pure thermal simulations with no thermostat (top row) and with thermostat (bottom row), with a side length of the box
size L = 1. Note that even t = 10.00 is far from equilibrium and the actual shapes of the three-dimensional structures cannot be determined in
the two-dimensional representation.

shown. Note that the simulations have also been performed
without the scaling thermostat, but they only differ in the
poorer temperature estimation as it was observed in the
nondynamical case. The comparison reveals a limited ability in
capturing this dynamic test case. The simulations with higher
resolutions produce very similar results, whereas the lowest
resolved simulation with 104 particles differ significantly from
these. Therefore, the lowest resolution cannot be expected
to adequately describe the dynamics of a vdW fluid. The
evolution of the internal energies still have the error-functional
shape very similar to the analytic solution in the nondynamical
test case. However, the effects of the dynamics can be seen in
the density field that fluctuates between high and low densities.
It is driven by the actual present temperature. Due to the
balance between computational expense and reasonably good
results the resolution of 105 particles is chosen for all further
simulations.

B. Spinodal decomposition and domain growth

1. Effect of the thermostat

The effects of the thermostat on the phase separation
process are studied on the basis of two simulations with
N = 105 particles. They only differ in applying the thermostat.
Corresponding to an instantaneous deep quench further initial
values are set to T0 = 0.8 and ρ0 = 0.5 for both of the
simulations. This is below the spinodal curve and therefore
completely unstable, such that the system is expected to
immediately initiate to separate. In this initial stage several
density peaks, due to the initial density noise, grow in height
with time, which is often called “homophase fluctuations” [1].
This is almost identical for both of the simulations. Indeed,
the point in time of demixing τ0 (defined as the point where
a particle density first exceeds ρc) is the same τ0 = 0.31.
However, from this moment on the evolution of the simulations
differ significantly. Figure 3 shows cross-section slices of the
density of both simulations at different times. The simulation
without thermostat forms a wider and more diffuse interface
between the two phases than the one with thermostat. The
critical density is used as a threshold value ρth = ρc to

distinguish between the liquid or vapor phase and to calculate
the mean temperature per phase. In Fig. 4(a) a comparison of
the walk through the temperature-density diagram is shown.
The density values are obtained by a median calculation for
each phase. The median is chosen instead of more common
choices, such as the arithmetic mean or the modus for the
reason that these are very susceptible to the formation of
diffuse interfaces at higher temperatures in the initial stage. In
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FIG. 4. (Color online) (a) Temperature-density diagram at
equidistant timesteps with 	t = 0.01 up to t = 20 for the T0 = 0.8
and ρ0 = 0.5 simulations without thermostat (red triangles) and with
applied thermostat (green dots). The dark and light colors refer to
the liquid and vapor phase, respectively. The gray lines represent
the binodal (solid line) and spinodal (dashed line) curves from vdW
theory and Maxwell construction. The density values are obtained
via median and the temperatures are arithmetic means of each phase.
The characteristic lengths of the vapor ξv and the liquid phase ξl for
the same simulations are shown in panels (b) and (c), respectively.
The arrows point fit intervals and the gray lines refer to slopes of 1/3
and 2/3 to guide the eye.
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the late stage, the density distribution shows two sharp peaks in
the histogram and the three types of means differ only slightly.
But in the early stage the robustness of the median to single
strong-density deviations improves the understanding of the
separation process. The points in Fig. 4(a) mark equidistant
timesteps. It shows that the early stage of the demixing process
lasts longer in the pure thermal case. Associated therewith the
thermal heating is an important difference to the thermostat
case in this early stage. This effect has recently been shown
by Gan et al. [6] who implemented a thermal model for
phase separation to LB simulations. In this case, theoretical
predictions are not clear. However, the SPH method provides a
direct view on the evolution of the phases, which reveals that in
the absence of a thermostat both phases heat up. More precisely
the SD process can be divided into the three following parts.
The aforementioned heating is followed by a time interval
where the heating stagnates and only the liquid density is
further approaching the coexistence density. Each of these
parts last about 	t ≈ 0.1. In the third part, which lasts longer
by two orders of magnitude, temperature is raised again. But
the liquid density shows an oscillating behavior until it reaches
the coexistence curve. On the other hand, with applying a
thermostat the interesting effects are seen on the vapor phase.
Instead of a temperature increase, as observed and expected
from the pure thermal simulation, the vapor temperature first
decreases alongside with a density decrease. This process is
followed by a slow temperature increase approaching both
the predicted temperature and coexistence density. A contrary
evolution is observed for the liquid phase where a density
increase is accompanied with an increase in temperature.

Anyhow, the heating and cooling behavior of both sim-
ulations can be explained by the caloric EOS and thermal
conduction in Eq. (4). The initial density noise is intensified
by the gradient of Eq. (11). These density differences are
coupled to the temperature by Eq. (12). In the pure thermal
case the mass of the liquid phase dominates the simulation
volume. With its immense temperature increase the vapor
phase is heated via thermal conduction. Therefore, the initial
ρ0 and T0, which determine the mass fraction of the separated
system, predict the equilibrated mean temperature. With a
high gas-to-liquid mass fraction the system should decrease
in temperature, whereas a low gas-to-liquid fraction leads to
heating, as observed here. Note that the vapor temperature
decrease that is always observed in simulations with applied
thermostat should also be observed in simulations without
thermostat for quenches close to Tc, where the heating of the
liquid phase is minimally extensive.

The late stage of phase separation is dominated by the
domain growth and coalescence of droplets. It is quantified by
the scaling behavior of the characteristic length scales of the
domains, i.e., ξ (t) ∼ tα , where α depends on the time regime.
Conventionally, ξ (t) can be obtained via several methods, such
as the structure factor or a two-point correlation function [1].
However, there are several reasons to define ξ (t) in a different
way. The calculation of a structure factor goes along with a
Fourier transformation and, therefore, requires a regular grid.
Also, the maximum value that can be obtained via two-point
correlation is half the box size, even though the domain sizes
in our simulations exceed this value. Therefore, in this work
ξ (t) is calculated straightforward as the mean of the minimum

distances from one phase to the other. There are several
advantages of this calculation method. The resolution does
not depend on the grid sizes, which must be chosen for the
Fourier transformations or histogram calculations. In addition,
it allows us to distinguish between liquid and vapor phase, thus,
the lengths can be treated separately. The characteristic length,
e.g., for the liquid phase, is then defined as the arithmetic mean
of the particlewise calculated minimum distance to the vapor
phase,

ξl(t) = 1

Nl

Nl∑
il

min
jv

(∣∣ril (t) − rjv
(t)

∣∣), (16)

where il and jv belong to the liquid and vapor phase,
respectively, and Nl is the total number of liquid particles.
This method is actually very robust and allows us to trace
the phase separation process even until the very late stage,
where the coalescing process is almost completed and only
the single separated domains remain in local equilibrium. Note
that the values obtained by Eq. (16) are smaller compared to
conventional methods; e.g., for a spherical-shaped droplet ξl

would be 1/4 of the diameter of the sphere. Calculations of
the characteristic lengths of vapor ξv and liquid ξl for both
simulations are presented in Figs. 4(b) and 4(c). The compari-
son between the two simulations reveal only slightly different
behavior. The already mentioned initial stage “homophase
fluctuations” exceed ρc in both cases and end up with crossing
the spinodal curve. This is were the liquid curves ξl show a
slight kink from where the growth process is dominated by
the LS mechanism with α = 1/3. In both simulations the very
late stage that is dominated by inertial hydrodynamics (IH)
with α = 2/3 is observed. One of the main differences is that
the pure thermal simulation exhibits a regime with α = 1/2
between these two growth rates. This may be understood as
a transition regime where LS mechanism is overlaid by IH
effects. Regarding the higher temperature of this simulation it
also shows that the regime of hydrodynamics is not temporally
fixed and may depend on temperature. Nevertheless, in the
simulation with thermostat the two regimes can clearly be
distinguished and identified. Note that the model does not
include physical viscosity and, therefore, it is not expected
to observe the intermediate introductorily described viscous
hydrodynamic regime. In Table I the results for the exponents
from a least-square regression analysis to the corresponding
fit intervals from Fig. 4 are presented. Note that the intervals
are only suggestions by the authors based on the shapes of the
curves and the evaluated exponents may vary within rearranged
intervals. But it should further be mentioned that the fitted αl

in the suggested arrangement of intervals are in very good
agreement with the theoretical predictions for both types of
simulations [10,11]. The 1/2 exponent in a thermal, in contrast
to the 2/3 exponents for an isothermal system, was also found
with LB simulations [6].

The necessity to treat liquid and vapor separated becomes
clear by comparing the characteristic lengths for the vapor ξv

with the liquid curves. It is due to the initial state with ρ0 � ρc

that ξv = 1 at the initial state. The increase of “homophase
fluctuations” arise from the vapor state and exceed ρc. Thus,
the nuclei are only observed in the liquid phase. From the
vapor point of view, ξv decreases with the increasing number of
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TABLE I. The exponents α (with asymptotic standard errora δα) are least-square fitted within the fit intervals suggested in Fig. 4. The
abbreviation nt and wt denote the simulations “no thermostat” [Fig. 4(b)] and “with thermostat” [Fig. 4(c)].

Simulation Time αl ± δαl Time αv ± δαv

nt 1.00 − 3.30 0.333 ± 0.001 1.00 − 4.30 0.419 ± 0.001
3.31 − 6.00 0.509 ± 0.001 4.31 − 11.3 0.502 ± 0.002
6.01 − 10.3 0.667 ± 0.008 – –

wt 0.65 − 7.00 0.329 ± 0.001 0.65 − 7.00 0.424 ± 0.001
7.01 − 10.9 0.671 ± 0.006 7.01 − 9.90 0.621 ± 0.004

aAsymptotic standard error expresses the accuracy in accordance to the calculated characteristic lengths.

liquid nuclei and further undergoes a minimum value. Contrary
to the intuitive expectation this minimum does not coincide
in time with the maximum number of nuclei. Furthermore, it
points out that the nuclei combine and build a fine “spongelike”
structure until it is totally interconnected to one single domain.
All beforehand the minimum of ξv is reached (in further
calculations this point in time is defined as τ1). As this cannot
be expected by the cross-section slices in Fig. 3, this fluid
motion and structure formation is only observable in three
dimensions. The coarsening of the liquid domain can also be
observed in the fast increase of ξv after τ1. So far in both
simulations the ξv are very similar and also in the following
stage of growth a scaling law with αv ≈ 0.42 is observed as
depicted in Table I. Only in the very late stage the growth
rates differ. The simulation without thermostat shows a rate
of αv = 1/2, whereas the simulation with thermostat shows
a faster growth of αv ≈ 0.62. The difference is due to the
differing late-stage mean temperatures. But also in accordance
with the growth rates of the liquid domains at the very late
stage.

It seems only meaningful to compare the initial stage to the
thermostat simulation, because of the temperature increase
that is due to latent heat in the pure thermal simulation.
The mean equilibration temperature at t = 20 for the latter
one is Twt ≈ 0.8 compared with Tnt ≈ 1.1. The equilibration
temperature for simulations without thermostat seems hardly
predictable. Possible dependencies to the initial parameters
are the density, the wavelength and amplitude of the density
noise, the temperature [15,18], heat conduction, and in the
case of a nonideal fluid, the viscosity [28]. In the next part
the quench depth is varied with applied thermostat to improve
the understanding of the phase separation process, with special
attention to the temperature evolution and thermal fluctuations.
This provides one of the main features of the SPH method in
contrast to other fully isothermal approaches.

2. Quench depth variation with thermostat

Simulations with different quench depths are performed in
order to compare the dynamic behavior and the growth rates.
The quench depth means the relative distance from the critical
point 1 − T0/Tc. We focus primarily on the late stage, where
the demixing process is almost completed and the domains
are growing. Therefore, various initial temperatures, ranging
from a deep-quenched T0 = 0.6 to low-quenched T0 = 1.1,
are set. The simulations are all scaled by the thermostat. The
initial density is independent from the quench depth set to

ρ0 = 0.5. The total simulation time ranges from ≈20 to ≈50,
depending on the dynamics of the system in order to simulate
up to a time where finite-size effects influence the dynamics.
Note that the simulations are not evolved until the total
equilibration long-time limit is reached, which is mainly due
to the absence of physical viscosity in our model. Exemplarily
a representative set of simulations is chosen of which cross-
section slices of the density in a temporal evolution are shown
in Fig. 6. An interesting correlation is observed. The evolutions
of the simulations depend significantly on the temperature. The
initial fluctuations that are expected to finally form the liquid
phase arise much slower with decreasing the quench depth.
This is also supported by a comparison of the total kinetic
energies Ekin = ∑

miv
2
i /2 (shown in Fig. 5). The maximum

value of kinetic energy is located between τ0 and τ1 and
decreases with increasing T0. A further look on the inset box
reveals that for the simulation with T0 = 1.1 local equilibrium
could not be reached within the simulation time and the kinetic
energy is even growing at t = 50. Therefore, this simulation
is considered separately later on. A qualitative comparison
between the remaining simulations regarding the arise of
“homophase fluctuations” and the formation of “spongelike”
structures in the initial stage reveals a very similar growth
behavior even though the temporal evolutions differ. However,
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FIG. 5. (Color online) Temporal evolution of the kinetic energies
for the temperatures T0 = 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95,
1.00, 1.05, and 1.10 (from left to right). The inset box shows an
enlargement of the curves in the main box at the end of simulation
times.
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FIG. 6. (Color online) Comparison of density-rendered cross-section slices from simulation snapshots at the times t = 0.25, 0.5, 1.0, 2.0,
4.0, 8.0, and 20.0. Exemplarily the simulations with initial T0 = 0.75, 0.85, 0.95, and 1.05 are shown (from top to bottom) with a side
length of the box size L = 1. Note that the actual shapes of the three-dimensional structures cannot be determined in the two-dimensional
representation.

in correspondence with the prolonged dynamical evolution
it is clearly visible that not only the number of initially
growing nuclei is lowered with increasing temperature but
also the wavelength of the fluctuations increase. Thus, the
interfaces between separated phases become broader and more
diffuse. In the simulations with T0 = 0.95 and upwards the
interfaces of actually separated liquid drops are found to
be diffuse enough to overlap (e.g., Fig. 6 at T0 = 0.95 and
t = 20 in the top left of the box). Moreover, the simulations
suggest that high temperatures near Tc (and therefore a long
wavelength of the initial fluctuations and the increase in time of
demixing) affect more of a nucleation-like demixing behavior
than the SD. This phenomenon is also predicted by a theory
presented in Refs. [1,5] and indeed already observed here
at T0 = 1.1. Such a formation of a spherical-shaped droplet
is shown in Fig. 7. The cross-section is positioned at the
center of the left droplet. At t = 40 a stable droplet with a
homogeneous density inside and a diffuse interface is formed.
The main portion of kinetic energy of the system is in the
interfaces. The fluid velocity vanishes beside the interfaces.
A second droplet forms at the same time in a lower level
of the box. It is barely identifiable in the density plot on
the right-hand side of the box, but becomes visible in the
temperature plot with velocity field vectors. The heating of the
liquid and cooling of the vapor medium is also observed. In
the further temporal evolution the temperature peak vanishes
due to thermal conduction and results in a homogeneous
temperature within the whole simulation volume. Also, the
droplets do not remain static. At later times the nuclei

grow and undergo coalescing processes as it does at deeper
quenches.

The effects of the temperature field and thermostat shall
now be studied in a more detailed manner. Therefore, the
thermal evolution is plotted in Fig. 8 in the temperature-density
phase diagram. Here the density and temperature values are
also obtained as already described in the previous section.
The dependency between quench depth and prolongation can
be confirmed. The distances between the marked points at
equidistant times with 	t = 0.005 become shorter in the
initial stage of separation with higher T0. This rapid change
in the density values of the separated phases is coupled to the
temperature by the caloric vdW-EOS. Thus, the liquid phase is

FIG. 7. (Color online) Nucleation in spinodal regime at a tem-
perature T = 1.1 near Tc. Time evolution of density-rendered (top)
and temperature-rendered (bottom) cross-section slices. The vectors
indicate the velocity field.
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FIG. 8. (Color online) Temperature-density diagram at equidis-
tant timesteps with 	t = 0.005 and initial density ρ0 = 0.5 for
various temperatures [color coding as in Fig. 5, from T0 = 0.6
(bottom) to 1.10 (top)]. The gray lines represent the binodal (solid
line) and spinodal (dashed line) curves from vdW theory and Maxwell
construction.

heated and the vapor phase is cooled. The faster the phase
separation occurs and, hence, the density changes, the stronger
the temperature deviations become. In the further evolution ρv

and ρl continue to approach the binodal and the temperature
deviations vanish. Since the thermostat only scales the Ti by a
factor [see Eq. (14)] in order to satisfy the condition T = T0, it
cannot level out the thermal fluctuations. Hence, this process
must be due to thermal conduction, which explains also why
the temperature deviations are higher at deeper quenches. The
effect of conduction becomes too weak to compensate the
cooling and heating of the phases that occur as a result of the
change in density.

In the late-stage time regime, when DG is dominant,
latent heat is fully released and, therefore, the thermostat
becomes less important for the demixing process. In Fig. 9
the characteristic lengths for the liquid ξl are shown. Because
the curves actually overlap, they are shifted by an exponential
temperature-dependent factor for reasons of clarity and better
comparability. Concerning the growth rates, it is found that
the theoretical predicted LS mechanism is correct for the
deeper quenched simulations. A time regime with a α = 1/3
scaling, right after the initial stage, can be clearly identified
for the simulations with T0 = 0.6 up to T0 = 0.95. This
1/3-scaling either ends due to finite-size effects (as it is for
T0 = 0.6 and T0 = 0.7) or the 1/3 exponent changes to a
value slightly around 2/3, which is in accordance with the
theoretical predictions for IH growth. Our simulations show
that the transition time τ2, that marks the crossover, depends
on T0. One possible suggested dependency for this transition is
highlighted with the bold bar in Fig. 9. Even the slight kink in
the T0 = 1.0 curve may be due the crossover between the two
growth regimes. For lower quench depths the growth rate of
2/3 appears immediately after the initial stage. See Appendix
for detailed listing of one possible realization of fit intervals
and the corresponding fitted exponents.
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FIG. 9. (Color online) Log-log representation of the evolution of
the characteristic lengths ξl for various temperatures in time [color
coding as in Figs. 5 and 8, from T0 = 0.6 (top) to 1.10 (bottom)].
For reasons of comparability the lengths are each shifted by a factor
E0 = exp[(Tc − T0)/0.1] that depends on the initial T0. The gray
lines are guides to the eye and highlight the transitions from LS to
IH growth (bold line) and the two growth rates of 1/3 and 2/3 (thin
lines). Note that the growth of ξl for deeper quenches is limited due
to finite-size effects before the crossover to IH regime occurs.

This time dependency can also be interpreted with Fig. 6
in view. The domination of the hydrodynamic regime in
the very late stage can be explained with the growth of ξl .
It means that facing domains (actually still separated, but
of the same phase) approach each other and coalescence
becomes the dominant growth process over the coarsening.
As it was mentioned above the width of the interfaces
increases with increasing T0. This might be understood in
terms of surface tension σ , which is mainly responsible for
the coarsening of the phases. A theoretical approach can
already be derived from the vdW theory [29]. It takes the form
σ ≈ (1 − T/Tc)γ , where γ ≈ 11/9 [54]. Hence, for higher
temperatures the surface tension decreases. Several studies
show the capability of the vdW-SPH method to capture the
surface tension phenomenon well [30,31]. In addition, the
theoretical expression for planar interfaces from vdW theory
relates σ to the thickness of the interface L, since it can
be calculated by an integration of the square of the density
gradient [55]. Based on the vdW theory, the density profile
perpendicular to the interface can be described by a tanh(2x/L)
function and, therefore, the interface width diverges as T

approaches the critical temperature Tc [56]. Moreover, the
diffuse interfaces of separated domains overlap, such that they
can interact hydrodynamically even if the drops are far away
from each other. Thus, the interface thickness explains that the
transition from LS to IH occurs earlier in time, and, therefore,
depends on T0. This transition point in time τ2 actually scales
with the quench depth (1 − T0/Tc). To this a least-square
regression is shown in Fig. 10. As it was discussed above,
the slope of the fitted curve should be determined by the mean
distance between the separated droplets, i.e., taking the domain
size and the interface width into account. Thus, changing the
values of a or b would affect the interface widths and thus also
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FIG. 10. (Color online) The points in time τ0 where ρ first
exceeds ρc, τ1 where ξv have their minimum, and the points in
time τ2 of the transition from LS to IH growth as functions of the
quench depth. The solid lines correspond to least-square regression
with the exponents α0 = −2.28 ± 0.08, α1 = −2.29 ± 0.08, α2 =
0.174 ± 0.18. The times for T0 = 1.1 were excluded, because of its
extraordinary nucleation-like growth behavior.

the slope of the transition line. But the question as to which
quantity can affect this transition line to shift in time must
be addressed to the thermal conductivity. It is responsible for
the compensation of thermal fluctuations and the driving force
for the LS mechanism. In accordance with the results from
thermal LB simulation [28], a higher value of κ is expected to
reduce the duration of the SD regime and could affect a shift
of the transition line.

Figure 10 shows also the scaling behavior of the times τ0

and τ1. It also supports the statement that the whole demixing
process becomes slower with decreasing quench depth. The
times of demixing τ0 and the point in time τ1, where ξv reaches
the minimum, can be fitted with an exponential growth (the
simulation with T = 1.1 was not taken into account because of
its spherical non-SD-typical nucleation growth behavior). This
is in agreement with the results that are obtained from deep-
quench simulations of binary mixtures [15] where a similar
correlation is found.

For a final remark, the pure thermal simulation (T0 = 0.8,
without thermostat) from Sec. III B1 is compared to the
results that are obtained with different quench depths and
applied thermostat. As it was already mentioned, the initial
demixing progress (concerning the wavelength of “homophase
fluctuations”) is very similar to T0 = 0.8 with thermostat.
The differing further evolution might be due to the thermal
heating. The comparison between Figs. 3 and 6 reveals a
similarity to the T0 = 1.1 simulation in a later stage. Indeed,
the simulation without thermostat seems to cross between
the thermostat simulations with the rise of temperature. That
explains the observed 1/2 exponent from Fig. 4(b). As it
was already expected in the previous section, it is truly the
result of an overlap between the 1/3 LS growth, driven by
the fluctuations that raised in the early time regime, and the
2/3 IH exponent that occurs earlier in time for higher mean
temperatures.

IV. CONCLUSION

The SPH method in its modern formulation with extensions
to vdW-EOS and thermal conduction is proved to capture the
dynamics of phase transitions such as spinodal decomposition.
This is even possible without complicated extensions such as
density gradient forces or the separation of the vdW-EOS in
short-range repulsive and long-range attractive components.
Only minor improvements due to newest findings and de-
velopments to SPH such as the Wendland kernel and the
thermostat are necessary. The internal energy and, therefore,
also the thermal evolution is an inherent part of the method.
Due to the massive parallelization algorithms the method
provides the choice of very high resolutions (up to ∼107).
But in the context of phase separation it produces already
satisfactory results with spatial and temporal resolutions that
are even smaller by an order of magnitude than the resolution
requirements for comparable mesoscopic simulation methods
such as thermal-LB. Thus, the time range can be chosen much
longer and the computational cost is reasonably low. A typical
simulation run with 105 particles and T0 = 0.8 up to a time
t = 50 is performed on 32 CPU and lasts about 48 h, and, thus
the complete calculation of the initial SD regime at t ≈ 1 is
completed within 1 h.

The correctness of the SPH interpretations of the ther-
mal conduction equation and the newly developed scaling
thermostat are verified with a number of validation test
cases with both static and dynamic tests. The static test has
shown that the thermostat corrects temperature deviations
that arise by density estimation errors. The dynamical test
reveals that for sensible results an adequate resolution must be
chosen.

The dynamics of spinodal decomposition are studied both
with a pure thermal simulation and with a scaling thermostat.
It is found that “spongelike” structures are formed in three
dimensions. The pure thermal evolution is characterized by
an increase in temperature in the initial stage due to latent
heat. The growth rates are in accordance with the observations
from the thermostat simulations. The initial quench depth is
expected to determine the intensity of thermal fluctuations and,
thus, the duration of the diffusive LS growth. With the increase
in temperature, the interfaces broaden and IH growth becomes
dominant. Therefore, a transition growth rate between the
two regimes is found. This is expected to result from an
overlap of the two growth rates. Although the pure thermal
evolution seems more realistic with regard to experiments,
this temporal overlapping of the growth regimes makes it more
difficult to clarify the physical origins of the growth processes.
But the comparison with simulations with various initial
temperatures and applied thermostat supports the hypothesis
of overlap. These simulations confirm the dependency between
temperature and prolongation in the initial stage. The initial
demixing is found to be strongly correlated with heating and
cooling of the phases, where the deviations from the mean
temperature become stronger if the quench depth increases.
A crossover (which is also theoretically predicted) between
the two growth mechanism (LS and IH) in the late-stage time
regime is observed for several initial temperatures. Moreover,
it is found that the time of crossover increases with increasing
the quench depth and follows a scaling law. Thus, deep
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quenches show pure LS and low quenches pure IH growth.
The line of transition might be shifted in time with changing
the thermal conductivity. This is in accordance with results
from thermal-LB simulations. For very low quenches (near
the critical temperature) the dynamic becomes slower and
the separation process is rather more nucleationlike than
SD, which is also in accordance with theoretical predictions.
We note that the described SPH method also produces SD-
nucleation even at higher temperatures than here presented, but
therefore the initial density should be set to a value below the
spinodal.

For future works there are several appropriate inves-
tigations. For the reason of a better comparability with
experimental results we expect that an extended thermostat
model that allows finite quench rates will be straightforward. In
this work we observe a correlation between the hydrodynamic
interaction range and the interface width. We did not focus
on it in detail, although it would improve the understanding
of the role of hydrodynamics. But for this purpose it is rather
reasonable to use a more simple model and to study therein
the fluid flow and temperature field evolution of the late-stage
IH regime. One possible model could be the coalescence of
actually equilibrated liquid droplets in a vapor medium and
vice versa. The vdW-SPH method is also a promising candidate
for sensible dynamic simulations of evaporation phenomenons
like hydrodynamic cavitation and jet formation.
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TABLE II. The exponents α (with asymptotic standard errora δα)
are least-square fitted and refer to the characteristic lengths for the
liquid phase presented in Fig. 9 and their corresponding lengths for
the vapor phase.

T0 Time αl ± δαl Time αv ± δαv

0.60 0.40 − 9.00 0.365 ± 0.001 0.40 − 9.20 0.390 ± 0.002
0.70 0.47 − 10.00 0.352 ± 0.001 0.47 − 10.20 0.379 ± 0.001
0.75 0.55 − 8.70 0.333 ± 0.001 0.55 − 8.70 0.403 ± 0.001

10.7 − 13.7 0.443 ± 0.002 – –
0.80 0.65 − 7.00 0.329 ± 0.001 0.65 − 7.00 0.424 ± 0.001

7.01 − 10.9 0.671 ± 0.006 7.01 − 9.90 0.621 ± 0.004
0.85 0.81 − 5.70 0.404 ± 0.001 0.80 − 5.30 0.442 ± 0.001

8.6 − 11.90 0.659 ± 0.004 – –
0.90 1.20 − 3.6 0.417 ± 0.002 1.20 − 9.60 0.482 ± 0.002

3.90 − 5.40 0.619 ± 0.002 – –
0.95 1.70 − 3.10 0.386 ± 0.003 1.72 − 10.00 0.487 ± 0.002

3.11 − 7.2 0.582 ± 0.002 – –
1.00 2.90 − 6.40 0.652 ± 0.002 2.9 − 8.70 0.617 ± 0.001
1.05 6.00 − 14.0 0.687 ± 0.002 6.00 − 16.5 0.766 ± 0.001

aAsymptotic standard error expresses the accuracy in accordance to
the calculated characteristic lengths.

APPENDIX: FIT INTERVALS AND EXPONENTS

In Fig. 9 only the characteristic lengths for the liquid phase
ξl are presented, whereas the ξv are not shown. Moreover,
the crossover between the different growth regimes is only
schematically illustrated. For completeness we present in
Table II one possible choice of fit intervals and the corre-
sponding fitted exponents for both the liquid and the vapor
phase. Note that the suggested time intervals represent only
one possible realization. Therefore, the fitted exponents α are
also just suggestions. In Fig. 11 the fit intervals and the cor-
responding growth rates are highlighted on the characteristic
lengths for (a) the liquid and (b) the vapor phases.
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FIG. 11. (Color online) Log-log representation of the evolution of the characteristic lengths for the temperatures T0 = 0.60, 0.70, 0.75,
0.80, 0.85, 0.90, 0.95, 1.00, 1.05, and 1.10 (from top to bottom) for (a) the liquid phase ξl and (b) the vapor phase ξv . The curves are also shifted
as described in the legend for Fig. 9. The fit intervals from Table II are each highlighted by enlarged (lighter) points and the corresponding
fitted exponents are shown with straight lines.

032303-12



EFFECTS OF TEMPERATURE ON SPINODAL . . . PHYSICAL REVIEW E 91, 032303 (2015)

[1] K. Binder, Rep. Prog. Phys. 50, 783 (1987).
[2] J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[3] J. W. Cahn, Acta Metall. 9, 795 (1961).
[4] J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
[5] K. Binder, Phys. Rev. A 29, 341 (1984).
[6] Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E 84,

046715 (2011).
[7] H. Furukawa, Adv. Phys. 34, 703 (1985).
[8] A. J. Bray, Adv. Phys. 43, 357 (1994).
[9] I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35

(1961).
[10] E. D. Siggia, Phys. Rev. A 20, 595 (1979).
[11] H. Furukawa, Physica A 204, 237 (1994).
[12] F. J. Alexander, S. Chen, and D. W. Grunau, Phys. Rev. B 48,

634 (1993).
[13] R. Yamamoto and K. Nakanishi, Phys. Rev. B 49, 14958 (1994).
[14] H. Tanaka and T. Araki, Phys. Rev. Lett. 81, 389 (1998).
[15] N. Vladimirova, A. Malagoli, and R. Mauri, Phys. Rev. E 58,

7691 (1998).
[16] P. B. Warren, Phys. Rev. Lett. 87, 225702 (2001).
[17] P. B. Warren, Phys. Rev. E 68, 066702 (2003).
[18] A. G. Lamorgese and R. Mauri, Phys. Fluids 21, 044107 (2009).
[19] A. Winkler, P. Virnau, K. Binder, R. G. Winkler, and

G. Gompper, J. Chem. Phys. 138, (2013).
[20] M. Hirschler, M. Huber, W. Saeckel, P. Kunz, and U. Nieken,

Math. Prob. Eng. 2014, 694894 (2014).
[21] W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and

J. R. Banavar, Phys. Rev. Lett. 75, 4031 (1995).
[22] K. R. Mecke and V. Sofonea, Phys. Rev. E 56, R3761 (1997).
[23] V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev.

E 70, 046702 (2004).
[24] P. K. Jaiswal, S. Puri, and S. K. Das, Phys. Rev. E 85, 051137

(2012).
[25] P. K. Jaiswal, S. Puri, and S. K. Das, Europhys. Lett. 97, 16005

(2012).
[26] S. Roy and S. K. Das, Phys. Rev. E 85, 050602 (2012).
[27] S. Roy and S. K. Das, Soft Matter 9, 4178 (2013).
[28] Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett.

97, 44002 (2012).
[29] J. van der Waals, J. Stat. Phys. 20, 200 (1979).
[30] S. Nugent and H. A. Posch, Phys. Rev. E 62, 4968 (2000).
[31] Leonardo Di G. Sigalotti, J. Troconis, E. Sira, F. Peña Polo, and

J. Klapp, Phys. Rev. E 90, 013021 (2014).
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